ASYMMETRIC DEPENDENCE BETWEEN STOCK MARKET RETURNS AND NEWS DURING COVID-19 FINANCIAL TURMOIL (CASE STUDY SSE 50, SET 50, LQ45, AND STI INDEX)

Putri Sulistyowati¹, Brady Rikumahu²

¹²Universitas Telkom

Corresponding author: ¹putrisulistyowati@student.telkomuniversity.ac.id, ²bradyrikumahu@telkomuniversity.ac.id

Article Info: Submitted: 04/06/2021, Revised: 10/06/2021 Published: 03/09/2021

Abstract: The purpose of this study is to see the asymmetric dependence between stock returns and news during the financial turmoil during COVID-19 on the SSE 50, SET 50, LQ45, and STI indices simultaneously or partially. Observations have been carried out for 216 working days from 3 January 2020 to 30 October 2020. The population in this study is the share prices of all stocks listed on the stock exchanges of China, Thailand, Indonesia, and Singapore. The research sample was SSE 50, SET 50, LQ45, and STI indices for the period January 2020 - October 2020. This research is quantitative using quantile regression. Method and involves Eviews 10 in its data analysis. The results show that RavenPack news index (the panic index/PI, the media hype index/HY, the fake news index/FNI, the country sentiment index/CSI, the infodemic index/CTI, dan the media coverage index/MCI), Credit Default Swap (CDS) rate on 5 year bonds issued by the central government, and the daily closing price of gold during weekdays in the period 3 January 2020 - 30 October 2020, there is no significant effect on stock returns on the SSE 50, SET 50, LQ45, and STI indices either simultaneously or partially.

Keywords: asymmetric dependency, stock market return, news, the quantile regression method.

Abstrak: Tujuan dari penelitian ini adalah untuk melihat ketergantungan asimetris antara *return* saham dan berita selama gejolak keuangan saat COVID-19 di indeks SSE 50, SET 50, LQ45, dan STI secara simultan maupun parsial. Pengamatan telah dilakukan selama 216 hari kerja sejak 3 Januari 2020 hingga 30 Oktober 2020. Populasi dalam penelitian ini adalah harga saham dari keseluruhan saham-saham yang terdaftar di bursa efek negara China, Thailand, Indonesia, dan Singapura. Sampel penelitian yaitu indeks SSE 50, SET 50, LQ45, dan STI periode Januari 2020 – Oktober 2020. Penelitian ini bersifat kuantitatif dengan menggunakan metode regresi kuantil dan melibatkan Eviews 10 pada analisis datanya. Hasil menunjukkan bahwa indeks berita RavenPack (the panic index/PI, the media hype index/HY, the fake news index/FNI, the country sentiment index/CSI, the infodemic index/CTI, dan the media coverage index/MCI), Credit Default Swap (CDS) rate pada obligasi 5 tahun yang diterbitkan oleh pemerintah pusat, dan harga penutupan harian emas selama hari kerja di periode 3 Januari 2020 – 30 Oktober 2020 tidak berpengaruh signifikan terhadap return saham di indeks SSE 50, SET 50, LQ45, dan STI baik secara simultan maupun parsial.

Kata kunci: ketergantungan asimetris, pengembalian pasar saham, berita, metode regresi kuantil.

INTRODUCTION

The public news that is being discussed is one of the virus families of the coronavirus, namely SARS-CoV-2 or Coronavirus Disease-2019 (COVID-19). The announcement of a global health emergency was declared by WHO on January 30, 2020, because COVID-19 cases are spreading rapidly and WHO officially declares COVID-19 as a world pandemic on March 11, 2020 (World Health Organization, 2020). China was recorded as the country that first reported cases of COVID-19 in the world, namely on December 31, 2019. This disease was first detected in the city of Wuhan, Hubei Province, China with several infected patients being traders at the Huanan Fish Market (Bagaskara, 2020). The official announcement of COVID-19 as a pandemic encourages governments in each country to make efforts and take policies on handling COVID-19 by setting restrictions on interaction or direct contact between communities such as lockdown (Kompaspedia, 2020). With the limitation of interaction, the community activity outside the home is reduced. COVID-19 will harm the economy of ASEAN and the rest of the world in 2020. If a country's economy weakens, activity in the capital market will also have an impact because the value of portfolios or company assets such as stocks in investment instruments will be affected (IDX Channel, 2020). The trading dynamics in the capital market are seen as related to rumors and market sentiment originating from the news (Paramanik & Singhal, 2020). A growing number of studies have focused on understanding whether price movements in financial markets are driven by economic or political news (Cepoi, 2020). Information coming from social media channels has a significant influence on stock market dynamics, especially during times of economic or political uncertainty. The good and bad news about COVID-19 can be seen from an index on the RavenPack website. News about this pandemic has an impact on world capital markets. The first three months of 2020, all stock exchanges in the world experienced a decline in prices, which affected the global stock index (Fajar, 2020). The decline in stock prices that occurred in the world was experienced by the SSE 50, SET 50, LO45, and STI indices. The following is the SSE 50 index scale from December 2019 to October 2020:

Picture 1. SSE 50 index magnitude, December 2019 - October 2020

Based on Figure 1, it can be seen that the SSE 50 index has decreased since December 2019 - March 2020 by 12%. In December 2019, the share price was recorded at the position of 3,063.22 then decreased to its lowest point, namely March 2020 at the position

of 2,689.38. This fact proves that the existence of the first case of COVID-19 in China in December 2019 and limited community activities with the enactment of the lockdown had an impact on the capital market in China. The following is the SET 50 index scale from December 2019 to October 2020:

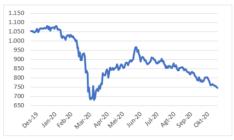


Figure 2. SET 50 index magnitude, December 2019 - October 2020

Based on Figure 2, it can be seen that the SET 50 index has decreased from December 2019 - March 2020 by 32.23%. In December 2019 the stock price was recorded at 1,068.5 then decreased to 756.91 in March 2020. Before the COVID-19 pandemic, Thailand's stock index was in the top position, replacing Singapore in May 2019 due to the strengthening baht price (The Star, 2020). This fact proves that the COVID-19 case has an impact on the capital market in Thailand. The following is the LQ45 index magnitude from December 2019 to October 2020:

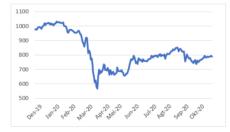


Figure 3. LQ45 index magnitude, December 2019 - October 2020

Based on Figure 3, it can be seen that the LQ45 index has decreased since December 2019 - March 2020 by 35.16%. In December 2019 the share price was recorded at 1,014.47 positions then decreased in March 2020 to 691.13 position. Then in March - October 2020 the share price had an upward trend, but in September 2020 the share price declined again due to the announcement of the second PSBB in Indonesia. This fact proves that the COVID-19 case has an impact on the capital market in Indonesia. The following is the STI index magnitude from December 2019 to October 2020:

Figure 4. STI index magnitude, December 2019 - October 2020

Based on Figure 4, it can be seen that the STI index has decreased since December 2019 - March 2020 by 24.23%. In December 2019, the share price was recorded at 3,222.83 positions and then decreased to 2,481.23 in March 2020. The lowest price of the STI index occurred in October 2020, which was 2,423.84. This fact proves that the COVID-19 case has an impact on the capital market in Singapore. The COVID-19 pandemic affecting world capital markets has caused investment value to decline, so investors are looking for other alternatives by making investments that are considered safe. According to Cepoi (2020), the Credit Default Swap (CDS) rate on 5-year bonds and gold is considered a safe investment during this pandemic so that it can be used as a safety investment. So that when stock prices are down, the CDS rate on 5-year bonds and gold can maintain the investment value of investors where investors still benefit from the CDS rate and gold. Credit Default Swap (CDS) rate on 5 year bonds is considered a safe investment because it is an investment issued by the government so that it is not too risky. While gold is considered safe because the movement of the gold price is not too far away and the price of gold is considered to have a value that is opposite to the stock price, where if the stock price rises, the gold price falls (Cepoi, 2020). Research on the impact of COVID-19 on the capital market was also conducted by Cepoi (2020) with the research title "Asymmetric Dependence between Stock Market Returns and News during COVID-19 Financial Turmoil". The results of the study indicate that the stock market presents an asymmetric dependence on COVID-19 related information such as fake news, media coverage, and infodemics. So the authors are interested in knowing the asymmetric dependence between returns and news about a major event that is currently happening, namely the COVID-19 pandemic with the research objects, namely the SSE 50, SET 50, LQ45, and STI indices. The index was chosen because China was the country with the first COVID-19 cases in the world, while Thailand, Indonesia, and Singapore were chosen because they were the countries with the largest equity market in Southeast Asia and the most influential country in ASEAN (The Star, 2020).

Theoretical Framework and Hypothesis

In this study, the objects studied were the SSE 50, SET 50, LQ45, and STI indexes with the data taken from 216 working days from January 3, 2020, to October 30, 2020. The study began by looking at the movement of positive cases of COVID-19. in China, Thailand, Indonesia, and Singapore then looked at the stock price in each index of the country, and analyzed the factors that affect stock returns, namely news, CDS, and gold. The good and bad news regarding COVID-19 can be seen based on the news index on RavenPack, including the panic index/PI, the media hype index/HY, the fake news index/FNI, the country sentiment index/CSI, the infodemic index/CTI, and the media coverage index/MCI. Then look at gold and the Credit Default Swap (CDS) rate on 5-year bonds which are considered safe investments during the COVID-19 pandemic. The framework can be seen in Figure 5 below:

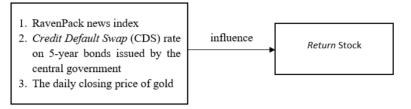


Figure 5. Framework

Research Hypothesis

- H₁: All RavenPack news indexes are the panic index/PI, the media hype index/HY, the fake news index/FNI, the country sentiment index/CSI, the infodemic index/CTI, and the media coverage index/MCI, Credit Default Swap (CDS) rate on 5-year bonds issued by the central government, and the daily closing price of gold together have a significant effect on stock returns.
- H_2 : The panic index/PI has a significant effect on stock returns.
- H₃: The media hype index/HY has a significant effect on stock returns.
- H₄: The fake news index/FNI has a significant effect on stock returns.
- H₅: The country sentiment index/CSI has a significant effect on stock returns.
- H₆: The infodemic index/CTI has a significant effect on stock returns.
- H₇: The media coverage index/MCI has a significant effect on stock returns.
- H₈: Credit Default Swap (CDS) rate on 5-year bonds issued by the central government has a significant effect on stock returns.
- H₉: The daily closing price of gold has a significant effect on stock returns.

