
Blockchain Frontier Technology (B-Front) P-ISSN: 2808-0831
Vol. 1 No. 2 January 2022 E-ISSN: 2808-0009

 ■84

Copyright (c) 2022 Erliyani, I., Wulandari, A., (Author). This
work is licensed under a Creative Commons Attribution 4.0

An Agile Software Engineering Method to Design
Blockchain Applications

Ita Erliyani1, Siti 'Afifah Wulandari2

University of Raharja, Indonesia
 Jl. Jenderal Sudirman No.40, RT.002/RW.006, Cikokol, Kec. Tangerang, Kota Tangerang,

Banten 151171,2
e-mail: ita.erliyani@raharja.info1, siti.afifah@raharja.info2

Erliyani, I., Wulandari, A., An Agile Software Engineering Method to Design Blockchain
Applications
Blockchain Frontier Technology (B-Front), 1(2), 84-95.
DOI : https://journal.pandawan.id/b-front/article/view/52

Abstract

Cryptocurrencies and its underlying technology, Blockchain, are transforming banking
and economics by allowing trustworthy programs to exist without the requirement for a trusted
counterpart. In recent years, the Blockchain and the programs that run on it, known as Smart
Contracts, have seen increased use across all businesses that demand trust and verifiable
credentials. Some have compared the "Blockchain revolution" to the early days of the Internet
and the World Wide Web. As a result, all Blockchain-based software development is
accelerating at a dizzying pace. Many software engineers argue that the widespread interest in
Blockchain technology has resulted in haphazard and rushed software creation, a type of first-
come, first-served competition that fails to assure software quality or take into consideration
core software engineering ideas. This research tries to solve this issue by proposing a software
development strategy for gathering requirements, assessing them, designing, creating, testing,
and deploying Blockchain applications. Several Agile approaches are employed in the process,
including User Stories and iterative and incremental development based on them. It does,
however, employ more formal notations, such as UML diagrams that define the system's design,
with improvements to express unique Blockchain concepts. The method is well discussed,
including an example to illustrate how it works.

Keywords: Blockchain, Smart Contracts, Software, Agile

1. Introduction
 The so-called Blockchain applications are currently one of the most popular IT topics
[1]. The Blockchain is a decentralized and secure technology that was created to manage the
Bitcoin money [2]. Developers immediately discovered that the Blockchain could also be utilized
as a decentralized computer, running Smart Contracts - programs that serve as the foundation
for automated contract enforcement. The realization of the technology's promise - the ability to
enforce contracts, eliminate middlemen, and overcome space and time limits – sparked a surge
of interest in Blockchain applications [3]. Some analysts believe that "we should conceive of the
Blockchain as another class of item like the Internet" and that "broad adoption of Blockchain
technology has the ability to reshape the present financial services technical infrastructure."
As a result of this enthusiasm, a growing amount of money is being invested in Blockchain
projects [4]. Despite recent market shrinkage, the market capitalization of cryptocurrencies is
well over 200 billion US dollars, and venture capital investments, both from traditional funds and

/Users/conan/Downloads/Creative%20Commons%20Attribution%204.0
mailto:ita.erliyani@raharja.info
mailto:siti.afifah@raharja.info
https://journal.pandawan.id/b-front/article/view/52

Blockchain Frontier Technology (B-Front) P-ISSN: 2808-0831
Vol. 1 No. 2 January 2022 E-ISSN: 2808-0009

