
ELKHA : Jurnal Teknik Elektro, Vol. 13 No.2, October 2021, pp. 134 - 140

ISSN: 1858-1463 (print), 2580-6807 (online)

- 134 -

1, 3) Department of Mechanical Engineering – Mechatronics Concentration, Swiss German University, Indonesia
2) Master of Information Technology, Swiss German University, Indonesia

Corresponding Email: *) eka.budiarto@sgu.ac.id

Abstract – Differential equations are ubiquitous in many

fields of study, yet not all equations, whether ordinary or

partial, can be solved analytically. Traditional numerical

methods such as time-stepping schemes have been devised to

approximate these solutions. With the advent of modern

deep learning, neural networks have become a viable

alternative to traditional numerical methods. By

reformulating the problem as an optimisation task, neural

networks can be trained in a semi-supervised learning

fashion to approximate nonlinear solutions. In this paper,

neural solvers are implemented in TensorFlow for a variety

of differential equations, namely: linear and nonlinear

ordinary differential equations of the first and second order;

Poisson’s equation, the heat equation, and the inviscid

Burgers’ equation. Different methods, such as the naive and

ansatz formulations, are contrasted, and their overall

performance is analysed. Experimental data is also used to

validate the neural solutions on test cases, specifically: the

spring-mass system and Gauss’s law for electric fields. The

errors of the neural solvers against exact solutions are

investigated and found to surpass traditional schemes in

certain cases. Although neural solvers will not replace the

computational speed offered by traditional schemes in the

near future, they remain a feasible, easy-to-implement

substitute when all else fails.

Keywords: Differential Equations, Deep Learning, Neural

Networks, Numerical Methods.

I. INTRODUCTION

Differential equations (DEs) describe a physical system

as a mathematical model. DEs (both ordinary and partial)

are vital in many fields including, but not limited to,

biology, economics, physics, chemistry and engineering.

For the simpler linear equations, established analytical

solutions often exist and are well-defined. However, for

more complicated DEs, exact solutions cannot be

expressed in elementary functions or may not even exist.

As a result, numerical methods are frequently utilised to

approximate these solutions, up to a certain amount of

error.

With the advent of deep learning, neural networks

(NNs) have resurfaced onto the field of computer

simulation. Having evolved from the simple perceptron

model [1] to the multilayer perceptron [2] and finally to

the modern variants known today such as convolutional

and recurrent networks [3], NNs are capable of solving a

variety of machine learning tasks. Specifically, they have

exhibited superb results in classification and regression

problems, surpassing even human-level performance on

particular image classification datasets [4]. In addition to

computer vision, NNs have also advanced the field of

natural language processing, in problems such as

language understanding and machine translation [5], [6].

NNs possess these capabilities owing to their versatility

as black-box function approximators. Given sufficient

data, NNs can be trained to model complex and non-trivial

input-output relationships.

Via the formulation of an initial value problem (IVP)

or a boundary value problem (BVP) as a semi-supervised

optimisation problem [7]–[10], the vast repertoire of

techniques from NNs can be applied in order to approach

the solution of an ordinary differential equation (ODE) or

partial differential equation (PDE). Operating as universal

function approximators [11], artificial NNs are capable of

modelling continuous functions to a substantial extent

with appropriate activation functions—the only limiting

factor being the complexity of the network architecture

itself.

One such approach is the work of Dissanayake and

Phan-Thien [7], henceforth referred to as the naive

method, wherein the DE and initial or boundary

conditions are rewritten as a convex loss function

parametrised by the network weights. The objective of the

optimisation problem is thus to minimise this loss

function with respect to the weights. Lagaris et al. [8]

improves upon the naive method by introducing an ansatz

for the solution. Constructing such an ansatz allows the

form of the solution to be readily constrained, eliminating

the need for the condition loss functions. This removal

focuses the total loss function, accelerating convergence

and preventing suboptimal trivial solutions. The ansatz

method, however, requires knowledge of a suitable ansatz

beforehand.

