

ISSN: 2776-1010 Volume 3, Issue 2, Feb, 2022

PLECKSTRIN HOMOLOGY AND GREEN FLUORESCENT FUSION PROTEIN IN STARFISH BY USING BIOINFORMATICS

Rana Hussein Naser,

Department of Science, College of Basic Education, University of Diyala, Iraq

Israa Tareq Aakool, Department of Science, College of Basic Education, University of Diyala, Iraq

Arwa Alaa Hussein Department of Science, College of Basic Education, University of Diyala, Iraq

Abstract

Different signaling and metabolic processes, including those that occur during fertilization, are tightly controlled by PLC isozymes. In this research, Bioinformatic databases will be utilized to fuse PLC's PH domain with GFP, which will then be used to study the starfish Patiria miniata's starfish chromosomes.

Keywords: Infertility, Phospholipase C, GFP, Patiria miniata

Introduction

In order to stimulate embryogenesis, cytoplasmic free Ca2+ is detected in the eggs. increase at fertilization [1] [2]. Anti-vertebrate protein inhibitors have been used in research in starfish eggs have been offered that this C2+ rise necessitates SFK (Src family kinase) in the egg that either activates PLCgamma directly or indirectly, resulting in IP3 production, it causes C2+ to be released from the endoplasmic reticulum of the egg (ER). Asterina miniata PLC-gamma was obtained from oocyte cDNA to study the endogenous measures in starfish eggs necessary for C2+ release during fertilization in greater detail. AmPLC gamma is a cDNA that encodes a protein that is 49 percent identical PLC-gamma in mammalians. Recombinant Src homology 2 (SH2) domains in AmPLC-gamma interacted with a 58kDa Src family kinase in a fertilization-responsive way [3] [4]. PLC from a sea urchin egg immunoprecipitates the PLC-gamma was shown to be phosphorylated in response to fertilization when it was tested with an antibody specific against AmPLC-gamma. Adding starfish eggs to the mix with AmPLC tandem gamma's SH2 domains (which block activation of PLC gamma) prevented release of Ca2+ at fertilization. These findings show that an endogenous starfish egg PLC-gamma interacts with an egg SFK and, via a PLC-gamma SH2-mediated mechanism, mediates Ca2+ release during fertilization [5] [6].Calcium signaling levels are maintained by the isoform PLCy, which assist to open a channel that allows for Ca2+ infusion over the plasma membrane and out of the endoplasmic reticulum, respectively [7]. PLC1 and PLC2 are two isoforms of the PLC class, growth factor stimulation of receptor and non-receptor (cytosolic) protein tyrosine kinase activation by polypeptide growth factor resulting in an increase in the activity of phospholipase, which can lead to angiogenesis, cell motility,

ISSN: 2776-1010 Volume 3, Issue 2, Feb, 2022

ventricular contractility, among other things [8] [9]. GFP (Green fluorescent protein) is a widely recognized and transiently expressed fluorescent tag that can play a vital function in the localization of PLC γ . GFP will be fused to PLC's PH-domain. In this work, and the PH-GFP fusion protein will be utilized to investigate localisation in the starfish Patiria miniata [10]. Additional PLC family members have been demonstrated to influence Ca2+ signaling via previously undiscovered mechanisms, which suggests that this fusion protein may also Other non-membrane cytosolic proteins interact with and localize to compartments when exposed to sperm-egg interaction. Because the PH domain aids in marked protein-protein, protein-lipid interactions, and membrane binding it is used in this work for the development of fusion proteins that can bind to membranes [11] [12].

Materials and Methods

1-NCBI The NCBI houses a series of (computer files full of information) clearly connected with or related to (science that uses living things to improve the Earth) and natural communitydicine and is an important useful thing supply for bioinformatics tools and services [13]. Major computer files full of information include GenBank for DNA sequences and PubMed, a related to a list of references, computer file full of information for the study of how life and medicine work together. Other computer files full of information include the NCBI Epigenomics. All these computer files full of information are available online through the Entrez search engine [14].

2- Bioinformatics To construct a PH-GFP fusion protein, PLC PH domain of starfish PLC was amplified using bioinformatics to construct primers containing BsrG1 restriction sites the PJV53 – PAGFP plasmid [15] [16]. The NCBI database was used to retrieve the cDNA sequence in its entirety and the PH domain of AmPLC γ . PH domain was amplified by using NCBI's Primer-Blast to build the forward and reverse primers [17] [18] [19].