METHOD

The number of companies in the SSE 50, SET 50, LQ45, and LQ45 indexes are 175 companies. The research sample was 161 companies, which were determined using the purposive sampling method with the criteria that companies consistently registered after adjustments for the period January 2020 - October 2020. The data collection method used secondary data. According to Sugiyono (2013), secondary data is a source of research data obtained by researchers indirectly through intermediary media (has been collected by other people). The dependent variable in this study is stock returns, while the news index RavenPack news index (the panic index/PI, the media hype index/HY, the fake news index/FNI, the country sentiment index/CSI, the infodemic index/ CTI), Credit Default Swap (CDS) rate on 5-year bonds issued by the central government, and the daily closing price of gold as independent variables. Variable descriptions and their sources are presented in Table 1.

Variable	Description
Stock market return	The difference between the closing price in the current period (Pt) with the closing price
	of the previous period (Pt-1) (Tandelilin, 2010). Stock return = $\frac{P_t - P_{t-1}}{P_{t-1}}$

Table 1. Description of variables	S
-----------------------------------	---

1	
The panic index/PI	An index that measures the level of news chat referring to panic or hysteria and the coronavirus (RavenPack, 2020).
The media hype	An index that measures the percentage of news that talks about the new coronavirus.
index/HY	Values range between 0 and 100, with 75.00 indicating that 75% of all global news is
	about COVID-19(RavenPack, 2020).
The fake news	An index measuring the level of media chatter about the new virus referring to
index/FNI	misinformation or fake news alongside COVID-19 (RavenPack, 2020).
The country	An index measuring sentiment levels across all the entities mentioned in the news along
sentiment index/CSI	with the coronavirus. The index range between -100 (most negative), 100 (most positive)
	and 0 is neutral(RavenPack, 2020).
The infodemic	An index that calculates the percentage of all entities (places, companies, etc.) that are
index/CTI	associated with COVID-19 (RavenPack, 2020)
The media coverage	An index that calculates the percentage of all news sources covering the coronavirus topic
index/MCI	(RavenPack, 2020).
Credit Default Swap	Credit Default Swap (CDS) rate on 5-year bonds issued by the central government
(CDS) rate	(Investopedia, 2020).
Gold price	The daily closing price of gold (JM Bullion, 2020).

This research uses the quantile regression method. Unlike other econometric approaches that focus solely on average effects, quantile regression is a more powerful tool for dealing with weakness or value extremes across the distribution of asset returns (Cepoi, 2020). Quantile regression is a regression method that uses an approach by separating or dividing data into certain quantiles where it is suspected that there is a difference in the estimated value (Cepoi, 2020). Before doing quantile regression, this research requires a multiple linear regression test, classical assumption test (normality test, autocorrelation test, heteroscedasticity test). Multiple linear regression is a continuation of simple linear regression when simple linear regression provides only one independent variable (X) and one dependent variable (Y), but multiple linear regression is present to cover the weaknesses of simple linear regression when there is more than one independent variable (X) and one dependent variable (Y) (Kurniawan & Yuniarto, 2016). Below is a general model of multiple linear regression with p-parameters:

 $Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + \dots + \beta_p X_{pi} + \varepsilon_{it} + \mu_i$

Where:

β_1	= intercept of the model
$\beta_2, \beta_3, \dots \beta_p$	= partial regression coefficients of the i dependent variable
$X_{2i}, X_{3i}, \dots X_{pi}$	= independent variables i with its parameters
Y _i	= the i dependent variable
μ _i	= residual (error) for the i observation

In this study, multiple linear regression is used to determine whether the distribution of data used in research is normal or not. The results of multiple linear regression can later be used to test for normality using the Jarque-Bera method. Then the classical assumption test is carried out, Pandoyo & Sofyan (2018) said that a classical assumption test is a form of prerequisite in regression analysis before testing the hypothesis. This test

is done to ensure that normality, autocorrelation, multicollinearity, and heteroscedasticity are not present in the model used. If all of these conditions are met, the analysis model is suitable for use. In quantile regression, classical assumption tests carried out are normality test, autocorrelation test, and heteroscedasticity test.

- 1. Normality test: this study uses the Jarque-Bera method. The hypothesis contained in the normality test is H₀: the data has a normal distribution and H_a: the data does not have a normal distribution. If the value for Prob. F-count > 0,05, then H₀ is accepted and if the value is Prob. F-count < 0,05, then H₀ is rejected.
- 2. Autocorrelation test: this study uses the Breusch-Godfrey method. The hypothesis contained in the autocorrelation test is H_0 : there is no correlation between residuals and H_a : there is a correlation between residuals. If the value for Prob. F-count > 0.05, then H_0 is accepted and if the value is Prob. F-count < 0.05, then H_0 is rejected.
- 3. Heteroscedasticity test: this study uses the Breusch-Pagan-Godfrey method. The hypothesis contained in the heteroscedasticity test is H_0 : the absence of heteroscedasticity in the data distribution and H_a : the presence of heteroscedasticity in the data distribution. If the value for Prob. F-count > 0.05, then H_0 is accepted and if the value is Prob. F-count < 0.05, then H_0 is rejected.

After doing multiple linear regression tests and classical assumption tests, then it can be continued in the quantile regression test. The data is divided into groups each 25%, 50%, 75%, and 100% into quantile 1 (Q₁) for data 0 - 0.25, quantile 2 (Q₂) for data > 0.25 - 0.5, quantile 3 (Q₃) for data > 0.5 - 0.75, and quantile 4 (Q₄) for data > 0.75 - 1. Next for each group, regression was performed. Generally, at any level(τ)throughout the distribution is given a set of variables, the quantile conditions indicate $Q_y(\tau|x) =$ inf{ $k: F(k|x) \ge \tau$ } where the function $F(\cdot|x)$ is a function of the conditional distribution. Thus, quantile regression is illustrated specifically as:

$$Q_{Yi,t}(\tau | X_{i,t}) = \alpha_i + x_{i,t}^T \beta(\tau)$$

Where:

i = number of entities (countries)

- t = number of periods (days)
- $Y_{i,t}$ = stock returns

 $X_{i,t}$ = the set of covariates

 $\beta_{(\tau)}$ = regression coefficient, general slope coefficient (slope)

 α_i = constanta, intercept, individual-specific fixed effect coefficients

In order to explain the unobserved heterogeneity of countries, we follow Koenker (2004) which treats the fixed effect as a disturbance parameter. The intelligence of this approach comes from the introduction of the term penalty in problem minimization which leads to the algorithm:

$$\min_{(\boldsymbol{\alpha},\boldsymbol{\beta})} \ \boldsymbol{\Sigma}_{k=1}^{K} \ \boldsymbol{\Sigma}_{t=1}^{T} \ \boldsymbol{\Sigma}_{i=1}^{N} \ \boldsymbol{w}_{k} \rho_{\tau k} \left(\boldsymbol{Y}_{i,t} - \ \boldsymbol{\alpha}_{i} - \ \boldsymbol{x}_{i,t}^{T} \boldsymbol{\beta}(\tau_{k})\right) + \ \boldsymbol{\lambda} \boldsymbol{\Sigma}_{i}^{N} \left|\boldsymbol{\alpha}_{i}\right|$$

Where:

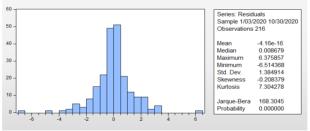
- K = quantile index
- $\rho_{\tau,k}$ = quantile loss function
- w_k = the relative weight assigned to the k quantile
- λ = penalty for reducing fixed effect individual in achieving that efficiency higher for the

global slope coefficient

RESULT AND DISCUSSION

1. Multiple Linear Regression

a. Chinese State Multiple Linear Regression


Table 2 Multiple Linear Regression in China

iew Proc Object Print	Name Freeze	Estimate Fored	ast Stats Res	ids
Dependent Variable: Y Method: Least Square: Date: 01/23/21 Time: Sample: 1/03/2020 10 ncluded observations:	s 12:54 /30/2020			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
X1 X2 X3 X4 X5 X6 X7 X8 C	0.028695 -0.048321 -0.002030 -0.000287 -0.005776 0.040510 -0.555159 0.000850 -0.124138	0.043349 0.031081 0.106011 0.004622 0.019459 0.025003 0.440052 0.001160 1.535567	0.661944 -1.554695 -0.019150 -0.062029 -0.296837 1.620200 -1.261577 0.732754 -0.080842	0.5087 0.1215 0.9847 0.9506 0.7669 0.1067 0.2085 0.4645 0.9356
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood statistic Prob(F-statistic)	0.027416 -0.010172 1.411422 412.3672 -376.3274 0.729393 0.665452	Mean depen S.D. depend Akaike info c Schwarz crit Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	0.037315 1.404298 3.567846 3.708483 3.624664 2.050688

Source: Output Eviews10

Based on Table 2, it can be seen that the multiple linear regression test for China produces a regression equation: Y = -0.124138 + 0.028695 - 0.048321 - 0.002030 - 0.000287 - 0.005776 + 0.040510 - 0.555159 + 0.000850

Table 3 China's State Normality Test

Source: Output Eviews10

Based on Table 3, the Jarque-Bera value is 168.3045 with a probability value of 0.0000. Because the probability value <0.05, China's state data is not normally distributed.