Further refinements include [9], in which it is suggested

that the network be first pretrained on the condition loss

alone in order to roughly gauge the range of the solution.

Another study [10] proposed the Deep Galerkin Method

(DGM), which tries to incorporate the stochasticity of

conventional NN training, i.e., stochastic gradient descent

(SGD) [12]. Samples of the input domain are randomly

 Comparison and Analysis of Neural Solver
Methods for Differential Equations in Physical

Systems

Fabio M Sim1), Eka Budiarto2*), and Rusman Rusyadi3)

Manuscript received 06-09-2021; revised 05-10-2021; accepted 06-10-2021

Comparison and Analysis of Neural Solver Methods for Differential Equations in Physical Systems (F.M. Sim,et al.)

- 135 -

generated at every iteration to be fed into the network,

conserving memory on what would otherwise be

consumed by high-dimensional grids or discretisations.

Several applications of the aforementioned methods

include utilising NNs in cosmological phase transitions

and quantum field theory [13]; applying NNs to solve the

Navier-Stokes equations with various boundary

conditions [14]; and solving Poisson’s equation in two
and three dimensions for electric potential using

convolutional NNs [15].

This work will focus on the implementation of deep

neural network solvers for various types of differential

equations including linear, semilinear, quasilinear,

nonlinear ODEs and PDEs of predominantly the first and

second orders, using TensorFlow [16], [17]. In addition,

various architectures for the network will be analysed and

compared to traditional numerical schemes in terms of

error. The robustness of the training will also be tested by

varying parameters of the NN, such as layers and the input

domain. Finally, the resulting network outputs for certain

simulatable problems will be validated using

experimental data.

The structure of this paper is organised as follows: the

introduction highlights the significance of the DE

problem and provides a brief look into the evolution of

NNs as well as how they have been used to solve this

problem. The second section delineates the problem

definition in depth and shows how one can reproduce the

experimental methods alongside the implementation

details and cases. In the third section, the results of the

experiments are thoroughly discussed and analysed.

Lastly, the conclusion summarises this research and puts

forward several directions in which future work can be

carried out.

II. METHODOLOGY

Consider the following IVP, consisting of an explicit

first order ODE and an initial condition; and the function 𝑓 on the right-hand side of the ODE is known.

d𝑦
d𝑥 = 𝑓(𝑥, 𝑦),  𝑦(𝑥0) = 𝑦0 (1)

The unknown solution 𝑦(𝑥) can be approximated as a

neural network 𝑦∗(𝑥,𝐖), wherein 𝐖 denotes the

network’s weights. In particular, the type of networks

employed here are feedforward, also known as dense,

NNs, consisting of a sequence of layers where the outputs

of one layer are fed as the inputs of the next layer. Each

dense layer is made up of a number of neurons, and each

neuron is connected to all neurons of the previous layer.

Mathematically, given an input 𝑥, a dense layer 𝑎𝑖 is

modelled as the transformation 𝑎𝑖(𝑥) = 𝜎𝑖(W𝑖𝑥 + �⃑� 𝑖).

Each layer is parametrised by its kernel matrix W𝑖 and bias

vector �⃑� 𝑖, which together are known collectively as the

weights 𝐖. The activation function 𝜎𝑖(⋅) serves to imbue

nonlinearities in the network.

For example, a dense neural network with two hidden

layers and one output layer can be written as the

composition 𝑦∗(𝑥,𝐖) = 𝑎3 (𝑎2(𝑎1(𝑥))). When used for

function approximation, hidden activations are typically

sigmoid or hyperbolic tangent functions, whereas the

output activation is not applied, i.e., linear activation.