Result and Discussion

Asterina miniata phospholipase C-gamma mRNA, complete cds GenBank: AY486068.1 FASTA Graphics

Go to: 🖂	
LOCUS	AY486068 3816 bp mRNA linear INV 14-APR-2004
DEFINITION	Asterina miniata phospholipase C-gamma mRNA, complete ods.
ACCESSION	AY486068
VERSION	AY486068.1
KEYWORDS	 Alternative and the second seco
SOURCE	Patiria miniata (bat star)
ORGANISM	Patiria miniata
	Eukaryota; Metazoa; Echinodermata; Eleutherozoa; Asterozoa;
	Asteroidea; Valvatacea; Valvatida; Asterinidae; Patiria.
REFERENCE	1 (bases 1 to 3816)
AUTHORS	Runft,L.L., Carroll,D.J., Gillett,J., Giusti,A.F., O'Neill,F.J. and Foltz,K.R.
TITLE	Identification of a starfish egg PLC-gamma that regulates Ca2+ release at fertilization
JOURNAL	Dev. Bicl. 269 (1), 220-236 (2004)
PUBMED	15081369
REFERENCE	2 (bases 1 to 3016)
AUTHORS	Gillett, J., Carroll, D.J., Runft, L.L., O'Neill, F.J., Giusti, A.F.,

Figure 1. Initial results page of the nucleotide search for Asterina miniata phospholipase C-gamma mRNA. https://www.ncbi.nlm.nih.gov/nuccore/40365362?log\$=activity

ISSN: 2776-1010 Volume 3, Issue 2, Feb, 2022

phospholipase C-gamma [Patiria miniata]

GenBank: AAR85355.1

Identical Proteins FASTA Graphics

<u>Go to:</u> 🕑

LOCUS	AAR85355 1261 aa linear INV 14-APR-2004
DEFINITION	phospholipase C-gamma [Patiria miniata].
ACCESSION	AAR85355
VERSION	AAR85355.1
DBSOURCE	accession AY486068.1
KEYWORDS	
SOURCE	Patiria miniata (bat star)
ORGANISM	Patiria miniata
	Eukaryota; Metazoa; Echinodermata; Eleutherozoa; Asterozoa;
	Asteroidea; Valvatacea; Valvatida; Asterinidae; Patiria.
REFERENCE	1 (residues 1 to 1261)
AUTHORS	Runft,L.L., Carroll,D.J., Gillett,J., Giusti,A.F., O'Neill,F.J. and
	Foltz,K.R.
TITLE	Identification of a starfish egg PLC-gamma that regulates Ca2+
	release at fertilization
JOURNAL	Dev. Biol. 269 (1), 220-236 (2004)
PUBMED	15081369
REFERENCE	2 (residues 1 to 1261)
AUTHORS	Gillett,J., Carroll,D.J., Runft,L.L., O'Neill,F.J., Giusti,A.F.,
	Jaffe,L.A. and Foltz,K.R.
TITLE	Direct Submission
JOURNAL	Submitted (24-NOV-2003) Biological Sciences, Florida Tech, 150 West
	University Blvd., Melbourne, FL 32901, USA
ORIGIN	
	ykkk ltpqevasvt km <mark>lkmgtvlt rfygkrrper rsfeicmetr qilwrrqtgr</mark>
	tirei keirpgknsr dferwpdeak kydtslclvi cygaefrlks lsvvagnade
	glnw lvedhkissy p <mark>srlewwlrr efyamgktkn dtvslrdmks fmpyvnlkmn</mark>
181 tkdlke	yfne vdrwnkqeig fdgfvqlyhn lifqrevadr fkeyidernl vtvngmirfl

241 aqeqkdttan npiavkamme sfltdlgrpc qesdpkftvp efllylfspd neiwdkkfde

Figure 2. The Asterina miniata src cDNA was translated to Patiria miniata src protein. Amino acid sequence of the Patiria miniata Src family kinase protein, with the ph domain highlighted in brown from range(23-141).