An Agile Software Engineering Method … ■ 85

from recent Initial Coin Offerings (ICOs), have surpassed 10 billion US dollars in the last year.
This rush to engage in new ventures, usually by swiftly building apps to be the first on the market,
has resulted in several major disasters, owing to poor software design and security
procedures.Attacks on the so-called "Exchanges," websites where cryptocurrencies may be
traded against each other or even against fiat currencies like the US dollar and euro, are
common, resulting in alleged losses of well over a billion dollars [5]. Many software developers
have expressed their dissatisfaction with the widespread interest in Blockchain technology,
particularly the numerous software projects that have sprang up and evolved swiftly around
various Blockchain implementations or applications. The scenario is one of a first-come, first-
served competition that does not ensure software quality or that the fundamental notions of
software engineering are taken into account [6].
 The initial phase in fostering a product framework using strong computer programming
rehearses is to have a characterized improvement process set up, just as configuration
approaches and documentations that are proper for the job needing to be done. Explicit turn of
events, test, arrangement, and security evaluation procedures can be applied accordingly. The
reason for this article is to propose and test a plan and improvement approach for Shrewd
Agreement based Blockchain applications [7]. The whole cycle is generally founded on the
Nimble Statement's ideas, with a few extra documentation and practices. The proposed method
depends on the way that a Savvy Agreement is a product program that sudden spikes in demand
for all hubs of a Blockchain and should have similar results and state on all hubs. Accordingly,
a SC isn't permitted to contact the rest of the world in any capacity - it can react to requests
through a public connection point and send solicitations to different SCs on a similar Blockchain.
Accordingly, the proposed technique parts the Blockchain programming framework definition
into two sections: the particular and advancement of the SCs, and the plan and improvement of
the product application(s) that cooperate with outer clients and the SCs [8]. To represent
Blockchain specificities, the recommended strategy additionally incorporates a language
structure that consolidates the UML Use Case, Grouping, and Class outlines.
The proposed method has been scrutinized in various certifiable drives at our college and a side
project organization [9].
 The remainder of this paper is spread out as follows. We show important work in
something very similar or comparable spaces in Segment 2. Segment 3 clarifies the proposed
methodology just as the progressions made to a few UML charts to oblige SC thoughts.
Segment 4 is an improved model dependent on a genuine situation. Segment 5 finishes up with
discoveries and ideas for future examination [10].

2. Related Work
 The subject of configuration approaches and, all the more extensively, programming
rehearses equipped towards the making of Blockchain-Situated Programming (BOS) is as yet
in its outset. The principal call for BOS Designing, who push for the exploration and execution
of incredible designing cycles to guarantee fruitful testing, further develop collaboration in huge
groups, and make Savvy Agreement creation simpler. They likewise guarantee that current plan
documentations may be changed to more readily communicate BOS show a Blockchain
scientific classification [11].
 Propose a flowchart and an early agenda to help plan choices dependent on Blockchain
highlights. offer a strategy for figuring out what parts of an application configuration could profit
from Blockchain innovation [12]. They recognize members, their trust connections, and
collaborations to make a design that joins Blockchain innovation into current programming
frameworks or makes new frameworks that exclusively use Blockchain specifically regions. To
offer a procedure for the improvement of Blockchain use cases, utilize an activity configuration
research strategy and situational technique designing [13]. They put the idea under serious
scrutiny in four unique businesses: banking, protection, development, and cars [14].
 A few articles have been distributed proposing enhancements to the Brought together
Displaying Language to all the more likely express different fields to manage BOS. Baumeister
and his partners Proposed a Hypermedia UML expansion, which included new generalizations
and another Navigational Design Model [15]. Moreover, Baresi et al. join underlying and

Blockchain Frontier Technology (B-Front) P-ISSN: 2808-0831
Vol. 1 No. 2 January 2022 E-ISSN: 2808-0009

An Agile Software Engineering Method … ■ 86

navigational deliberations provided by hypermedia web models with practical and conduct
natives given by UML in a solitary system. Rocha and Ducasse have all the more as of late
shown three free demonstrating procedures dependent on notable computer programming
models – E-R graphs, UML, and BPMN – and applied them to a Savvy Agreement plan model.
They propose specific changes to the UML Class Chart to appropriately communicate Savvy
Agreement standards [16].

3. Method
 The suggested BOS design process is carried out in a series of phases, which are
described in Fig. 1 as a UML activity diagram.

Figure 1. The steps of the proposed BOS development process.

In deeper detail, the proposed BOS development process is the following:

1. Determine which players (human roles and external systems/devices) interact with the
system. You may use the concept of evaluating actor trust/untrust to determine if a
Blockchain system is truly needed, and for what purposes [6].

2. Create user stories or features to represent the system needs. During this stage, the
entire system to be constructed should be considered. It makes no difference if it is built
on a Blockchain or on a group of cloud servers.

3. Split the system into two parts:
4.1 The Smart Contracts, which make up the Blockchain system.
4.2 An external system that communicates with the first, transmitting transactions to the
Blockchain and receiving results.