Under this formulation, errors are then introduced in both

the ODE and the condition, known respectively as the

equation loss (ϵ1) and the condition loss (ϵ2) as shown in

equation (2). ∂𝑦∗∂𝑥 = 𝑓(𝑥, 𝑦∗) + ϵ1, 𝑦∗(𝑥0,𝐖) = 𝑦0 + ϵ2 (2)

The sum of the squares of these losses provides a

suitable objective function which the network can be

trained to minimise, i.e., ℒ = ϵ12 + ϵ22. Such loss

functions, which include both losses, are characteristic of

the naive method. By a similar derivation, these loss

functions can be extended to higher-order problems,

PDEs, and systems of DEs. The training dataset then

consists of all points inside the discretised input domain

on which a solution is desired. Using one of the many

variants of SGD, such as the Adam optimiser [18], the

weights can be iteratively updated until convergence.

On the other hand, ansatz or trial functions can also be

constructed to approximate the solutions, as shown in [8].

For instance, the following ansatz may be used to solve

equation (1). Note that the initial condition is

automatically satisfied regardless of the state of the

network weights. Similar trial functions can be contrived

for higher order ODEs, PDEs, and systems of DEs as well. 𝑦ansatz = (𝑥 − 𝑥0)𝑦∗(𝑥,𝐖) + 𝑦0 (3)

As for the dataset used in the experiments to train the

NNs, due to the relatively low dimensionality of the

problems considered, an input batch generator similar to

[10] is deemed unnecessary since the dataset shall fit

entirely in memory. To construct this training dataset, the

concerned domain is discretised into a grid of equidistant

points containing the initial or boundary conditions.

Supposing that the IVP in equation (1) is to be solved in

the real interval given by [𝑥0, 𝑥0 + 𝐿], where 𝐿 denotes

the length of the domain, then the training dataset 𝑋 is

described as the following set of 𝑁 points.

𝑋 = {𝑥𝑖 ∈ [𝑥0, 𝑥0 + 𝐿] ∣ 𝑥𝑖 = 𝑥0 + 𝐿𝑁 − 1 𝑖} (4𝑎)

Alternatively, the training dataset 𝑋 can also be

described explicitly as the sequence of equidistant points {𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑁−1}: 𝑋 = {𝑥0, 𝑥0 + 𝐿𝑁 − 1 , 𝑥0 + 2𝐿𝑁 − 1 ,… , 𝑥0 + 𝐿} (4b)

The training algorithms are implemented in

TensorFlow, an open-source platform for machine

learning. Key features of the library which facilitate the

programming of the algorithms include: an object-

oriented paradigm for building the models, support for

hardware acceleration, a diverse accoutrement of

Comparison and Analysis of Neural Solver Methods for Differential Equations in Physical Systems (F.M. Sim,et al.)

- 136 -

mathematical functions, and most importantly, the ability

to compute arbitrary derivatives using auto-

differentiation. Unlike typical loss functions found in

supervised learning, the loss functions implemented to

train neural solvers can depend on not only the network

outputs, but also the inputs themselves and derivatives

with respect to those inputs. Therefore, being able to

compute and backpropagate through these peculiar loss

functions is paramount.

Neural solvers will be implemented to solve the

following cases: first and second order ODEs with

varying degrees of linearity; elliptic (Poisson’s equation),
parabolic (heat equation), and hyperbolic (the inviscid

Burgers’ equation) PDEs, shown in equations (5, 6, 7)

along with their respective boundary or initial conditions.

Poisson’s equation with Dirichlet boundary conditions: ∂2𝑢∂𝑥2 + ∂2𝑢∂𝑦2 = sin(𝜋𝑥)sin(𝜋𝑦) (5)

𝑢(0, 𝑦) = 𝑢(1, 𝑦) = 𝑢(𝑥, 0) = 𝑢(𝑥, 1) = 0

The heat equation with Dirichlet boundary conditions: ∂𝑢∂𝑡 = ∂2𝑢∂𝑥2 (6)

𝑢(𝑡, 0) = 𝑢(𝑡, 1) = 0 𝑢(0, 𝑥) = sin(𝜋𝑥)

The inviscid Burgers’ equation with the initial
condition (both positive and negative initial conditions

will be attempted): ∂𝑢∂𝑡 + 𝑢 ∂𝑢∂𝑥 = 0 (7)

𝑢(0, 𝑥) = ±sin(2𝜋𝑥)

To analyse their overall performance, the error across

the domain is compared to that of conventional numerical

schemes, e.g., forward Euler and Runge-Kutta schemes

for ODEs, and the finite-difference method (FDM) for

PDEs.