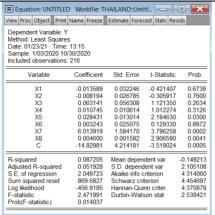
Table 4 China's Autocorrelation Test

Equation: UNTITLE	O Workfile: CH		·	ids		
Breusch-Godfrey Serie			ust jatuo jato			
F-statistic Obs*R-squared	0.109185 0.229842	Prob. F(2,20 Prob. Chi-So		0.8966 0.8914		
Test Equation: Dependent Variable: RESID Method: Least Squares Date: 01/23/21 Time: 12.57 Sample: 1/03/2020 10/30/2020 Included observations: 216 Presamole missing value laaged residuals set to zero.						
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
X1 X2 X3 X4 X5 X6 X7 X8 C RESID(-1) RESID(-2)	0.000546 -0.001736 -0.003398 -6.81E-05 0.000364 -0.008631 -1.22E-05 0.034570 -0.028083 0.016719	0.043571 0.031608 0.106787 0.020015 0.025255 0.442346 0.001169 1.548992 0.071757 0.071186	0.012528 -0.054911 -0.031821 -0.014632 0.018178 0.049717 -0.019513 -0.010396 0.022318 -0.391357 0.234858	0.9900 0.9563 0.9746 0.9883 0.9855 0.9604 0.9845 0.9917 0.9822 0.6959 0.8146		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.001064 -0.047664 1.417535 411.9284 -376.2124 0.021837 1.000000	Mean depen S.D. depend Akaike info c Schwarz crit Hannan-Qui Durbin-Wats	ent var riterion erion nn criter.	-4.16E-16 1.384914 3.585300 3.757189 3.654744 1.998735		

Source: Output Eviews10

Based on Table 4, it can be seen that the autocorrelation test for China produces a Chi-Square probability value of 0.08914. So that the data has no autocorrelation, meaning that the data for a certain day has no relationship with the previous data.

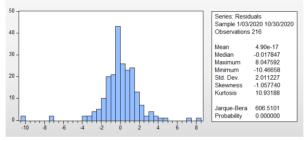
Table 5 Chinese State Heteroscedasticity Test


Equation: UNTITLE /iew Proc Object Print			·	ids		
Heteroskedasticity Test: Breusch-Pagan-Godfrey						
F-statistic Obs*R-squared Scaled explained SS	3.116447 23.21900 67.21746	Prob. F(8,20 Prob. Chi-So Prob. Chi-So	quare(8)	0.0024 0.0031 0.0000		
Test Equation: Dependent Variable: RESID*2 Method: Least Squares Date: 01/23/21 Time: 12:58 Sample: 103/2020 10:30/2020 Included observations: 216						
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
C X1 X2 X3 X4 X5 X6 X7 X8	-2.672019 0.443887 -0.065741 -0.287044 -0.014545 -0.010176 0.057384 1.418610 -0.001018	5.032768 0.142075 0.101866 0.347446 0.015150 0.063775 0.081947 1.442254 0.003803	-0.530924 3.124311 -0.645366 -0.826153 -0.960109 -0.159563 0.700251 0.983606 -0.267748	0.5960 0.0020 0.5194 0.4097 0.3381 0.8734 0.4846 0.3265 0.7892		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.107495 0.073002 4.625886 4429.557 -632.7346 3.116447 0.002403	Mean depen S.D. depend Akaike info o Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	1.909107 4.804583 5.941987 6.082623 5.998804 2.005605		

Source: Output Eviews10

Based on Table 5, it can be seen that through the Heterokedasticity Test: Breusch-Pagan-Godfrey the Chi-square probability is 0.0031. So that the Chinese state data there is no heteroscedasticity.

b. Thailand's Multiple Linear Regression


Table 6 Multiple Linear Regression in Thailand

Source: Output Eviews10

Based on Table 6, it can be seen that the multiple linear regression test for Thailand produces a regression equation: Y = -14,82981 - 0,013589 - 0,008194 + 0,063141 + 0,010745 + 0,028431 + 0,003243 + 6,013919 + 0,004600.

Table 7 State Normality Test of Thailand

Source: Output Eviews10

Based on Table 7, it can be seen that the Jarque-Bera value is 606.5101 with a probability value of 0.0000. So Thailand's data is not normally distributed.

ew Proc Object Print	Name Freeze	Estimate Fored	ast Stats Res	ids
reusch-Godfrey Seri	al Correlation L	M Test		
-statistic	8.568072	Prob. F(2,20		0.0003
Obs*R-squared	16.66279	Prob. Chi-Se	quare(2)	0.0002
est Equation: Dependent Variable: F Method: Least Square Date: 01/23/21 Time: Sample: 1/03/2020 10	s : 13:32			
Presample missing variable		iduals set to z	ero.	Prob
	ocomorone			1.600.0
X1	-0.014503	0.031375	-0.462254	0.6444
X2	0.005060	0.025914	0.195244	0.8454
X3	0.027093	0.054867	0.493796	0.6220
X4	-0.000484	0.010249	-0.047260	0.9624
	-8.92E-06	0.012563	-0.000710	0.9994
X5				0 7983
X6	-0.006215	0.024291	-0.255854	
X6 X7	-0.757888	1.543901	-0.490891	0.6240
X6 X7 X8	-0.757888 -0.000687	1.543901 0.001538	-0.490891 -0.446804	0.6240
X6 X7 X8 C	-0.757888 -0.000687 2.060489	1.543901 0.001538 4.104856	-0.490891 -0.446804 0.501964	0.6240 0.6555 0.6162
X6 X7 X8 C RESID(-1)	-0.757888 -0.000687 2.060489 -0.292380	1.543901 0.001538 4.104856 0.071822	-0.490891 -0.446804 0.501964 -4.070918	0.6240 0.6555 0.6162 0.0001
X6 X7 X8 C	-0.757888 -0.000687 2.060489	1.543901 0.001538 4.104856	-0.490891 -0.446804 0.501964	0.6240 0.6555 0.6162
X6 X7 X8 C RESID(-1)	-0.757888 -0.000687 2.060489 -0.292380	1.543901 0.001538 4.104856 0.071822	-0.490891 -0.446804 0.501964 -4.070918 -0.489626	0.6240 0.6555 0.6162 0.0001
X6 X7 X8 C RESID(-1) RESID(-2)	-0.757888 -0.000687 2.060489 -0.292380 -0.034594	1.543901 0.001538 4.104856 0.071822 0.070654	-0.490891 -0.446804 0.501964 -4.070918 -0.489626 dent var	0.6240 0.6555 0.6162 0.0001 0.6249
X6 X7 X8 C RESID(-1) RESID(-2) R-squared	-0.757888 -0.000687 2.060489 -0.292380 -0.034594 0.077143	1.543901 0.001538 4.104856 0.071822 0.070654 Mean depen	-0.490891 -0.446804 0.501964 -4.070918 -0.489626 dent var	0.6240 0.6555 0.6162 0.0001 0.6249 4.90E-17 2.011227
X6 X7 X8 C RESID(-1) RESID(-2) R-squared Adjusted R-squared	-0.757888 -0.000687 2.060489 -0.292380 -0.034594 0.077143 0.032125	1.543901 0.001538 4.104856 0.071822 0.070654 Mean depen S.D. depend	-0.490891 -0.446804 0.501964 -4.070918 -0.489626 dent var lent var	0.6240 0.6555 0.6162 0.0001 0.6249 4.90E-17
X6 X7 X8 C RESID(-1) RESID(-2) R-squared Adjusted R-squared S.E. of regression	-0.757888 -0.000687 2.060489 -0.292380 -0.034594 0.077143 0.032125 1.978658	1.543901 0.001538 4.104856 0.071822 0.070654 Mean depen S.D. depend Akaike info o	-0.490891 -0.446804 0.501964 -4.070918 -0.489626 dent var lent var riterion terion	0.6240 0.6555 0.6162 0.0001 0.6249 4.90E-17 2.011227 4.252298 4.424188
X6 X7 X8 C RESID(-1) RESID(-2) R-squared Adjusted R-squared S.E. of regression Sum squared resid	-0.757888 -0.000687 2.060489 -0.292380 -0.034594 0.077143 0.032125 1.978658 802.5932	1.543901 0.001538 4.104856 0.071822 0.070654 Mean depen S.D. depend Akaike info o Schwarz cri	-0.490891 -0.446804 0.501964 -4.070918 -0.489626 dent var lent var riterion terion nn criter.	0.6240 0.6555 0.6162 0.0001 0.6249 4.90E-17 2.011227 4.252298

Table 8 Thailand Autocorrelation Test

Source: Output Eviews10

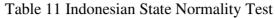
> Based on Table 8, it can be seen that the autocorrelation test for Thailand produces a Chi-Square probability value of 0.0002. So that the data has autocorrelation, meaning that the data for a certain day has a relationship with the previous data.