Blockchain Frontier Technology (B-Front) P-ISSN: 2808-0831
Vol. 1 No. 2 January 2022 E-ISSN: 2808-0009

An Agile Software Engineering Method … ■ 87

4. The SC subsystem's design:
5.1 Redefine the actors and user stories, as in stages 2 and 3, but only for those that
interface directly with the SC subsystem and any external SCs that may be utilized;
5.2 Specify the decomposition in SCs (one or more); define the libraries and external
SCs that will be utilized; design the inheritance structure and interface use;
5.3 Define the message and Ether transfer links and flow, as well as the state diagram
(if applicable).
5.4 Define the data structure, the API, and the events.
5.5 Define the modifiers and internal functions.
5.6 Define the tests and procedures for security assessment.

5. The external subsystem's design:
6.1 Redefine the actors and user stories as in stages 2 and 3, but with the addition of
the new (passive) actors represented by the SC system; design the subsystem's
acceptance tests.
6.2 Determine the system's overall design, taking into account the server and client
applications, as well as the Blockchain node(s) to be used;
6.3 Define the user interfaces for all essential modules, including applications.
6.4 Conduct a system analysis, defining the system's decomposition into modules,
message flow, the structure and storage of permanent data, including those anchored
to the Blockchain via hash digest memorization, and the data or class structure of the
application(s); the connections and data flows between participants, including the SCs,
must comply with the analysis of step 5.3;
6.5 Define the state diagrams (if necessary), comprehensive interfaces of the various
modules, and the reaction to SC events.
6.6 Conduct an external system security evaluation.

6. Develop and test the systems; concurrently:
7.1 Begin by writing and testing the SCs' data structure and functionalities;
7.2 Use an agile strategy (Scrum or Kanban) to implement the USs of external
subsystems.

7. Complete the total system's integration, testing, and deployment.

3.1 UML diagrams for Smart Contracts
 The Strength programming language is normally used to make SCs for Ethereum.

Robustness is an article situated programming language, where agreements are determined
as classes, with an information construction, public and private strategies, and the capacity

to acquire from different agreements. SCs have their own arrangement of thoughts, like

occasions and modifiers. We use UML graphs to help with the displaying of SCs.

Nonetheless, in light of the fact that SCs have specific novel properties, we added a few extra
plans to these graphs to appropriately portray and indicate them [17].

 These ideas are presented as UML generalizations, which are labels that might be used

in UML graphs any place they are required, at whatever point practicable. In a couple of

different conditions, for example, the exchange of Ethers in grouping charts, we needed to
utilize an extraordinary documentation. We utilize the accompanying UML charts to display

SCs: Class diagrams, which depict the structure and relationships of SCs; in this form of

diagram, we added several stereotypes, Statecharts, which are used to depict the different
states of a SC and do not require any additional concepts, Sequence diagrams, which depict

messages transmitted to a SC and from a SC to another SC; this diagram requires additional

types of communications, such as Ether transfers [18].

 To portray SCs and structs, UML class outlines are used. In spite of the fact that classes
are absent in Robustness, SCs are amazingly tantamount to them. A SC can contain an

information design, public and private techniques, and can acquire from at least one SCs,

similar as a class. SCs, then again, are extraordinary in that they are shaped by exchanges,
however every exchange can make one SC. SCs, then again, can speak with different SCs

on a similar Blockchain. In Strength, structs, or modern information structures without

capacities, can likewise be characterized. Accordingly, the model of an exchange's SC may

Blockchain Frontier Technology (B-Front) P-ISSN: 2808-0831
Vol. 1 No. 2 January 2022 E-ISSN: 2808-0009

An Agile Software Engineering Method … ■ 88

include different SCs it gets from, the used structs, and the outside SCs to which messages

are conveyed [19]. Other Ethereum SC-explicit ideas incorporate occasions, which are

banners that are raised when something significant happens and sign it to the rest of the

world (which should independently notice the SC and act likewise), and modifiers, which are
exceptional capacities that are called before a capacity, really taking a look at its imperatives

and conceivably halting the execution. Table 1 exhibits the generalizations we set up to

permit SC thoughts to be addressed in UML class charts. Beside the compartments holding
the name, characteristic, and capacities, the occasions may be addressed in another

compartment (activities).