As for experimental validation, the neural solver

method will be applied to the simulation of two problems

and juxtaposed with their respective experimental

measurements. The first experiment involves the classical

spring-mass system, modelled by the linear constant-

coefficient second order ODE. Letting 𝑦 represent the

vertical displacement, 𝑡 the time, 𝑦0 the initial

displacement, and 𝑣0 the initial velocity, the model is

given in equation (8).

𝑚 d2𝑦
d𝑡2 + 𝑏 d𝑦

d𝑡 + 𝑘𝑦 = 0, 𝑦(0) = 𝑦0 , 𝑦′(0) = 𝑣0 (8)

The constants which define the characteristic solution

are the mass 𝑚, the friction 𝑏, and the spring constant 𝑘.

The second experiment, performed by Moradi and

Marvasti [19], is governed by Gauss’s law of
electrostatics for the electric field 𝐄 within a domain

containing zero charge, ∇ ⋅ 𝐄 = 0. Substituting with the

electric potential instead, 𝐄 = ∇𝑢, the law boils down to

Laplace’s equation in two dimensions with Dirichlet
boundary conditions: ∂2𝑢∂𝑥2 + ∂2𝑢∂𝑦2 = 0 (9)

𝑢(𝑥, 𝑦0) = 𝑢1, 𝑢(𝑥1, 𝑦) = 𝑢2 𝑢(𝑥, 𝑦1) = 𝑢3, 𝑢(𝑥0, 𝑦) = 𝑢4

III. RESULTS AND DISCUSSION

For ODEs, three dense NNs, each with two hidden

layers with hyperbolic tangent activations, are trained

according to the naive loss for a total of 1000 epochs each

using the Adam optimiser. The hidden sizes are denoted

within the brackets in the legend. The minimum error

achieved against the exact solution is recorded and

compared to that of traditional schemes such as the

forward Euler and fourth order Runge-Kutta methods for

IVPs; and the FDM for BVPs, over increasingly larger

grid sizes. The mean squared error is used as the common

metric. In most cases, the neural method managed to

achieve similar, if not smaller, errors as shown in the

following figures.

Note that a fresh network is created for each

combination of grid size and network architecture in order

to ensure that the initial weights are randomly initialised

and so that the training process is fair.

Figure 1. Error comparisons against the exact solution for

neural solvers of varying sizes, the forward Euler and fourth

order Runge-Kutta schemes for the first order linear ODE. The

number within the brackets in the legend denotes the number of

neurons in each hidden layer of the network.

Comparison and Analysis of Neural Solver Methods for Differential Equations in Physical Systems (F.M. Sim,et al.)

- 137 -

Figure 2. Error comparisons against the exact solution for

neural solvers of varying sizes, the forward Euler and fourth

order Runge-Kutta schemes for the first order semilinear ODE.

Figure 3. Error comparisons against the exact solution for

neural solvers of varying sizes, the forward Euler and fourth

order Runge-Kutta schemes for the first order nonlinear ODE.

Figure 4. Error comparisons against the exact solution for

neural solvers of varying sizes and the FDM for the second

order linear ODE.

In certain cases, such as in Figures 2 and 3, the overall

errors with respect to the exact solutions for the neural

method across all tested grid sizes were smaller than that

of forward Euler and Runge-Kutta schemes by roughly a

couple orders of magnitude, though this is not always the

case, as shown in Figure 1, where the neural method only

manages to outperform the traditional schemes on finer

grids. Ultimately, their performance varies on a case-by-

case basis according to the problem. As for the BVP in

Figure 4, the neural solvers achieved a much smaller

magnitude of error than the FDM.