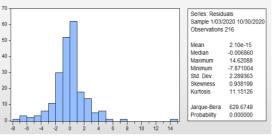
Table 9 Heteroscedasticity Test of Thailand

View Proc. Object Print Name Freeze Estimate For creats Stats Revids Heteroskedasticity Test Breusch-Pagan-Godfrey 0.0000 0.0000 0.0000 F-statistic 4.548365 Prob. F(8,207) 0.0000 0.0000 Scaled explained SS 147.2225 Prob. Chi-Square(8) 0.0000 Test Equation: Dependent Variable: RESID/2 Dependent Variable: RESID/2 Detendent Variable: RESID/2 Method Least Squares Date 01/23/21 Time: 1.54 Sample: 103/2020 Included deservations: 216 Variable Coefficient Std. Error I-Statistic Prob. Variable Coefficient Std. Error I-Statistic Prob. X1 0.342356 0.189061 1.820455 0.0741 X2 0.431168 0.52320 0.032839 0.947298 0.3444 X3 -0.311083 0.232839 0.947298 0.3444 X4 0.414048 0.027108 0.024550 0.07018 0.022708 0.3445 <t< th=""><th></th><th></th><th></th><th></th><th></th></t<>					
Heteroskedastichty Test: Breusch-Pagan-Godfrey F-statistic 4 54835 Prob. F(2 207) 0.0000 ObsTR-squared 32 28034 Prob. Ch-Square(8) 0.0000 Staled explained SS 147 2225 Prob. Ch-Square(8) 0.0000 Test Equation: Dependent Variable: RESID*2 Method Least Squares 0.0000 Test Equation: Dependent Variable: RESID*2 Method Least Squares 0.0000 Test Equation: Dependent Variable: RESID*2 Method Least Squares 0.0012 Method Least Squares Date: 0123/21 Time: 13:3.4 Sample: 1:03/22020 100/20200 Included observations: 216 Variable Ceofficient Std. Error 1.5tatistic Prob. X1 0.342356 0.189061 1820455 0.0712 0.02498 0.444 X3 -0.017108 0.223389 -0.947298 0.344 0.14400 0.02498 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.0248 0.02417 0.02829 0.0338	Equation: UNTITLEE	Workfile: Th	HAILAND::Unti	itled\ 😑	
F-statistic 4.546365 Prob. F(8,207) 0.0000 Obs:R-squared 32.28043 Prob. ChSquare(8) 0.0001 Scaled explained SS 147.2225 Prob. ChSquare(8) 0.0001 Scaled explained SS 147.2225 Prob. ChSquare(8) 0.0001 Test Equation: Dependent Variable: RESID*2 Method: Least Squares Date: 01/23/21 Date: 01/2	View Proc Object Print	Name Freeze	Estimate Fored	ast Stats Res	ids
ObsRs.squared 32 28043 Prob. Chi-Square(8) 0.0001 Scaled explained SS 147 2225 Prob. Chi-Square(8) 0.0001 Test Equation: Dependent Variable: RESID*2 Method. Least Squares Date: 01/3217 Tme: 13.44 Sample: 1003/2020 1030/2020 Insue 4.01/3214 Tme: 13.44 Sample: 1003/2020 1030/2020 Tme: 13.44 Included observations: 216 Variable Coefficient Std. Error 1.5tatistic Prob. C 56.80360 24.57725 2.271633 0.0241 X1 0.342356 0.188061 1.820456 0.0702 X1 0.342356 0.188061 1.820456 0.0710 X2 0.41116 0.146236 0.148061 0.7228 X3 -0.011033 0.228389 -0.947286 0.4464 0.148245 0.0711 X6 -0.016250 0.146238 0.111120 0.9416 X8 -0.027176 0.00829 -2.944585 0.0038 X8 -0.027176 0.00829 -2.944585 0.0038 S.6 0.245775 D	Heteroskedasticity Tes	t: Breusch-Pa	gan-Godfrey		
Scaled explained SS 147 2225 Prob. Chi-Square(8) 0.0000 Test Equation: Dependent Variable: RESID*2 Method: Least Squares Date 01/23/21 Times 13.3.4 Sample: 10.302/201 1030/2020 Included observations: 216 State Error I-Statistic Prob. Variable Coefficient Std. Error I-Statistic Prob. C 56.8050 24.57725 2.271633 0.0241 X1 0.342356 0.180061 1.820455 0.0701 X2 0.043116 0.156209 0.276018 0.0248 X3 -0.311083 0.328399 -9.947298 0.344 X4 -0.14002 0.061909 -2.81646 0.0248 X5 -0.017618 0.328399 -9.047298 0.344 X4 -0.14003 0.328399 -9.047298 0.344 X5 -0.017168 0.328399 -9.027298 0.3445 X6 -0.038955 0.075898 0.513250 0.0683 X6 -0.017167 0.008292					0.0000
C Status Test Equation: Dependent Variable: RESID*2 Method. Least Squares Date. 01/23/21 Date. 01/23/21 Time: 13.34 Sample: 1/03/2020 10/30/2020 Time: 13.34 Include doservations: 216 Eventorial Variable C 66/83/20 Variable C 0efficient Std 0.180/61 X1 0.342356 0.180/61 0.1820/63 X3 -0.011083 0.01108/250 0.14820/6 X4 -0.011083 0.016250 0.148238 X8 -0.016250 X9 -0.01776 X8 -0.027176 X9 -0.027176 0.08929 -2.944585 X8 -0.027176 0.09829 -2.944585 X8 -0.027176 0.09829 -2.944585 SE. of regression 11.95406 X9					
Dependent Variable: RESDV2 Method Least Squares Date: 01/23/21 Time: 13:34 Sample: 10/20/2020 Included observations: 216 Variable Coefficient State: 01/23/21 Variable Coefficient State: 01/23/21 Variable Coefficient State: 01/20/200 Variable Coefficient State: 01/200 04/37/20 Variable Coefficient State: 01/200 04/37/20 X1 0.322389 0.4577/25 X2 0.43116 0.158/20 0.7288 X3 0.311083 0.322389 0.947/288 0.344 X4 0.410002 0.061903 -223104 0.024 X5 0.032855 0.075898 0.513250 0.0033 X7 -11.73651 9.238938 -1270331 0.204 X7 -11.778 0.00229 2.944569 0.0033 Fi-squared 0.116275 5	Scaled explained SS	147.2225	Prob. Chi-So	quare(8)	0.0000
C 55.83050 24.57725 2.271833 0.0241 X1 0.342356 0.189061 1.820455 0.0701 X2 0.43116 0.156209 0.276018 0.7823 X3 -0.311083 0.328399 -9.947298 0.3443 X4 -0.140002 0.061903 -2.261646 0.0248 X5 0.038965 0.077898 0.513250 0.0683 X6 0.038965 0.077898 0.513250 0.0683 X7 -1.173651 9.238938 -1.217031 0.2044 Adjusted R-squared 0.146446 Mean dependent var 4.028070 X9 -0.11716 0.09229 2.944396 0.0033 X9 -0.027176 0.092029 0.0030 2.94398 0.0033 SE	Dependent Variable: R Method: Least Squares Date: 01/23/21 Time: Sample: 1/03/2020 10/	s 13:34 '30/2020			
X1 0.342356 0.188061 1.820455 0.0701 X2 0.043116 0.156209 0.276018 0.7828 X3 -0.311083 0.328389 -0.947298 0.344 X4 -0.140002 0.061903 -2.281646 0.0248 X5 0.038965 0.075898 0.513250 0.6083 X6 -0.015650 0.146228 -0.111120 0.9116 X7 -1.173651 9.289838 -1.217031 0.2044 A.0021707 0.005279 2.944596 0.0038 R-squared 0.146446 Mean dependent var 4.025716 SE of regression 0.119656 S.D dependent var 7.27183 SE of regression 1.195406 Akalke info criterion 7.84079 Log kiehhood -8378066 Haman-Quinn criterion 7.891422 Log kiehhood -8378056 Durbin-Vatson start 7.174723	Variable	Coefficient	Std. Error	t-Statistic	Prob.
X2 0.043116 0.159209 0.276018 0.75223 X3 -0.311083 0.232839 -0.947268 0.3446 X4 -0.140002 0.061903 -2.261646 0.2448 X6 -0.016250 0.146238 -0.11120 0.9116 X7 -1.073656 0.146238 -0.11120 0.9116 X8 -0.027176 0.00929 -2.944565 0.0388 Adjusted R-squared 0.116975 S.D. dependent var 4.026305 S.E. of regression 11.95406 Axake info criterion 7.891725 S.E. of regression 1.95406 Axake info criterion 7.891422 Log likelhood -837.8056 Haman-Quinn criterion 7.891422 Log likelhood 4.54350 Durbin-Vatson start 1.747235	С	55.83050	24.57725	2.271633	0.0241
X3 -0.311083 0.232839 -0.447298 0.3449 X4 -0.140002 0.061903 -2.261646 0.0248 X5 0.038965 0.075898 0.513250 0.083 X6 0.038965 0.075898 0.513250 0.083 X7 -1.173651 9.238938 -1.217031 0.2044 Adjusted R-equared -0.027176 0.008292 -2.944566 0.0033 R-squared 0.146446 Mean dependent var 4.22303 2.21733 SE of regression 1195406 Akake info criterion 7.981423 Log likelhood -837.8056 Hannan-Quinn criter 7.981425 Log likelhood 4.543650 Durbin-Vatson statt 1.747235 Durbin-Vatson statt 7.147235					
X4 0.140002 0.061903 -2.26164 0.0248 X6 -0.016250 0.0146238 0.613250 0.0683 X8 -0.016250 0.144238 -0.11120 0.9116 X7 -1.173651 9.238936 -1270331 0.2044 X8 -0.027176 0.00929 -2.944565 0.0038 R-squared 0.116757 S.D.dependent var 4.27633 S.E. of regression 11.19406 Akake info criterion 7.840792 Sum squared regit 295060 Schwarts and the state info criterion 7.840792 S.E. of regression 11.95406 Akake info criterion 7.840792 Log likelihood -837.8056 Haman-Quinn criterion 7.891422 Log likelihood -837.8056 Durbin-Vations stat 1.747235					
X5 0.038955 0.078898 0.613220 0.6083 X6 -0.016250 0.146230 0.61312 0.9116 X7 -1.173851 9.238938 -1.270331 0.2045 X8 -0.027176 0.009829 -2.944595 0.0038 R-squared 0.149446 Mean dependent var 4.026308 Adjusted R-squared 0.116575 S.D. dependent var 4.026308 SE. of regression 1195406 Akalke info criterion 7.80729 Sum squared relia 0.20500 Schware treferion 7.981422 Log likelhood -837.8056 Hannan-Quinn criterion 7.897421 F-statistic 4.546365 Durbin-Vations stat 1.747235					
X8 0.016250 0.144238 0.111120 0.9116 X7 -1.73651 9.238936 -1270331 0.2054 X8 -0.027176 0.00929 -2.944595 0.0038 R-squared 0.116975 D.0gendent var 4.025005 Adjusted R-squared 0.116975 D.0gendent var 4.026305 SE of regression 11.95406 Akake info criterion 7.891725 Sum squared regit 295600 Schwarz referion 7.891725 Log likelihood -837.8056 Haman-Quinn criterion 7.891425 Log likelihood -837.8056 Durbin-Vatison stat 1.747235					
X7 -1173851 9.289398 -1.27031 0.2645 X8 -0.027176 0.00929 -2.944586 0.0036 R-squared 0.149446 Mean dependent var 4.02506 Adjusted R-squared 0.116575 S.D. dependent var 12.71834 S.E. of regression 11.95406 Akalike info criterion 7.84072 Sum squared resid 205002 Schwarz referent 7.84072 Log likelhood -837.8056 Haman-Quinn criterion 7.891422 Log likelhood 4.54056 Durbin-Vations stat 1.747235					
X8 -0.027178 0.009229 -2.944596 0.0038 R-squared 0.149446 Mean dependent var 4.026303 Adjusted R-squared 0.116575 S.D. dependent var 12.71834 S.E. of regression 11.95406 Akake info criterion 7.840792 Sum squared to 2000 Schwarz criterion 7.981422 Log likelihood -837.8056 Log likelihood 4.546365 Durbin-Vatisson stat 1.747235					
R-squared 0.140/446 Mean dependent var 4.026300 Adjusted R-squared 0.118575 S.D. dependent var 12.71834 S.E. of regression 11.95406 Akalke info criterion 7.840792 Sum squared resid 29560/200 Schwarz criterion 7.981422 Log likelihood -837.8056 Hannan-Quinn criter 7.89762 F-statistic 4.546365 Durbin-Vations nstat 1.747235					
Adjusted R-squared 0.116775 SD. dependent var 12.7193 SE. of regression 11.95406 Akaike info criterion 7.840792 Sum squared resid 29680.20 Schwarz criterion 7.981429 Log likelihood -837.8056 Hannan-Quinn criter 7.897412 F-statistic 4.546365 Durbn/Valson stat 1.747235	X8	-0.027176	0.009229	-2.944595	0.0036
Adjusted R-squared 0.116575 S.D. dependent var 12.71834 S.E. of regression 11.95406 Akaike info criterion 7.840792 Sum squared resid 29580.20 Schwarz criterion 7.981429 Log likelihood -837.8056 Hannan-Quinn criter. 7.987102 F-statistic 4.546365 Durin-Watson stat 1.747233	R-squared	0.149446	Mean depen	dent var	4.026309
Sum squared resid 29580.20 Schwarz criterion 7.981429 Log likelihood -837.8056 Hannan-Quinn criter, 7.897610 F-statistic 4.546365 Durbin-Watson stat 1.747235	Adjusted R-squared	0.116575			12.71834
Sum squared resid 29580.20 Schwarz criterion 7.981429 Log likelihood -837.8056 Hannan-Quinn criter, 7.897610 F-statistic 4.546365 Durbin-Watson stat 1.747235	S.E. of regression	11.95406	Akaike info o	riterion	7.840792
F-statistic 4.546365 Durbin-Watson stat 1.747235	Sum squared resid	29580.20	Schwarz cri	terion	7.981429
	Log likelihood	-837.8056	Hannan-Qui	nn criter.	7.897610
	F-statistic	4.546365	Durbin-Wats	son stat	1.747235
Prob(F-statistic) 0.000041	Prob(F-statistic)	0.000041			