Table 1. shows the changes to the UML class diagram (stereotypes).

Stereotype Position Description

«contract» Class symbol – upper
compartment

Denotes a SC.

«library
contract»

same as above A contract retrieved from a (common)
library

«struct» same as above A struct that holds data but does not
perform any operations and is specified

and used in the data structure of a contract.

«enum» same as above An enum is a type that stores just a list of
potential values.

«interface» same as above Only function declarations are included in
this contract.

«modifier» Class symbol – lower
compartment

Solidity defines a certain type of function.

«array» Role of an association An array is used to implement the 1:n
relationship.

«map» same as above A mapping is used to implement the 1:n
connection.

«map[uint]» same as above A mapping from integer to value is used to
implement the 1:n relationship.

 The going with three models portray how one relationship is executed in a SC's data

structure [20]. The group and the arranging are the two maintained collections in Heartiness

for regulating accumulating (data everlastingly kept on the Blockchain). The past is a

standard chief bunch, all things considered, with the extra component of being expandable
(yet not killed). The arranging is a variety that can hold key-regard consolidates and get a

value promptly given its key, at this point it can't rehash over its parts. The last speculation

associates with a normal Vigor programming instance of involving a preparation with positive
numbers as keys so it may be iterated over [21]. To address messages, UML Progression

Charts are utilized. Messages in Ethereum are associated with trades submitted to the

Blockchain by external customers, systems, or SCs.

Blockchain Frontier Technology (B-Front) P-ISSN: 2808-0831
Vol. 1 No. 2 January 2022 E-ISSN: 2808-0009

An Agile Software Engineering Method … ■ 89

 Messages are indistinguishable from "public limit calls" in object-arranged

vocabulary.The matching message can be passed on for nothing expecting that a limit

doesn't make or change the Blockchain (it's known as a "view" work). Various
correspondences ought to be paid in GAS before they may be sent. The sorts of individuals

(portrayed by their records) and such messages are the intriguing components of Ethereum

illuminating. Table 2 shows how predispositions may be used to restrict the individuals. A
special documentation is required for the correspondences [15].

Stereotype Description

«person» A human role that involves utilizing a wallet or other program to transmit
messages.

«system» A third-party system that can deliver messages to the Blockchain.

«device» A gadget that can deliver messages (usually IoT).

«contract» A SC that is either internal to the system or external to it.

«oracle» A type of SC in which the dates are written by a trustworthy third party and
which allows access to information about the outside world.

«account» An Ethereum wallet that only stores Ethers. If the owner activates the
transfer, it can only accept Ethers or send Ethers to another account or SC.

Table 2. UML Sequence Diagram Additions (stereotypes).

The following are the many types of communications that are significant to the design:

1. SC creation: it is transmitted by an external participant or another SC; a creation is
depicted in a sequence diagram by drawing the new participant at the time level of

its formation. Function call: this is the typical "synchronous" or "asynchronous"

message that involves Blockchain change and consequently GAS payment.

2. View/pure function call: a transaction with no Blockchain change and no GAS
payment; it may be represented by prefixing the message name with the words

«view» or «pure».

3. ETH transfers: a transaction in which Ethers are transferred from one account or SC
to another. A specific arrow, akin to the inheritance arrow in UML class diagrams, is

used to model this.

3.2 AN EXAMPLE OF APPLICATION
 An illustration of a product program The referenced SC improvement method is utilized

by our College bunch just as the organizations we help. Among the activities being created

are a store network the executives framework, a framework for overseeing impermanent work

contracts, different remote democratic frameworks for nearby states, and an organization's
Investors' Gathering and governing body gatherings. We give a worked on adaptation of the

democratic framework to act as an illustration of the underlying periods of the prescribed

approach.The first stage is to figure out what the framework's point is. The executives of
remote democratic in corporate congregations, including the check of legitimate numbers

and the appointment of intermediary votes. The subsequent stage is to recruit entertainers.