The superior performance of the neural solvers can be

attributed to their powerful approximation capabilities, in

the sense that, unlike traditional time-stepping schemes

which deterministically yield a discrete set of points, the

neural solvers can be iteratively trained for multiple

epochs. On top of that, because of the choice of the

hyperbolic tangent activation, the network output is

constrained to be continuous and smooth, which further

improves the quality of the neural solution. Generally,

increasing the size of the network causes the error to

decrease due to the greater modelling capacity of the

network, though this difference is not always clear-cut.

Similar results were observed for PDEs over many grid

sizes, as shown in Figures 5 and 6, which respectively

correspond to the test equations of Poisson’s equation (see
equation (5) and the heat equation (see equation (6)). The

mean squared errors are again computed with respect to

the exact solutions, and the mean squared error is again

used as the common metric for comparison.

Due to the greater difficulty of solving PDEs as

compared to ODEs, i.e., the higher number of independent

variables (dimensions), smaller NNs with shallower and

less wide layers are unable to correctly solve PDEs as a

consequence of their limited modelling capacities. Thus,

a sufficiently deep NN with three hidden layers of fifty

neurons each is chosen here. This choice of architecture

proves to possess enough flexibility to approximate the

more difficult PDEs.

Figure 5. Error comparisons against the exact solution for

neural solvers and the FDM for Poisson’s equation (see

equation (5)).

Comparison and Analysis of Neural Solver Methods for Differential Equations in Physical Systems (F.M. Sim,et al.)

- 138 -

Figure 6. Error comparisons against the exact solution for

neural solvers and the Backward-Time Central-Space (BTCS)

method for the heat equation (see equation (6)).

Although the neural solvers demonstrate smaller errors

over the majority of grid sizes, they experience

diminishing returns after which traditional schemes

overtake them. It can be inferred that the neural method

fares better on sparse grids for PDEs. In fact, they were

able to converge on grids where explicit time-marching

schemes would have diverged. This is evident in the case

of the heat equation, where an equidistant two-

dimensional grid was used. If the explicit Forward-Time

Central-Space (FTCS) method had been used instead of

the implicit BTCS, the Courant-Friedrichs-Lewy (CFL)

condition [20] would have been violated, and the

numerical instability would have caused the scheme to

diverge. On the contrary, the neural method fares well for

a grid with such a large Courant number, behaving very

stably as though it were implicit.

The numerical stability demonstrated by neural solvers

when solving PDEs can be traced back to the very nature

of NN training. In contrast to explicit time-marching

schemes which compute future values of the solution

based solely on known present values, neural solvers are

granted access to the entire temporal domain during the

training process. It is precisely due to this process that

neural solvers are capable of exhibiting the numerical

stability which implicit schemes often achieve through an

additional computation step.

Figure 7. Inviscid Burgers’ equation (see equation (7)) results

(convergent).

Figure 8. Inviscid Burgers’ equation (see equation (7)) results

(divergent).

Convergence of a solution to the inviscid Burgers’
equation (see equation (7)), on the other hand, is solely

dependent upon the absence of any shock waves, i.e.,

discontinuities where the PDE is not well-defined. Unlike

finite-volume schemes, wherein volume integrals are

conserved throughout the domain, the neural method

relies on the bona-fide PDE itself for stability. In this case,

due to the formation of shock waves, the equation

becomes ill-defined and the method destabilises. The

collapse of the training algorithm occurs not only in the

vicinity of the shock wave but also percolates everywhere

else in the domain, as in Figure 8. Nonetheless, initial

conditions that do not lead to shock wave formation can

converge successfully (Figure 7).

For experimental validation, the classical spring-mass

system was implemented, and measurement data was

obtained for comparison with the solutions to its

mathematical model in equation (8). It can be observed in

Figure 9 that the neural method closely follows the exact

solution and differs from the measurement results by a

small margin of error (see Figure 10).