Source: Output Eviews10

Based on Table 9, it can be seen that through the Heterokedasticity Test: Breusch-Pagan-Godfrey the Chi-square probability is 0.0001. So that Thailand's data has no heteroscedasticity.


c. Indonesian State Multiple Linear Regression

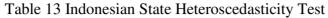

Table 10 Indonesian State Multiple Linear Regression

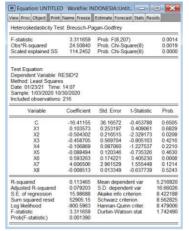
Workfile: IN	IDONESIA::Un	titled\ 😑		X
Name Freeze	Estimate Fored	ast Stats Res	ids	
14:01 30/2020				^
Coefficient	Std. Error	t-Statistic	Prob.	
-0.000419	0.036953	-0.011332	0.9910	
	0.083145	-0 799342	0.4250	
0.007729	0.012706	0.608333	0.5436	
0.004103	0.017564	0.233603	0.8155	
0.006317	0.025426	0.248449	0.8040	
0.800461	0.432216	1.851991	0.0655	
-11.45143	5.278154	-2.169590	0.0312	
0.039307 0.002179	S.D. depend	lent var	-0.087639 2.335729	
0.393539				
	Name Freeze 14-01 30/2020 216 Coefficient -0.000419 -0.027668 -0.066461 0.007729 0.004103 0.006317 0.006412 -11.45143 0.009307 0.002179 2.333183 1126.855 -484.8967 -1.058678	Name Freeze Estimate Forest 14:01 30/2020 216 30/2020 216 30/2020 216 30/2020 216 30/2020 216 30/2020 216 30/2020 216 30/2020	14.01 30/2020 216 Coefficient Std. Error 15.000 0.000419 0.036953 0.007688 0.031599 0.007729 0.01332 0.007729 0.017564 0.004103 0.017564 0.004103 0.017564 0.004103 0.017564 0.004103 0.017564 0.004123 0.01948 0.004123 0.001948 0.00123 0.01564 0.001213 0.01948 0.001213 0.01948 0.002179 S.D. dependent var 0.002179 Schwarz criterion 1128 865 Schwarz criterion -484 8967 Hannan-Quinn criter. 1058678 Durbin-Watson stat	Name Freeze Estimate Forecast Stats Reside 14:01 302020 216 Stats Prob. -0:000419 0:369653 -0:011332 0:9910 -0:000419 0:369653 -0:011332 0:9910 -0:027668 0:031599 -0.875602 0:3823 -0:06461 0:081345 -0.799342 0:4250 0:0007729 0:012706 0:608333 0:5436 0:004103 0:017664 0:238043 0:8145 0:004103 0:016494 2:38023 0:8145 0:004103 0:001494 0:248449 0:8040 0:004103 0:015464 0:238043 0:8155 0:004113 0:019454 2:116548 0:0355 0:014124 0:019454 2:116548 0:0355 0:002179 S:D. dependent var -2:33729 2:33183 Akaike info criterion 4:573118 1/28:865 S:D.dependent var 2:335729 1:058678 Durbin-Watstons stat 1:

Source: Output Eviews10

Based on Table 10, it can be seen that the multiple linear regression test for Indonesia will produce a regression equation: Y = -11,45143 - 0,000419 - 0,027668 - 0,066461 + 0,007729 + 0,004103 + 0,006317 + 0,800461 + 0,004123

Source: Output Eviews10

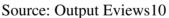

Based on the graph results in Table 11, it can be seen that the Jarque-Bera value is 629.6749 with a probability value of 0.0000. So that Indonesian state data is not normally distributed.


Table 12 Indonesian Autocorrelation Test

Breusch-Godfrey Seria	Name Freeze			bold
Breusch-Godirey Sena	al Correlation L	.M Test.		
F-statistic	2.978621	Prob. F(2,20		0.053
Obs*R-squared	6.099644	Prob. Chi-Se	quare(2)	0.047
Test Equation: Dependent Variable: R	ERID			
Method: Least Square				
Date: 01/23/21 Time:				
Sample: 1/03/2020 10.				
Included observations				
Presample missing va		iduals set to z	ero.	
Variable	Coefficient	Std. Error	t-Statistic	Prob
1.5. CT 4275 2. C.S.		10000 - 000		
X1	0.003238	0.036688	0.088261	0.929
X2	-0.009450	0.031608	-0.298980	0.765
X3	-0.003284	0.082498	-0.039811	0.968
X4	-0.001123	0.012601	-0.089096	0.929
X5	0.002637	0.017477	0.150865	0.880
X6	0.004169	0.025372	0.164310	0.869
	0.052305	0.429553	0.121767	0.903
X7				
X8	0.000312	0.001935	0.161364	
X8 C	-0.826671	5.245831	-0.157586	0.8749
X8 C RESID(-1)	-0.826671 0.128277	5.245831 0.070089	-0.157586 1.830204	0.874
X8 C	-0.826671	5.245831	-0.157586	0.874
X8 C RESID(-1)	-0.826671 0.128277	5.245831 0.070089 0.069910 Mean depen	-0.157586 1.830204 -1.805561 dent var	0.8749 0.068 0.072
X8 C RESID(-1) RESID(-2) R-squared Adjusted R-squared	-0.826671 0.128277 -0.126227 0.028239 -0.019164	5.245831 0.070089 0.069910 Mean depen S.D. depend	-0.157586 1.830204 -1.805561 dent var	0.8749 0.068 0.0729 2.10E-1 2.28936
X8 C RESID(-1) RESID(-2) R-squared	-0.826671 0.128277 -0.126227 0.028239	5.245831 0.070089 0.069910 Mean depen	-0.157586 1.830204 -1.805561 dent var	0.8749 0.068 0.0729 2.10E-1 2.28936
X8 C RESID(-1) RESID(-2) R-squared Adjusted R-squared	-0.826671 0.128277 -0.126227 0.028239 -0.019164	5.245831 0.070089 0.069910 Mean depen S.D. depend	-0.157586 1.830204 -1.805561 dent var lent var	0.8749 0.068 0.0729 2.10E-19 2.28936 4.56299
X8 C RESID(-1) RESID(-2) R-squared Adjusted R-squared S.E. of regression	-0.826671 0.128277 -0.126227 0.028239 -0.019164 2.311196	5.245831 0.070089 0.069910 Mean depen S.D. depend Akaike info d	-0.157586 1.830204 -1.805561 dent var lent var triterion terion	0.874 0.068 0.072 2.10E-1 2.28936 4.56299 4.73488
X8 C RESID(-1) RESID(-2) R-squared Adjusted R-squared S.E. of regression S.Um squared resid	-0.826671 0.128277 -0.126227 0.028239 -0.019164 2.311196 1095.033	5.245831 0.070089 0.069910 Mean depen S.D. depend Akaike info o Schwarz cri	-0.157586 1.830204 -1.805561 dent var lent var triterion terion nn criter.	0.8721 0.8743 0.068 0.0725 2.10E-11 2.28936 4.56299 4.73488 4.63243 1.97370

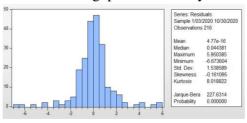
Source: Output Eviews10

Based on Table 12, it can be seen that the Chi-Square probability value is 0.0474. So that the data has autocorrelation, meaning that the data for a certain day has a relationship with the previous data.