In the framework, there are basically two entertainers: The corporate chairman is responsible

for the framework, just as controlling the investors and their portions, meeting gatherings,
and calling for casting a ballot. Goes to gatherings, projects casts a ballot, and has assigned

Blockchain Frontier Technology (B-Front) P-ISSN: 2808-0831
Vol. 1 No. 2 January 2022 E-ISSN: 2808-0009

An Agile Software Engineering Method … ■ 90

gathering support to another investor. The third stage is to make client stories. Fig. 3 shows

the players and the USs they are engaged with utilizing an UML Use Case outline, where the

utilization cases are, indeed, USs. It's significant underlining that these

 Americans just notice the democratic interaction, not the innovation that was used to do

it. Regardless of whether the execution utilize a Blockchain, they'd be correct.

Figure 2. The system specification's User Stories.

We don't have enough area to depict the Americans in depth here. Rather, we exhibit

the UML class diagram obtained from an analysis of the supplied USs in Fig. 4. Again, this

diagram is not tied to a specific voting system implementation; it simply depicts the entities,
data structures, and activities that emerge from the USs of Fig. 3. Step 4: Split the system

into two halves. Because all USs employ Smart Contracts, the subdivision is simple in this

scenario. The external app subsystem's USs are same. Each one adds the Blockchain as a
new player.

Blockchain Frontier Technology (B-Front) P-ISSN: 2808-0831
Vol. 1 No. 2 January 2022 E-ISSN: 2808-0009

An Agile Software Engineering Method … ■ 91

Figure 3. The UML class diagram created from the USs

 The UML class diagram created from the USs is shown in Figure 3. The Blockchain

subsystem's USs are same. The Actors' IDs are their unique addresses: Corporate

administrator: her or his address is first the address used to form the contract, and subsequently
it may be changed by the Change administrator US. Shareholders: the Corporate Administrator

specifies and manages their addresses. Step 5: Create the SC subsystem design. Because the

SC system is so basic, a single SC appears to be the best solution. The "Ownable" standard

abstract contract is used to maintain the Administrator's ownership on the SC, following a well-
known standard:

Table 3 shows the results of this function. Other modifiers are added to Table 3 at the bottom

to accommodate for other limitations that apply to several functions.

Modifier Action - Notes

onlyOwner() Ensures that the message's sender is the contract's owner (the
Administrator). Ownable's basic contract inherited it.

onlyShareholder() Ensures that the message's sender is one of the contract's
registered shareholders.

Blockchain Frontier Technology (B-Front) P-ISSN: 2808-0831
Vol. 1 No. 2 January 2022 E-ISSN: 2808-0009

An Agile Software Engineering Method … ■ 92

Only Owner or
Shareholder()

Ensures that the message's sender is either the contract's owner
or one of the shareholders.

Assembly Running() Asserts that an assembly is truly executing at the moment of the
call.

Assembly Not Running() Assures that no assembly is in progress at the time of the call.

 Finally, the contract's public functions put the User Stories' features into action. The

findings are summarized in Table 4. We give each function a name (perhaps followed by the

function's kind, in this case "view"), call restrictions, modifiers, parameters, and a description of
its purpose. In this example, the constructor is the only function that can create a contract. In

more intricate cases, a contract may result in another contract, however this is not common.

The UML sequence diagrams representing the interactions between Actors and SCs in this
example are not representational. All communication calls are exchanged between the SC and

an Actor in reality (Administrator or Stakeholder). In this basic scenario, there are no direct

connections between more than two persons. As a result, no sequence diagrams are provided.

Figure 4. The statechart UML diagram depicts the state of a stakeholder who is attending an
assembly or delegating to another stakeholder.

Function Modifiers Parameters Action - Notes

constructor string nameFirm string
nameAdmin [(string
nameSh, address
addrSh, uint16
noShares)]

Create the VotingManagement contract by
entering the firm's name, the Administrator's
name, and the name, address, and number of
shares for each shareholder.

addShareholder onlyOwner string
nameSh address
addrSh uint16
noShares

Fill in the details for a new shareholder,
including his name, address, and number of
shares.

Delete
Shareholder

onlyOwner address
addrSh Delete the
given shareholder,
giving his address.

Only if the shareholder does not actively
participate in an assembly can this be done.

Blockchain Frontier Technology (B-Front) P-ISSN: 2808-0831
Vol. 1 No. 2 January 2022 E-ISSN: 2808-0009

An Agile Software Engineering Method … ■ 93

editShareholder onlyOwner address
addrSh string nameSh
uint16 noShares

Update the specified shareholder's information,
including his (unchangeable) address, name,
and number of shares. Only if the shareholder
does not actively participate in an assembly can
this be done.