https://www.ncbi.nlm.nih.gov/protein/40365363

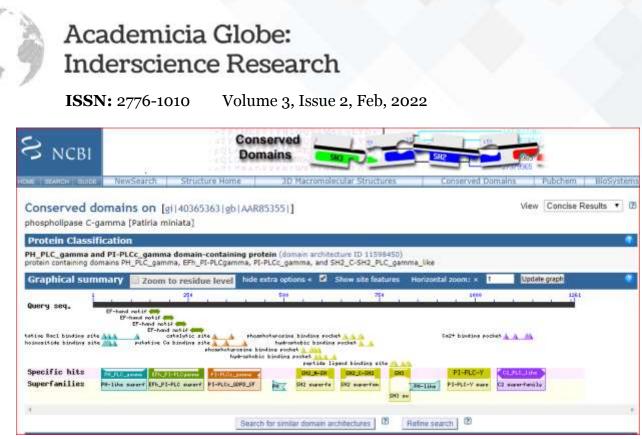


Figure 3. Conserved domain results for patiria minita . Conserved domain compares this protein sequence to the sequence for the same protein in other animals and identifies regions of high similarity (conserved regions). This shows that the ph domain is highly conserved in this protein. https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi?INPUT_TYPE=live&SEQUENCE=AAR8535 5.1

	aedicine >	NCBI N	stional Center for	Dialecturolog	y mtormation			N eff	naadqayisi 💧	MY NOBE SALE OU	6
mer-BLAST Jo	B ID:trxpXSX	FKG0PV7h	BITKCYMBpjVL	iOpZP4w							
					ST Results 😡						
Input PCR template		natarina mini	ista phospholipa	oe C-pamma	evicua, complete	cde					
Bange Specificity of primers	26 - 400 Primer pairs	are specific t	n liquit template	as no attai	targets were four	d in selects	ed database: No	horig makilali			
Other reports	a- <u>Generate filore</u>	mary									
Graphical v	iew of p	orimer	pairs								
	et.		000		6.0.17.5			2 Ter	• O Tool		-
(Tranglate)	1000	(1)M	1044	274	(100	1994	144	1494	toe		
(Decas)				- 10	0.0						
THI PRIMER PALLY SOT	Int tracking	DORVINENTRE	VIIII preVIL: Op DF+	120			-				
Patenter 2 Barrier						_					
				_		_					
Prinet 4 Print	1.511	100	299		0100	204	And	400	1996	214	
Primer 4 1000	1000									ixi sheve: 3/5	

ISSN: 2776-1010 Volume 3, Issue 2, Feb, 2022

Primer pair 2									
	Sequence (5'->3')	Template strand	Length	Start	Stop	Tm	GC%	Self complementarity	Self 3' complementarity
Forward primer	AAGAAGAAGCTGACGCCCCA	Plus	20	29	48	61.77	55.00	4.00	2.00
Reverse primer	AGATTITATGGTCTTCCACTAGCCA	Minus	25	419	395	59.81	40.00	4.00	2.00
Product length	391								
Drimor nair	. 2								

https://www.ncbi.nlm.nih.gov/tools/primer-

blast/primertool.cgi?ctg_time=1562583052&job_key=trxpXSXFKG0PV7hStTKcYM8pjVLiOpZP4w Figurre 4: primer-blast from NCBI are used to design forward primer and reverse primer , Next these primrs will cut out by using restriction enzyme BrsGI

ORIGIN						
1	cttcagaatg	gccaccaaca	gcctct <mark>acaa</mark>	gaagaagctg	acgccccagg	aggtggccag
61	cgtcaccaag	atgctgaaaa	tgggcaccgt	cctgacgcgc	ttctacggca	aacgacgacc
121	ggaaaggagg	tcgttcgaaa	tctgcatgga	gacgcggcag	atactgtgga	ggcgacagac
181	tgggcggaca	gacggagcag	ttaaaattcg	tgagataaaa	gagattcgtc	ccggtaagaa
241	ctcacgagac	ttcgagaggt	ggccggatga	agccaagaag	tatgatacct	cgctctgtct
301	tgtcatatgc	tacggtgccg	agttcagact	caagagcttg	tccgtcgttg	ccggcaatgc
361	cgatgaacga	cacaagtgga	tcgtcggcct	caac <mark>tggcta</mark>	gtggaa <mark>gacc</mark>	ataaaatctc
421	aagttaccca	agcagactag	aatggtggtt	acgacgggag	ttctacgcca	tggggaaaac
481	aaagaatgat	acggtgtcac	ttagggacat	gaagtcattc	atgccatacg	tcaacctgaa