Source: Output Eviews10

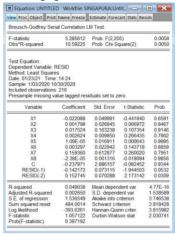
Based on the graphic results in Table 13, it can be seen that through the Heterokedasticity Test: Breusch-Pagan-Godfrey the Chi-square probability value is 0.0019. So the Indonesian state data there is no heteroscedasticity.

d. Singapore State Multiple Linear Regression


Table 14 Multiple Linear Regression in Singapore

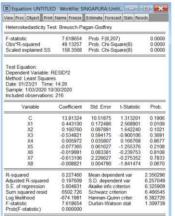
Equation: UNTITLE				ids
Dependent Variable: Y Method: Least Square Date: 01/23/21 Time: Sample: 1/03/2020 10. Included observations:	s 14:22 /30/2020			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
X1	-0.052338	0.048256	-1.084607	0.2794
X2	-0.017797	0.027386	-0.649859	0.5165
X3	-0.241194	0.166230	-1.450971	0.1483
X4	-0.004559	0.010018	-0.455123	0.6495
X5	0.017343	0.017241	1.005897	0.3156
X6	0.014955	0.023327	0.641116	0.5222
X7	0.639312	0.622933	1.026293	
X8	0.000516	0.001340	0.384686	0.7009
C	-2.031537	2.942784	-0.690345	0.4908
R-squared	0.044586	Mean depen	dent var	-0.123935
Adjusted R-squared	0.007662	S.D. depend		1.574080
S.E. of regression	1.568038	Akaike info o		3.778301
Sum squared resid	508.9599	Schwarz cri		3.918938
Log likelihood	-399.0565	Hannan-Qui		3.835119
F-statistic	1.207510	Durbin-Wate	son stat	2.311060
Prob(F-statistic)	0.295961			

Based on Table 14, it can be seen that the multiple linear regression test for Singapore produces a regression equation: Y = -2,031537 - 0,052338 - 0,017797 - 0,241194 - 0,004559 + 0,017343 + 0,014955 + 0,639312 + 0,000516.


Table 15 Singapore Normality Test

Source: Output Eviews10

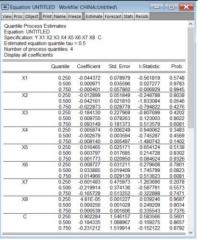
Based on Table 15, it can be seen that the Jarque-Bera value is 227.6314 with a probability value of 0.0000. So the data for Singapore is not normally distributed.


Table 16 Singapore Autocorrelation Test

Source: Output Eviews10

Based on Table 16, it can be seen that the autocorrelation test for the country of Singapore produces a Chi-Square probability value of 0.0050. So that the data has autocorrelation, meaning that the data for a certain day has a relationship with the previous data.

Table 17 Heteroscedasticity Test of the State of Singapore

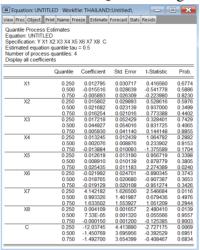

Source: Output Eviews10

Based on the graphic results in Table 17, it can be seen that through the Heterokedasticity Test: Breusch-Pagan-Godfrey the Chi-square probability value is 0.0000. So that the data for the Singapore state does not have heteroscedasticity.

2. Quantile Regression

a. Chinese State Quantile Regression

Table 18 China's State Quantile Regression


Source: Output Eviews10

Based on Table 18, it can be seen that X_1 for quantile 0.25 (Q₁) has a coefficient of -0.044372, quantile 0.5 (Q₂) has a coefficient of 0.000971, and quantile 0.75 (Q₃) has a coefficient of - 0.000401. So that at X_1 the value of $Q_1 \neq Q_2 \neq Q_3$ means that there is a difference in the coefficient on each quantile. The probability value on X_1 or the panic index (PI) for Q₁ is 0.5748, meaning that X_1 does not have a significant effect on Y or stock returns in China. In the same quantile, namely Q₁, although the probability value at X_2 is different from the probability X_1 , it still does not have a significant effect on Y because the probability value > 0,05 is 0.8038. Then the equation can be formed as below:

- 1. Quantile 0,25: Y = 0.902284 0.044372 0.012899 0.184130 + 0.005874 + 0.016465 + 0.008727 0.601483 + 4.81E-0.5
- 2. Quantile 0,5: Y = -0.184335 + 0.000971 0.042161 + 0.009750 0.002679 + 0.003797 + 0.033885 0.219914 + 0.000256
- 3. Quantile 0,75: Y = -0,231212 0,000401 0,022873 + 0,093149 0,008140 + 0,001773 + 0,014966 0,165728 + 0,000539

b. Thailand State Quantile Regression

Table 19 Thai State Quantile Regression

Source: Output Eviews10

Based on Table 19, it can be seen that X_1 for quantile 0.25 (Q₁) has a coefficient of 0.012795, quantile 0.5 (Q₂) has a coefficient of -0.015516, and quantile 0.75 (Q₃) has a coefficient of - 0.005893. So that at X_1 the value of $Q_1 \neq Q_2 \neq Q_3$ which means that there is a difference in the coefficient on each quantile. The probability value on X_1 or the panic index (PI) for Q_1 is 0,6774, meaning that X_1 does not have a significant effect on Y or stock returns in Thailand. Whereas for quantile 0.25 (Q₁) on X_7 with a probability of 0.0116, X_8 with a probability of 0.0139, and C with a probability of 0.0069, it means that the Credit Default Swap (CDS) rate on 5-year bonds issued by the central government (X_7), daily closing price of gold (X_8), and C has a significant effect on Y or stock returns in Thailand. In addition, X_5 in quantile 0,75 (Q₃) has a probability value < 0.05, which is 0.0240, which means that the infodemic index (X_5) has a significant effect on Y. Then an equation can be formed as in below:

- 1. Quantile 0,25: Y = -12,03745 + 0,012795 + 0,015802 + 0,017218 + 0,013245 + 0,012619 0,021992 + 4,142182 + 0,004109
- 2. Quantile 0,5: Y = -1,450769 0,015516 + 0,021682 + 0,044927 + 0,002076 + 0,008910 0,018765 + 0,993326 + 7,33E-05
- 3. Quantile 0,75: Y = -1,492700 0,005893 + 0,016254 + 0,005930 0,013884 + 0,025435 0,019129 + 1,633502 0,000150

pecification: Y stimated equa	FLED				
quation: UNTI pecification: Y stimated equa	FLED				
pecification: Y stimated equa					
stimated equa	X1 X2 X3 X4 X5	5 X6 X7 X8 C			
umber of proc	tion quantile tau				
	ess quantiles: 4				
isplay all coeff	icients				
	Quantile	Coefficient	Std. Error	t-Statistic	Prob.
	quantic	obemelent	Old. Ellor	(Oldublic	1105.
X1	0.250	0.015702	0.032310	0.485995	0.6275
	0.500	-0.005556	0.027444	-0.202459	0.8398
	0.750	0.012968	0.066473	0.195094	0.8455
X2	0.250	-0.032331	0.039181	-0.825168	0.4102
	0.500	0.007486	0.028550	0.262199	0.7934
	0.750	0.009845	0.034750	0.283316	0.7772
X3	0.250	-0.061377	0.338790	-0.181166	0.8564
	0.500	-0.006688	0.056374	-0.118644	0.9057
	0.750	-0.069037	0.101479	-0.680311	0.4971
X4	0.250	0.021818	0.016703	1.306214	0.1929
	0.500	0.005392	0.008588	0.627862	0.5308
	0.750	-0.011833	0.012991	-0.910873	0.3634
X5	0.250	0.014378	0.020341	0.706855	0.4805
	0.500	-0.001203	0.012657	-0.095013	0.9244
	0.750	-0.006183	0.016065	-0.384880	0.7007
X6	0.250	-0.012242	0.027101	-0.451704	0.6520
	0.500	-0.008991	0.021840	-0.411679	0.6810
	0.750	6.27E-05	0.026280	0.002385	0.9981
X7	0.250	0.349770	0.727688	0.480659	0.6313
	0.500	0.171751	0.340056	0.505067	0.6140
	0.750	0.731783	0.511277	1.431283	0.1539
X8	0.250	0.005851	0.002706	2.162183	0.0318
	0.500	0.000985	0.001698	0.580211	0.5624
	0.750	0.000917	0.001799	0.509348	0.6111
С	0.250	-11.98265	8.299650	-1.443754	0.1503
С		-11.98265 -2.492910 -5.534372	8.299650 4.355474 5.474119	-1.443/54 -0.572362 -1.011007	0.1503 0.5677 0.3132

c. Indonesian State Quantile Regression

Table 20 Indonesian State Quantile Regression

Source: Output Eviews10

Based on Table 20, it can be seen that X1 for quantile 0.25 (Q₁) has a coefficient of 0.015702, quantile 0.5 (Q₂) has a coefficient of -0.005556, and quantile 0.75 (Q₃) has a coefficient of 0, 012968. So that at X₁ the value of $Q_1 \neq Q_2 \neq Q_3$ which means that there is a difference in the coefficient on each quantile. The probability value on X₁ or the panic index (PI) for Q₁ is 0.6275, meaning that X₁ does not have a significant effect on Y or stock returns in Indonesia. At the same quantile, namely Q₁, although the probability value at X₂ is different from the probability X₁, it still does not have a significant effect on Y because the probability value> 0.05 is 0.4102. Whereas for quantile 0.25 (Q₁) at X₈ with probability 0.0318 means daily closing price of gold (X₈) have a significant effect on Y. Then an equation can be formed as in below:

- 1. Quantile 0,25: Y = -11,98265 + 0,015702 0,032331 0,061377 + 0,021818 + 0,014378 0,012242 + 0,349770 + 0,005851
- 2. Quantile 0,5: Y = -2,492910 0,005556 + 0,007486 0,006688 + 0,005392 0,001203 0,008991 + 0,171751 + 0,000985
- 3. Quantile 0,75: Y = -5,534372 + 0,012968 + 0,009845 0,069037 0,011833 - 0,006183 + 6,27E-05 + 0,731783 + 0,000917

	X1 X2 X3 X4 X5 tion quantile tau ess quantiles: 4	= 0.5			
	Quantile	Coefficient	Std. Error	t-Statistic	Prob.
X1	0.250	-0.077207	0.108619	-0.710803	0.4780
	0.500	0.001234	0.036415	0.033887	0.9730
	0.750	-0.043371	0.041557	-1.043658	0.2979
X2	0.250	0.010326	0.024809	0.416231	0.6777
	0.500	-0.003204	0.019270	-0.166256	0.8681
	0.750	0.034052	0.036733	0.927028	0.3550
X3	0.250	-0.149222	0.274018	-0.544571	0.5866
	0.500	-0.168187	0.122356	-1.374569	0.1708
	0.750	-0.180213	0.141198	-1.276314	0.2033
X4	0.250	-0.003053	0.010835	-0.281801	0.7784
	0.500	-0.000457	0.007924	-0.057646	0.9541
	0.750	0.011793	0.009523	1.238299	0.2170
X5	0.250	-0.002356	0.016408	-0.143565	0.8860
	0.500	0.002877	0.013282	0.216604	0.8287
	0.750	-0.002547	0.015927	-0.159949	0.8731
X6	0.250	-0.007837	0.021381	-0.366532	0.7143
	0.500	0.002542	0.016123	0.157683	0.8749
	0.750	-0.003335	0.026374	-0.126431	0.8995
X7	0.250	0.551568	0.699922	0.788041	0.4316
	0.500	-0.147329	0.445013	-0.331067	0.7409
	0.750	0.121589	0.732162	0.166068	0.8683
X8	0.250	0.001557	0.001518	1.025211	0.3065
	0.500	-0.000677	0.001041	-0.650603	0.5160
	0.750	-0.001289	0.001689	-0.763190	0.4462
	0.250	-3.397981	3.116216	-1.090419	0.2768
С					
C	0.500	1.227674 1.962287	2.196977 3.666897	0.558801 0.535136	0.5769

d. Singapore State Quantile Regression

Table 21 Singapore State Ouantile Regression

Source: Output Eviews10

Based on Table 21, it can be seen that X1 for quantile 0.25 (Q₁) has a coefficient of -0.077207, quantile 0.5 (Q_2) has a coefficient of -0.001234, and quantile 0.75 (Q_3) has a coefficient of -0.043371. So that at X₁ the value of $Q_1 \neq Q_2 \neq Q_3$ which means there is a difference in the coefficient on each quantile. The probability value on X_1 or the panic index/PI for Q_1 is 0,4780, meaning that X_1 does not have a significant effect on Y. Then the equation can be formed as below:

- 1. Quantile 0,25: Y = -3,397981 - 0,077207 + 0,010326 - 0,149222 - 0,003053-0,002356 - 0,007837 + 0,551568 + 0,001557
- Quantile 0.5: Y = 1.227674 + 0.001234 0.003204 0.168187 0.000457 + 0.0004572. 0,002877 + 0,002542 - 0,147329 - 0,000677
- 0,002547 - 0,003335 + 0,121589 - 0,001289

2. Hypothesis testing

a. Chinese State Hypothesis Test

Table 22 China's State Hypothesis Test

view Proc Object Quantile Slope Ec Equation: UNTITL Specification: Y X Estimated equation Number of test qu Test statistic com	uality Test ED 1 X2 X3 X4 X5 on quantile tau : iantiles: 4	= 0.5	cast Stats Reside		Equation: UNTI View Proc Object Symmetric Quant Equation: UNTITL Specification: Y X Estimated equatio Number of test qu	Print Name Fro iles Test ED 1 X2 X3 X4 X5 n quantile tau	eze Estimate Fore		
Test Summary		Chi-Sq. Statistic	Chi-Sq. d.f.	Prob.	Test statistic com		ficients		
Wald Test		17.70131	16	0.3417	Test Summary		Chi-Sq. Statistic	Chi-Sq. d.f.	Prob.
Restriction Detail:	b(tau_h) - b(ta	au_k) = 0			Wald Test		5.671404	9	0.7723
Quantiles	Variable	Restr. Value	Std. Error	Prob.	D 110 D 11	10.1.14			
0.25, 0.5	X1	-0.045343	0.067707	0.5031	Restriction Detail:	b(tau) + b(1-	tau) - 2^b(.5) = 0		
	X2 X3 X4	0.029261 -0.193879 0.008553	0.043941 0.198013 0.005358	0.5055 0.3275 0.1104	Quantiles	Variable	Restr. Value	Std. Error	Prob.
	X5	0.012668	0.00000000	0.5641	0.25, 0.75	X1	-0.046715	0.082606	0.571
	X6	-0.025158	0.027712	0.3640	,	X2	0.048549	0.048780	0.319
	X7	-0.381569	0.414059	0.3568		X3	-0.110479	0.252977	0.662
0.5. 0.75	X8 X1	-0.000208	0.001105	0.8506		X4	0.003092	0.007130	0.664
0.5, 0.75	X1 X2	-0.019288	0.049709	0.9780		X5	0.010643	0.029548	0.718
	X3	-0.083400	0.152349	0.5841		X6	-0.044076	0.026986	0.233
	X4	0.005461	0.004617	0.2369		X7	-0.327384	0.632352	0.233
	X5	0.002024	0.018421	0.9125					
	X6	0.018918	0.025122	0.4514		X8	7.47E-05	0.001761	0.966
	X7 X8	-0.054185 -0.000283	0.454891	0.9052		C	1.039742	1.891576	0.582

Source: Output Eviews10

Based on Table 22, there is no significant difference in quantile 0.25 and quantile 0.5 for X_1 . Quantile 0.5 and quantile 0.75 on variable X_1 have a probability value > 0.05, so there is no significant difference. Likewise, for quantile 0.25 and quantile 0.75 on variable X_1 , the difference was also not significant. So that for quantiles 0.25, 0.5, and 0.75 have a difference that is not strong enough.

b. Thai State Hypothesis Test

Table 23 Hypothesis Test of Thailand

			• 1		_				
		ile: THAILAND::Un			Equation: UNT	ITLED Workf	ile: THAILAND::Un	titled\	
		eeze Estimate Fore	cast Stats Resi	dsj	View Proc Object	Print Name Fr	eeze Estimate Fore	cast Stats Resid	s
Quantile Slope E Equation: UNTITL Specification: Y X Estimated equati Number of test quantity Test statistic con	ED (1 X2 X3 X4 X on quantile tau uantiles: 4	u = 0.5			Symmetric Quan Equation: UNTITL Specification: Y X Estimated equation	tiles Test ED 1 X2 X3 X4 X5 on quantile tau	5 X6 X7 X8 C		
Test Summary		Chi-Sq. Statistic	Chi-Sq. d.f.	Prob.	Number of test qu Test statistic con		ficients		
Wald Test		24.46806	16	0.0798	Test Summary		Chi-Sq. Statistic	Chi-Sq. d.f.	Prob.
Restriction Detail	: b(tau_h) - b	(tau_k) = 0			Wald Test		5.983236	9	0.7416
Quantiles	Variable	Restr. Value	Std. Error	Prob.					
0.25, 0.5	X1 X2	0.028311	0.027878	0.3098	Restriction Detail	b(tau) + b(1-	tau) - 2*b(.5) = 0		
	X3 X4	-0.027709 0.011169	0.051033	0.5872	Quantiles	Variable	Restr. Value	Std. Error	Prob.
	X5 X6 X7	0.003709 -0.003227 3.148855	0.011265 0.021655 1.459431	0.7419 0.8815 0.0310	0.25, 0.75	X1 X2	0.037934	0.041667	0.3626
	X8	0.004036	0.001426	0.0047		X3	-0.066705	0.078849	0.3976
0.5, 0.75	X1 X2	-0.009623 0.005428	0.025413 0.020815	0.7049 0.7943		X4 X5	-0.004792 0.020235	0.014119 0.015823	0.7343 0.2010
	X3 X4	0.038996 0.015961	0.045458	0.3910 0.0720		X6 X7	-0.003591 3.789031	0.031249	0.9085
	X5 X6 X7 X8	-0.016525 0.000363 -0.640175 0.000224	0.009984 0.019259 1.417116 0.001182	0.0979 0.9849 0.6515 0.8498		X8 C	0.003812 -10.62861	0.001976 5.512140	0.0812 0.0537 0.0538
-	70	5.000224	0.001102	0.0400					

Source: Output Eviews10

Based on Table 23, there is no significant difference in quantile 0.25 and quantile 0.5 for X_1 . Quantile 0.5 and quantile 0.75 on variable X_1 have a probability value > 0.05, so there is no significant difference. Likewise, for quantile 0.25 and quantile 0.75 on variable X_1 , there was no significant difference. So that for quantiles 0.25, 0.5, and 0.75 have a difference that is not strong enough.