Change
Administrator

onlyOwner address
newOwner string
nameAdmin

Give the new administrator's name and
address.

Convene
Assembly

onlyOwner Convene an assembly, specifying the start and
finish dates and times, a brief description, the
minimum percentage of shares required for
validity, and the maximum number of delegates
that a single Shareholder can get. There can be
no overlap between the old and new
assemblies.

addVoting onlyOwner Add a voting call to the specified assembly,
defining the name of the vote, the two
alternatives to choose from, the minimum
percentage of voting shares, and the number of
votes required for a valid vote. It's unlikely that
the assembly has already begun.

 Assuming that you follow the techniques above, composing the SC is clear. Besides, it

doesn't include Ether moves, beside the GAS important to finish the exchanges, and its security
issues are unimportant attributable to its effortlessness and simplicity of actually looking at the

preconditions of its messages. With the end goal of straightforwardness, we will avoid the plan

and execution of the outer framework (stage 6). It incorporated the advancement of a responsive

application that put away the Entertainers' location and private key, permitting them to send
messages to the SC, which ran on the Ethereum Blockchain. This application was fabricated

utilizing node.js and web3.js on the customer side. To interact with the Ethereum Blockchain,

the Ethereum Javascript library Web3.js is used.

4. Conclusion

 In spite of the enormous exertion by and by put into creating DApps, helpless computer
programming rehearses are as yet being utilized in BOS programming advancement. Truly,

researchers are as yet chipping away at apparatuses or strategies for demonstrating and

controlling the eccentricities that a product engineer should manage while managing

Blockchain Situated programming frameworks. To match this new programming worldview,
customary programming devices and cycles should be refreshed and adjusted.

 By furnishing engineers with instruments like those utilized in conventional computer

programming to address structural plan, security concerns, testing planes and techniques,
and further develop programming quality and upkeep, a sound computer programming

approach could incredibly support beating a significant number of the issues tormenting

Blockchain improvement. By adjusting and evolving ideas, methods, instruments, and

thoughts that have recently been created in computer programming to this new
programming innovation, programmers have a phenomenal chance to start investigating a

point that is both basic and fresh out of the plastic new. This paper moves forward toward

this path by introducing a complete model of associations between customary programming

and the Blockchain climate, including Class graphs, Statecharts, US outlines,

Blockchain Frontier Technology (B-Front) P-ISSN: 2808-0831
Vol. 1 No. 2 January 2022 E-ISSN: 2808-0009

An Agile Software Engineering Method … ■ 94

 Arrangement charts, Brilliant Agreements charts, and an overall plan for overseeing

BOS improvement processes, just as a viable illustration of a paradigmatic Blockchain

Shrewd Agreement executing a democratic framework. Our discoveries may be enormously

useful to Blockchain ventures, eminently ICOs, who wish to acquire an upper hand by
carrying out SE (BOSE) philosophies from the beginning.

References

[1] G. Sachs, “Blockchain-The new technology of trust,” Retrieved April, vol. 11, p. 2018, 2018.
[2] F. Asuncion et al., “Connecting Supplier and DoD Blockchains for Transparent Part Tracking,”

Blockchain: Research and Applications, p. 100017, 2021, doi:

https://doi.org/10.1016/j.bcra.2021.100017.

[3] V. Shermin, “Disrupting governance with blockchains and smart contracts,” Strategic Change,

vol. 26, no. 5, pp. 499–509, 2017.

[4] V. Gatteschi, F. Lamberti, C. Demartini, C. Pranteda, and V. Santamaria, “To blockchain or not
to blockchain: That is the question,” IT Professional, vol. 20, no. 2, pp. 62–74, 2018.

[5] P. Tasatanattakool and C. Techapanupreeda, “Blockchain: Challenges and applications,” in 2018

International Conference on Information Networking (ICOIN), 2018, pp. 473–475.

[6] A. Alammary, S. Alhazmi, M. Almasri, and S. Gillani, “Blockchain-based applications in

education: A systematic review,” Applied Sciences, vol. 9, no. 12, p. 2400, 2019.