Figure 5: the ph domain sequence from origin sequence ranging from nucleic acids(26 – 433) with primers are highlighted in yellow

https://www.ncbi.nlm.nih.gov/nuccore/40365362?log\$=activity

ISSN: 2776-1010 Volume 3, Issue 2, Feb, 2022

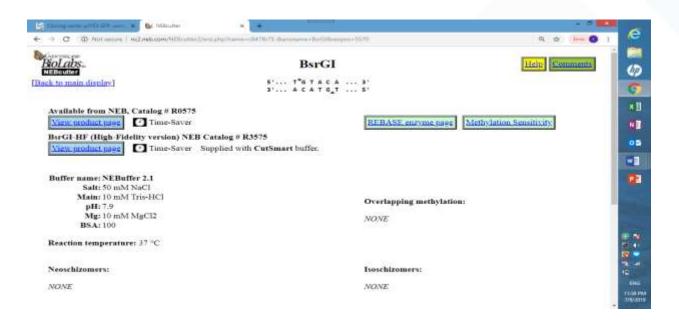


Figure 6: Picture of initial Nebcutter shows the detail of BsrGI restriction enzyme. http://nc2.neb.com/NEBcutter2/enz.php?name=c847fb75-&enzname=BsrGI&recpos=5570

Next, we will used the restriction enzyme BsrGI that cut out the primers match the sites chosen for the ph domain. so GFP – PH fusion protein can be made.

Cloning vector pJV53-GFP, complete sequence Senthank KL306402.1 ASTA Scientina	Customize view +
as in S	Analyze this sequence
ocus kusedez 9665 bi Dim clicular svi 21-HAR-2016	Pick Primers
<pre>WEFINITION Cloning vector p3v51-6FP, complete sequence. ucc65510n xv106483</pre>	Highlight Sequence Features
FR5104 EU396482.1 FraceD5	Find in this Sequence
00004 Cloning vector 01v63-6FP CREanIGM Cloning vector 01v63-6FP	
other sequences; artificial sequences; vectors. IEFERENCE 1 (bases 1 to 9885)	Related Information
AUTHORS Map;X1., Yan,MY., Thu,M., Gup,XP. and Sun,YC. ITTLE Efficient and cimils generation of multiple unmarked gave deletions	
in Mycobacterium umegnatis	Taxonomy
IOURNAL Unpublished IEFERSING 2 (Bases 1 to 0605) AUTHORS Res,XJ., Yan,HY., 2hu,H., Guo,XP. and Sun,YC.	Puil test in Planc
TITLE Direct Submission 100ANAL Submitted (15-062-3015) Hisrobiology, Institute of Pathogen	LinkDut to external resources
Biology, Chinesa Academy of Medical Sciences & Peking Union Medical College (CANSEMUC), building 0, Bedjing University Of Technology, Vizhuang Dewslopment Zone, Desing District, Bedjing 200000, China	Criter GPP (DNA cloneProtentAntbody/RNA) [CRCene]
EATURES Location/Qualiflers	
/organize="Cloning vector plvE2-GFP" /mol_type="ather DNA"	Recent activity (*)
/islafin_source-T.colf /db_oref-Taxoni <u>lEl2001</u> /ld_hast-Teycobsterium and Lcolf	Gionny vector pJV/53-GFP; complete sequence neuronal
<pre>/note+"gp60 and gp61 inducing expression and gfp expression vector"</pre>	Asterna minista phospholipase C-gamma mRNA, tumpkila loga Haciptina
garta 16414256 Garana anti-	PI Developments indus for DNA/organia

Figure 7 : pjv53-GFP cloning vector DNA sequence found in NCBI.

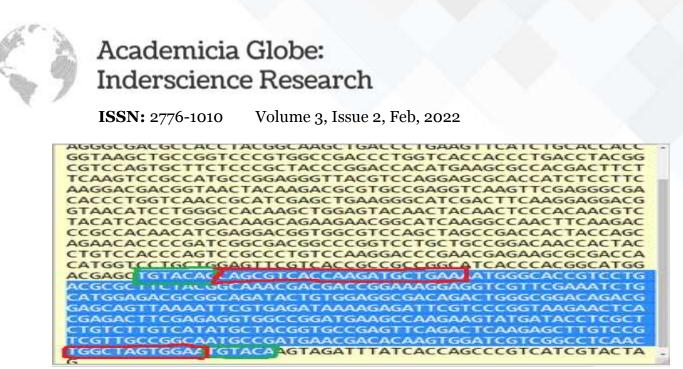


Figure 8: Combined PH domain with pjv53-GFP cloning vector and restriction enzyme highlight green . This sequence was copied and pasted into ORF Finder. https://www.ncbi.nlm.nih.gov/orffinder/