Figure 9. Spring-mass system (see equation (8)) results:

solutions.

Comparison and Analysis of Neural Solver Methods for Differential Equations in Physical Systems (F.M. Sim,et al.)

- 139 -

Figure 10. Spring-mass system (see equation (8)) results:

errors.

In addition, the neural method is also applied to the

experiment performed in [19], wherein the left and top

sides of the domain are held at ground potential while the

right and bottom sides are connected to a potential of a

hundred millivolts. In terms of equation (9), these

conditions correspond to 𝑢(𝑥, 0) = 𝑢(0.3, 𝑦) = 0.1 and 𝑢(𝑥, 0.2) = 𝑢(0, 𝑦) = 0. Due to measurement noise, the

contours of the experimental plot shown in Figure 11

appear slightly jagged.

Figure 11. Gauss’s law (see equation (9)) results: measurement

data from [19].

Figure 12. Gauss’s law (see equation (9)) results: ansatz

solution.

Figure 13. Gauss’s law (see equation (9)) results: naive

solution.

As observed in Figure 12 and 13, the networks manage

to capture the gradation of the potential field smoothly.

The corner discontinuities as well as the border potentials,

however, are only prominent in the ansatz solution of

Figure 12, since the boundary conditions are already

satisfied by construction.

IV. CONCLUSION

In summary, the neural method for solving differential

equations was implemented in TensorFlow for a large

collection of cases, namely ordinary differential equations

with varying degrees of linearity, and partial differential

equations, exhibiting excellent convergence and smaller

true errors by a couple orders of magnitude compared to

traditional schemes such as Runge-Kutta and finite-

difference. As for numerical stability, the neural method

has been shown to be unaffected by constraints such as

the Courant-Friedrichs-Lewy condition and is in fact

capable of solving partial differential equations on

extremely coarse grids. Finally, the neural method is

validated with experimental measurements.

Future work related to this topic may incorporate: the

implementation of lattice networks to solve differential

equations in a more constrained manner; the investigation

of the precise convergence criteria of loss functions that

depend on not only the network output, but also its inputs

and derivatives; and further development on techniques to

accelerate convergence.

ACKNOWLEDGEMENTS

The authors of this paper would like to thank Swiss

German University for providing the equipment to

conduct the spring-mass experiment, and for funding the

publication costs.

REFERENCES

[1] F. Rosenblatt, “The perceptron: A probabilistic model for
information storage and organization in the brain,”

Comparison and Analysis of Neural Solver Methods for Differential Equations in Physical Systems (F.M. Sim,et al.)

- 140 -

Psychol. Rev., vol. 65, no. 6, pp. 386–408, Nov. 1958, doi:

10.1037/h0042519.

[2] D. E. Rumelhart, G. E. Hinton, and R. J. Williams,

“Learning representations by back-propagating errors,”
Nature, vol. 323, no. 6088, pp. 533–536, 1986, doi:

10.1038/323533a0.

[3] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,”
Nature, vol. 521, no. 7553, pp. 436–444, May 2015, doi:

10.1038/nature14539.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into
Rectifiers: Surpassing Human-Level Performance on

ImageNet Classification,” in 2015 IEEE International

Conference on Computer Vision (ICCV), 2015, pp. 1026–
1034, doi: 10.1109/ICCV.2015.123.

[5] A. Vaswani et al., “Attention is all you need,” in Advances

in Neural Information Processing Systems, Jun. 2017, vol.

2017-Decem, pp. 5999–6009, Accessed: Jan. 28, 2021.

[Online]. Available: https://arxiv.org/abs/1706.03762v5.

[6] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,

“BERT: Pre-training of Deep Bidirectional Transformers

for Language Understanding,” NAACL HLT 2019 - 2019

Conf. North Am. Chapter Assoc. Comput. Linguist. Hum.

Lang. Technol. - Proc. Conf., vol. 1, pp. 4171–4186, Oct.