[7] M. Turkanović, M. Hölbl, K. Košič, M. Heričko, and A. Kamišalić, “EduCTX: A blockchain-

based higher education credit platform,” IEEE Access, vol. 6, pp. 5112–5127, 2018, doi:

10.1109/ACCESS.2018.2789929.

[8] F. Agustin, S. Syafnidawati, N. P. Lestari Santoso, and O. G. Amrikhasanah, “Blockchain-based

Decentralized Distribution Management in E-Journals,” Aptisi Transactions On Management,

vol. 4, no. 2, pp. 107–113, 2020.

[9] H. Nusantoro, P. A. Sunarya, N. P. L. Santoso, and S. Maulana, “Generation Smart Education
Learning Process of Blockchain-Based in Universities,” Blockchain Frontier Technology, vol. 1,

no. 01, pp. 21–34, 2021.

[10] F. P. Oganda, U. Rahardja, Q. Aini, M. Hardini, and A. S. Bist, “BLOCKCHAIN:
VISUALIZATION OF THE BITCOIN FORMULA,” PalArch’s Journal of Archaeology of
Egypt/Egyptology, vol. 17, no. 6, pp. 308–321, 2020.

[11] T. Salman, R. Jain, and L. Gupta, “A Reputation Management Framework for Knowledge-Based

and Probabilistic Blockchains,” in 2019 IEEE International Conference on Blockchain

(Blockchain), 2019, pp. 520–527. doi: 10.1109/Blockchain.2019.00078.

[12] U. Rahardja, Q. Aini, and S. Maulana, “Blockchain innovation: Current and future viewpoints for
the travel industry,” IAIC Transactions on Sustainable Digital Innovation (ITSDI), vol. 3, no. 1,

pp. 8–17, 2021.

[13] J. Yli-Huumo, D. Ko, S. Choi, S. Park, and K. Smolander, “Where is current research on
blockchain technology?—a systematic review,” PloS one, vol. 11, no. 10, p. e0163477, 2016.

[14] Q. Aini, U. Rahardja, and A. Khoirunisa, “Blockchain Technology into Gamification on

Education,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 14, no. 2,

pp. 1–10, 2020, doi: 10.22146/ijccs.53221.

[15] Q. Aini, N. Lutfiani, F. Hanafi, and U. Rahardja, “Application of Blockchain Technology for
iLearning Student Assessment,” IJCCS (Indonesian Journal of Computing and Cybernetics

Systems), vol. 14, no. 2, 2020, doi: 10.22146/ijccs.53109.

[16] I. Handayani, R. Supriati, and E. S. N. Aisyah, “Proof of Blockchain Work on The Security of
Academic Certificates,” in 2020 8th International Conference on Cyber and IT Service

Management (CITSM), 2020, pp. 1–5.

[17] H. Nusantoro, R. Supriati, N. Azizah, N. P. L. Santoso, and S. Maulana, “Blockchain Based
Authentication for Identity Management,” in 2021 9th International Conference on Cyber and IT

Service Management (CITSM), 2021, pp. 1–8.

[18] R. Bhargava, “Blockchain Technology and Its Application: A Review,” IUP Journal of

Information Technology, vol. 15, no. 1, pp. 7–15, 2019.

Blockchain Frontier Technology (B-Front) P-ISSN: 2808-0831
Vol. 1 No. 2 January 2022 E-ISSN: 2808-0009

An Agile Software Engineering Method … ■ 95

[19] S. Yang, Z. Chen, L. Cui, M. Xu, Z. Ming, and K. Xu, “CoDAG: An Efficient and Compacted
DAG-Based Blockchain Protocol,” in 2019 IEEE International Conference on Blockchain

(Blockchain), 2019, pp. 314–318. doi: 10.1109/Blockchain.2019.00049.

[20] T. Hardjono, A. Lipton, and A. Pentland, “Toward an Interoperability Architecture for Blockchain
Autonomous Systems,” IEEE Transactions on Engineering Management, vol. 67, no. 4, pp.

1298–1309, 2020, doi: 10.1109/TEM.2019.2920154.

[21] Q. Liu, Q. Guan, X. Yang, H. Zhu, G. Green, and S. Yin, “Education-industry cooperative system

based on blockchain,” in 2018 1st IEEE international conference on hot information-centric

networking (HotICN), 2018, pp. 207–211.