the bound have been as a lot the bound of	Without In N # 72 Note East-Annual Segurate	· Elementaria have been been at .	
+ + C . Imps/datations.mh.gov/	adaman		a o 🛏 🛛 i 🧲
HID 2019/C70014.0 (Houseway) Querry Di McQuerry, Statuto Descriptions incolority and St. ISSS annuaries Molecute type Querry Length 388		Intelligen Rome III., 20 Description III Instrumentart Conflore (OI Exclusion - Proc Research - 2006 - Pro- service Rom (PGC Propriet Program Res179.). 8.04 - 9 Cassan	aling anormore and
other reports: • Search Sommery (Stramore	Analyze your query wi		×I
Scaphic Bummery		in smartscast	
Conserved Donaster			
Puter Contractor Contractor Contractor Contractor Contractor Contractor Contractor Contractor Contractor Contra	ative conserved domains have been detected, of	ck on the image below for detailed results.	9 9
Gamery any, Antonionia			
Specific hits	entation	Beneficial and the second	
Seperfacilies		fil-like superfamily	
	Distribution of the top 100 Blast Hits or		
	Mouse over to see the title, click		
	Color key for aligned 40.50 0000	00-200 = = 200	
	quer	and the second	
	1 70 140	210 280 350	
			200
		389.0	Questions/comments

Figure 9:BLAST results showing successful production of GFP-PH fusion protein. https://blast.ncbi.nlm.nih.gov/Blast.cgi

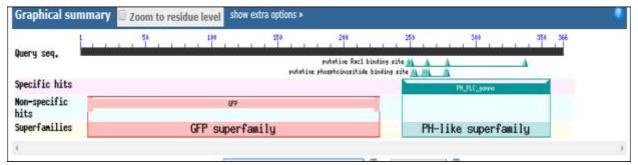


Figure 10: Zoomed-in version of successfully made GFP-PH fusion protein https://blast.ncbi.nlm.nih.gov/Blast.cgi

ISSN: 2776-1010 Volume 3, Issue 2, Feb, 2022

The egg's Ca2+ levels grow in response to the sperm during fertilization, which is crucial in getting the egg to start developing at the very least, C2+ when IP3 levels rise, it is released from the endoplasmic reticulum is responsible for the rise in C2+ in echinoderm and vertebrate eggs [20] [21]. However, it has not been determined how IP3 is generated during fertilization [22] [23].

A phospholipase C enzyme is responsible for this (PLC), IP3 is generated from PIP2. The enzymes in this group contains δ , γ , and β isoforms. PLC β is activated by G proteins, whereas tyrosine kinases activate PLC [24]. Despite the fact that all three an increase in Ca2+ can trigger PLC isoforms the control of PLC δ remains a mystery, even if the enzymatic activity of all three PLC isoforms may be stimulated by an increase in Ca2+ [25] [26] [27]. One of these phospholipase C isoforms is activated most likely leads in the production of IP3 during fertilization.

Eggs contain PLC γ and PLC β pathway proteins. For example, expression of PLC pathway/ G protein -Dependent receptors such as the serotonin 2c or muscarinic m1 receptors allows for C2+ release in eggs when the appropriate antagonists are used [28] [29]. This implies the presence of functional PLC β and related G proteins. Exogenous tyrosine kinase/PLC γ receptors, such as those for PDGF or EGF, can be expressed in frog and starfish eggs to allow C2+ release as a result of exposure to these agonists. Ca2+ release is not caused by receptors with a single point mutation that don't activate PLC γ . A functional PLC is evident from these data. These studies have not been done on mammalian eggs, but immunoblotting has shown the presence of PLC γ .

Conclusion

Several prior research have looked into whether PLC γ or PLC β pathways are responsible for C2+ release during fertilization. Because of concerns about the selectivity of the pharmaceutical inhibitors used, the results of these trials have not been conclusive. To determine whether PLC γ - or PLC β -mediated Ca2+ release mechanisms are involved in fertilization, we used a recombinant PLC protein component to inject starfish eggs, and it inhibited PLC γ activation but not PLC β activation.