c. Indonesian State Hypothesis Test

Table 2	4 Ind	lonesian	State	Hvt	oothesis	Test
			~~~~~			

					-	-			
Equation: UNT				ls X	Equation: UNT	- T T	ile: INDONESIA::Ur eeze Estimate Fore		• X
Quantile Slope Ed Equation: UNTITL Specification: Y X Estimated equation Number of test qu Test statistic com	ED 1 X2 X3 X4 X5 on quantile tau : iantiles: 4	= 0.5			Symmetric Quant Equation: UNTITL Specification: Y X Estimated equation Number of test quarter	tiles Test ED 1 X2 X3 X4 X5 on quantile tau	5 X6 X7 X8 C		-
Test Summary		Chi-Sq. Statistic	Chi-Sq. d.f.	Prob.	Test statistic com		ficients		
Wald Test		23.17863	16	0.1090	Test Summary		Chi-Sq. Statistic	Chi-Sq. d.f.	Prob.
Restriction Detail:	b(tau_h) - b(ta	au_k) = 0			Wald Test		5.795641	9	0.7602
Quantiles	Variable	Restr. Value	Std. Error	Prob.					
0.25, 0.5	X1 X2	0.021259	0.028401	0.4541	Restriction Detail	b(tau) + b(1-	-tau) - 2*b(.5) = 0		
	X3 X4	-0.054689 0.016426	0.311907 0.014532	0.8608	Quantiles	Variable	Restr. Value	Std. Error	Prob.
	X5 X6 X7 X8	0.015581 -0.003251 0.178018 0.004866	0.016866 0.024771 0.615673 0.002279	0.3556 0.8956 0.7725 0.0328	0.25, 0.75	X1 X2 X3	0.039784 -0.037457 -0.117038	0.063482 0.047526 0.322972	0.5309 0.4306 0.7171
0.5, 0.75	X1 X2 X3 X4 X5 X6 X7	-0.018525 -0.002359 0.062349 0.017225 0.004980 -0.009054 -0.560031	0.057267 0.030711 0.084894 0.011037 0.014272 0.023151 0.437720	0.7463 0.9388 0.4627 0.1186 0.7271 0.6957 0.2007		X4 X5 X6 X7 X8	-0.000799 0.010601 0.005803 0.738050 0.004797	0.018573 0.022194 0.035562 0.758068 0.002922	0.9657 0.6329 0.8704 0.3303 0.1007
	X8	6.86E-05	0.001713	0.9681		С	-12.53121	8.608290	0.1455

## Source: Output Eviews10

Based on Table 24, at quantile 0.25 and quantile 0.5 for  $X_1$  there is no significant difference. Whereas for quantile 0.5 and quantile 0.75 on variable  $X_1$ , it has a probability value > 0.05, so it has an insignificant difference. Likewise, for quantile 0.25 and quantile 0.75 on variable  $X_1$ , it has a probability value > 0.05, so it is not a significant difference. So that for quantiles 0.25, 0.5, and 0.75 have a difference that is not strong enough.

d. Singapore State Hypothesis Test

Table 25 Singapore State Hypothesis Test

		ile: SINGAPURA::Un eeze Estimate Fored		• <b>×</b>		Equation: UNTIT			ntitle 🗖	• ×
Quantile Slope E Equation: UNTITI Specification: Y > Estimated equati Number of test q Test statistic cor	LED (1 X2 X3 X4 X5 on quantile tau uantiles: 4	= 0.5			L	Symmetric Quantil Equation: UNTITLE Specification: Y X1 Estimated equation Number of test qua	es Test ED X2 X3 X4 X5 n quantile tau	X6 X7 X8 C		-
Test Summary Chi-Sq. Statistic Chi-Sq. d.f. Prob.					Н.	Test statistic comp	ares all coef	ficients		
Wald Test		22.23502	16	0.1358		Test Summary		Chi-Sq. Statistic	Chi-Sq. d.f.	Prob.
Restriction Detai	l: b(tau_h) - b(	tau_k) = 0			:	Wald Test		5.946607	9	0.7452
Quantiles	Variable	Restr. Value	Std. Error	Prob.						
0.25, 0.5	X1	-0.078441	0.096526	0.4164		Restriction Detail:	b(tau) + b(1-	tau) - 2*b(.5) = 0		
	X2 X3 X4	0.013530 0.018965 -0.002597	0.021792 0.231717 0.009292	0.5347 0.9348 0.7799		Quantiles	Variable	Restr. Value	Std. Error	Prob.
0.5, 0.75	X5 X6 X7 X8 X1 X2 X3	-0.005232 -0.010379 0.698897 0.002234 0.044605 -0.037256 0.012026	0.014984 0.018954 0.591196 0.001303 0.036886 0.030864 0.125354	0.7269 0.5840 0.2371 0.0866 0.2266 0.2274 0.9236		0.25, 0.75	X1 X2 X3 X4 X5	-0.123046 0.050786 0.006939 0.009653 -0.010657	0.102059 0.038093 0.255143 0.012950 0.021717	0.2280 0.1825 0.9783 0.4560 0.6236
	X4 X5 X6 X7 X8	-0.012249 0.005424 0.005877 -0.268918 0.000612	0.008438 0.014056 0.022369 0.616588 0.001410	0.1466 0.6996 0.7928 0.6627 0.6641			X6 X7 X8 C	-0.016256 0.967815 0.001622 -3.891042	0.030062 0.844897 0.001922 4.068294	0.5887 0.2520 0.3987 0.3389

Source: Output Eviews10

Based on Table 25, there is no significant difference in quantile 0.25 and quantile 0.5 for  $X_1$ . Whereas for quantile 0.5 and quantile 0.75 on variable  $X_1$ , it has a probability value > 0.05, so it has an insignificant difference. Likewise, for quantile 0.25 and quantile 0.75 on variable  $X_1$ , it has a probability value > 0.05, so it is not a significant difference. So that for quantiles 0.25, 0.5, and 0.75 have a difference that is not strong enough.

## CONCLUSION

From the results of this study, it can be seen that H₀ is rejected, which means that the independent variable is the RavenPack news index (the panic index/PI, the media hype index/HY, the fake news index/FNI, the country sentiment index/CSI, the infodemic index/CTI), Credit Default Swap (CDS) rate on 5-year bonds issued by the central government, and the daily closing price of gold has no significant effect on the dependent variable, namely stock returns on the SSE 50, SET 50, LQ45, and STI indices simultaneously. nor partial. Based on the explanation of the conclusions, the suggestion that can be given by the researcher is that in testing time series, you can use various other methods besides quantile regression to test the asymmetric dependence between stock returns and news, such as using the GARCH, ARIMA, method.

## REFERENCES

- Bagaskara, B. (2020). *Rangkaian Peristiwa Pertama Covid-19*. Kompas. https://bebas.kompas.id/baca/riset/2020/04/18/rangkaian-peristiwa-pertama-covid-19/
- Cepoi, C. O. (2020). Asymmetric dependence between stock market returns and news during COVID-19 financial turmoil. *Finance Research Letters*, *36*(January), 101658. https://doi.org/10.1016/j.frl.2020.101658
- Fajar, T. (2020). Bursa Saham Dunia Mengalami Situasi yang Sama. IDX Channel. https://idxchannel.okezone.com/read/2020/05/23/278/2218376/bursa-saham-dunia-

AGREGAT: Jurnal Ekonomi dan Bisnis

Vol. 5, No. 2, September 2021

http://journal.uhamka.ac.id/index.php/agregat

p-ISSN: 2549-5658 e-ISSN: 2549-7243

DOI: 10.22236/agregat_vol1/is1pp221-230

mengalami-situasi-yang-sama

- IDX Channel. (2020). *Jika Terjadi Resesi Ekonomi, Apa Dampak Bagi Masyarakat?* IDX Channel. https://www.idxchannel.com/market-news/foto/jika-terjadi-resesi-ekonomi-apa-dampak-bagi-masyarakat
- Investopedia. (2020). Credit Default Swap (CDS) Definition. Investopedia. https://www.investopedia.com/terms/c/creditdefaultswap.asp
- JM Bullion. (2020). *Where Do Spot Prices Come From?* JM Bullion. https://www.jmbullion.com/investing-guide/pricing-payments/spot-prices/
- Koenker, R. (2004). Quantile regression for longitudinal data. *Journal of Multivariate Analysis*, *91*(1), 74–89. https://doi.org/10.1016/j.jmva.2004.05.006
- Kompaspedia. (2020). Upaya dan Kebijakan Pemerintah Indonesia Menangani Pandemi Covid-19. Kompaspedia. https://kompaspedia.kompas.id/baca/paparantopik/upaya-dan-kebijakan-pemerintah-indonesia-menangani-pandemi-covid-19
- Kurniawan, R., & Yuniarto, B. (2016). *Analisis Regresi Dasar dan Penerapannya*. Kencana. https://books.google.co.id/books?id=KcY-DwAAQBAJ&printsec=frontcover&dq=inauthor:%22Robert+Kurniawan%22&hl =id&sa=X&ved=2ahUKEwi7v6ax_rXuAhXDcn0KHW_gCc0Q6AEwAXoECAA QAg#v=onepage&q&f=false
- Pandoyo, & Sofyan, M. (2018). Metodologi Penelitian Keuangan dan Bisnis: Teori dan Aplikasi Menggunakan Software Olah Data Eviews 9. https://www.academia.edu/40018025/Metodologi_Penelitian_Keuangan_dan_Bisn is
- Paramanik, R. N., & Singhal, V. (2020). Sentiment Analysis of Indian Stock Market Volatility. *Procedia Computer Science*, 176, 330–338. https://doi.org/10.1016/j.procs.2020.08.035
- RavenPack. (2020). *Coronavirus News Monitor*. RavenPack. https://coronavirus.ravenpack.com/

Sugiyono. (2013). Metode Penelitian Kuantitatif Kualitatif dan R&D. Alfabeta.

- Tandelilin, E. (2010). *Portofolio dan Investasi Teori dan Aplikasi* (1st ed.). PT Kanisius Yogyakarta.
- The Star. (2020). Indonesia to become Asean's biggest stock market. Star Media Group Berhad. https://www.thestar.com.my/business/businessnews/2020/01/16/indonesia-to-become-asean039s-biggest-stock-market
- World Health Organization. (2020). *Q&A Coronavirus Diseases*. WHO. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/coronaviruse-disease-covid-19

Pp 180-200