2018, Accessed: Jan. 28, 2021. [Online]. Available:

http://arxiv.org/abs/1810.04805.

[7] M. W. M. G. Dissanayake and N. Phan-Thien, “Neural-
network-based approximations for solving partial

differential equations,” Commun. Numer. Methods Eng.,

vol. 10, no. 3, pp. 195–201, Mar. 1994, doi:

10.1002/cnm.1640100303.

[8] I. E. Lagaris, A. Likas, and D. I. Fotiadis, “Artificial neural
networks for solving ordinary and partial differential

equations,” IEEE Trans. Neural Networks, vol. 9, no. 5,

pp. 987–1000, 1998, doi: 10.1109/72.712178.

[9] J. Berg and K. Nyström, “A unified deep artificial neural
network approach to partial differential equations in

complex geometries,” Neurocomputing, vol. 317, pp. 28–
41, Nov. 2018, doi: 10.1016/j.neucom.2018.06.056.

[10] J. Sirignano and K. Spiliopoulos, “DGM: A deep learning
algorithm for solving partial differential equations,” J.

Comput. Phys., vol. 375, pp. 1339–1364, Dec. 2018, doi:

10.1016/j.jcp.2018.08.029.

[11] G. Cybenko, “Approximation by superpositions of a
sigmoidal function,” Math. Control. Signals, Syst., vol. 2,

no. 4, pp. 303–314, Dec. 1989, doi: 10.1007/BF02551274.

[12] S. Ruder, “An overview of gradient descent optimization
algorithms,” arXiv, Sep. 2016, Accessed: Jan. 28, 2021.

[Online]. Available: http://arxiv.org/abs/1609.04747.

[13] M. L. Piscopo, M. Spannowsky, and P. Waite, “Solving
differential equations with neural networks: Applications

to the calculation of cosmological phase transitions,” Phys.

Rev. D, vol. 100, no. 1, Jul. 2019, doi:

10.1103/PhysRevD.100.016002.

[14] M. Baymani, S. Effati, H. Niazmand, and A. Kerayechian,

“Artificial neural network method for solving the Navier–
Stokes equations,” Neural Comput. Appl., vol. 26, no. 4,

pp. 765–773, May 2015, doi: 10.1007/s00521-014-1762-2.

[15] W. Tang et al., “Study on a Poisson’s equation solver
based on deep learning technique,” in 2017 IEEE

Electrical Design of Advanced Packaging and Systems

Symposium, EDAPS 2017, Jan. 2018, vol. 2018-Janua, pp.

1–3, doi: 10.1109/EDAPS.2017.8277017.

[16] M. Abadi et al., “TensorFlow: Large-Scale Machine

Learning on Heterogeneous Distributed Systems,” CoRR,

vol. abs/1603.0, Mar. 2016, Accessed: Jan. 28, 2021.

[Online]. Available: http://arxiv.org/abs/1603.04467.

[17] M. Abadi et al., “TensorFlow: A system for large-scale

machine learning,” in Proceedings of the 12th USENIX

Symposium on Operating Systems Design and

Implementation, OSDI 2016, May 2016, pp. 265–283,

Accessed: Jan. 28, 2021. [Online]. Available:

http://arxiv.org/abs/1605.08695.

[18] D. P. Kingma and J. L. Ba, “Adam: A method for
stochastic optimization,” Dec. 2015, Accessed: Jan. 28,
2021. [Online]. Available:

https://arxiv.org/abs/1412.6980v9.

[19] G. Moradi and M. Marvasti, “Experimental Solution to the
Laplace Equation, a Tutorial Approach,” IJARCCE, vol. 5,

no. 9, pp. 278–284, Sep. 2016, doi:

10.17148/ijarcce.2016.5960.

[20] R. Courant, K. Friedrichs, and H. Lewy, “Über die
partiellen Differenzengleichungen der mathematischen

Physik,” Math. Ann., vol. 100, no. 1, pp. 32–74, Dec. 1928,

doi: 10.1007/BF01448839.