Acknowledgements

It is matter of honor and privilege for me to offer grateful acknowledgement to my supervisor Dr.Alyaa Abdelhameed for all his invaluable support, superb guidance and encouragement throughout the duration of this study.

References

- 1. Bianchi, E., & Wright, G. J. (2020). Find and fuse: Unsolved mysteries in sperm–egg recognition. PLoS biology, 18(11), e3000953.
- 2. Satheeshkumar, R., Zhu, R., Feng, B., Huang, C., Gao, Y., Gao, L. X., ... & Wang, W. L. (2020). Synthesis and biological evaluation of heterocyclic bis-aryl amides as novel Src homology 2 domain containing protein tyrosine phosphatase-2 (SHP2) inhibitors. Bioorganic & Medicinal Chemistry Letters, 30(11), 127170.

ISSN: 2776-1010 Volume 3, Issue 2, Feb, 2022

- 3. Liu, W., Cai, M. J., Zheng, C. C., Wang, J. X., & Zhao, X. F. (2014). Phospholipase Cγ1 connects the cell membrane pathway to the nuclear receptor pathway in insect steroid hormone signaling. Journal of Biological Chemistry, 289(19), 13026-13041.
- 4. Aki, S., Yoshioka, K., Takuwa, N., & Takuwa, Y. (2020). TGFβ receptor endocytosis and Smad signaling require synaptojanin1, PI3K–C2α-, and INPP4B-mediated phosphoinositide conversions. Molecular biology of the cell, 31(5), 360-372.
- 5. Podlewska, S., Bugno, R., Lacivita, E., Leopoldo, M., Bojarski, A. J., & Handzlik, J. (2021). Low basicity as a characteristic for atypical ligands of serotonin receptor 5-HT2. International Journal of Molecular Sciences, 22(3), 1035.
- 6. Santulli, G., Lewis, D., des Georges, A., Marks, A. R., & Frank, J. (2018). Ryanodine receptor structure and function in health and disease. Membrane protein complexes: structure and function, 329-352.
- 7. Santella, L., Limatola, N., & Chun, J. T. (2020). Cellular and molecular aspects of oocyte maturation and fertilization: a perspective from the actin cytoskeleton. Zoological Letters, 6(1), 1-21.
- 8. AL-Amery, M., Fowler, A., Unrine, J. M., Armstrong, P., Maghirang, E., Su, K., ... & Hildebrand, D. (2020). Generation and Characterization of a Soybean Line with a Vernonia galamensis Diacylglycerol Acyltransferase-1 Gene and a myo-Inositol 1-Phosphate Synthase Knockout Mutation. Lipids, 55(5), 469-477.
- 9. Jacobs, R. S., & Wilson, L. (2020). Fertilized sea urchin eggs as a model for detecting cell division inhibitors. In Modern analysis of antibiotics (pp. 481-493). CRC Press.
- 10. Kramer, F., Dernedde, J., Mezheyeuski, A., Tauber, R., Micke, P., & Kappert, K. (2020). Plateletderived growth factor receptor β activation and regulation in murine myelofibrosis. haematologica, 105(8), 2083.
- 11. Wessel, G. M., Wada, Y., Yajima, M., & Kiyomoto, M. (2021). Bindin is essential for fertilization in the sea urchin. Proceedings of the National Academy of Sciences, 118(34).
- 12. Campos, S., Troncoso, J., & Paredes, E. (2021). Major challenges in cryopreservation of sea urchin eggs. Cryobiology, 98, 1-4.
- 13. Stein, P., Savy, V., Williams, A. M., & Williams, C. J. (2020). Modulators of calcium signalling at fertilization. Open biology, 10(7), 200118.
- 14. Ehm, P. A., Lange, F., Hentschel, C., Jepsen, A., Glück, M., Nelson, N., ... & Jücker, M. (2019). Analysis of the FLVR motif of SHIP1 and its importance for the protein stability of SH2 containing signaling proteins. Cellular Signalling, 63, 109380.
- 15. Guo, Q., Su, J., Xie, W., Tu, X., Yuan, F., Mao, L., & Gao, Y. (2020). Curcumin-loaded pea protein isolate-high methoxyl pectin complexes induced by calcium ions: Characterization, stability and in vitro digestibility. Food Hydrocolloids, 98, 105284.
- 16. Jadwin, J. A., Curran, T. G., Lafontaine, A. T., White, F. M., & Mayer, B. J. (2018). Src homology 2 domains enhance tyrosine phosphorylation in vivo by protecting binding sites in their target proteins from dephosphorylation. Journal of Biological Chemistry, 293(2), 623-637.

ISSN: 2776-1010 Volume 3, Issue 2, Feb, 2022

- 17. Hansen, C. E., Qiu, Y., McCarty, O. J., & Lam, W. A. (2018). Platelet mechanotransduction. Annual review of biomedical engineering, 20, 253-275.
- Iwatate, R. J., Yoshinari, A., Yagi, N., Grzybowski, M., Ogasawara, H., Kamiya, M., & Nakamura, M. (2020). Covalent self-labeling of tagged proteins with chemical fluorescent dyes in BY-2 cells and Arabidopsis seedlings. Plant Cell, 32(10), 3081-3094.
- 19. Li, L., Ji, S., Shrestha, C., Jiang, Y., Liao, L., Xu, F., ... & Xie, Z. (2020). p120-catenin suppresses proliferation and tumor growth of oral squamous cell carcinoma via inhibiting nuclear phospholipase C-γ1 signaling. Journal of Cellular Physiology, 235(12), 9399-9413.
- 20.Paroha, R., Chourasia, R., Rai, R., Kumar, A., Vyas, A. K., Chaurasiya, S. K., & Singh, A. K. (2020). Host phospholipase C-γ1 impairs phagocytosis and killing of mycobacteria by J774A. 1 murine macrophages. Microbiology and Immunology, 64(10), 694-702.
- 21. Li, C., Liu, F., Liu, S., Pan, H., Du, H., Huang, J., ... & Wei, Y. (2020). Elevated myocardial SORBS2 and the underlying implications in left ventricular noncompaction cardiomyopathy. EBioMedicine, 53, 102695.
- 22. Hobbs, H. T., Shah, N. H., Badroos, J. M., Gee, C. L., Marqusee, S., & Kuriyan, J. (2021). Differences in the dynamics of the tandem-SH2 modules of the Syk and ZAP-70 tyrosine kinases. Protein Science, 30(12), 2373-2384.
- 23. Chiarelli, R., Martino, C., & Roccheri, M. C. (2019). Cadmium stress effects indicating marine pollution in different species of sea urchin employed as environmental bioindicators. Cell Stress and Chaperones, 24(4), 675-687.
- 24. Terrer, C., Jackson, R. B., Prentice, I. C., Keenan, T. F., Kaiser, C., Vicca, S., ... & Franklin, O. (2019). Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nature Climate Change, 9(9), 684-689.
- 25. Colombo, N., Sessa, C., du Bois, A., Ledermann, J., McCluggage, W. G., McNeish, I., ... & Zeimet, A. G. (2019). ESMO–ESGO consensus conference recommendations on ovarian cancer: pathology and molecular biology, early and advanced stages, borderline tumours and recurrent disease. Annals of Oncology, 30(5), 672-705.
- 26.Hu, Q., & Wolfner, M. F. (2019). The Drosophila Trpm channel mediates calcium influx during egg activation. Proceedings of the National Academy of Sciences, 116(38), 18994-19000.
- 27. Bao, W., Yan, T., Deng, X., & Wuriyanghan, H. (2020). Synthesis of full-length cDNA infectious clones of Soybean mosaic virus and functional identification of a key amino acid in the silencing suppressor Hc-pro. Viruses, 12(8), 886.
- 28.Zamora, L. N., Delorme, N. J., Byrne, M., & Sewell, M. A. (2020). Lipid and protein utilization during lecithotrophic development in the asteroid Stegnaster inflatus, with a review of larval provisioning in lecithotrophic echinoderms. Marine Ecology Progress Series, 641, 123-134.
- 29. Li, L., Ji, S., Shrestha, C., Jiang, Y., Liao, L., Xu, F., ... & Xie, Z. (2020). p120-catenin suppresses proliferation and tumor growth of oral squamous cell carcinoma via inhibiting nuclear phospholipase C-γ1 signaling. Journal of Cellular Physiology, 235(12), 9399-9413.