
ELKHA : Jurnal Teknik Elektro, Vol. 13  No.2, October 2021, pp. 134 - 140 

ISSN: 1858-1463 (print), 2580-6807 (online) 

- 134 - 

 

1, 3) Department of Mechanical Engineering – Mechatronics Concentration, Swiss German University, Indonesia 
2) Master of Information Technology, Swiss German University, Indonesia 

Corresponding Email: *) eka.budiarto@sgu.ac.id  

 

Abstract – Differential equations are ubiquitous in many 

fields of study, yet not all equations, whether ordinary or 

partial, can be solved analytically. Traditional numerical 

methods such as time-stepping schemes have been devised to 

approximate these solutions. With the advent of modern 

deep learning, neural networks have become a viable 

alternative to traditional numerical methods. By 

reformulating the problem as an optimisation task, neural 

networks can be trained in a semi-supervised learning 

fashion to approximate nonlinear solutions. In this paper, 

neural solvers are implemented in TensorFlow for a variety 

of differential equations, namely: linear and nonlinear 

ordinary differential equations of the first and second order; 

Poisson’s equation, the heat equation, and the inviscid 

Burgers’ equation. Different methods, such as the naive and 

ansatz formulations, are contrasted, and their overall 

performance is analysed. Experimental data is also used to 

validate the neural solutions on test cases, specifically: the 

spring-mass system and Gauss’s law for electric fields. The 

errors of the neural solvers against exact solutions are 

investigated and found to surpass traditional schemes in 

certain cases. Although neural solvers will not replace the 

computational speed offered by traditional schemes in the 

near future, they remain a feasible, easy-to-implement 

substitute when all else fails. 

 

Keywords: Differential Equations, Deep Learning, Neural 

Networks, Numerical Methods. 

I. INTRODUCTION 

Differential equations (DEs) describe a physical system 

as a mathematical model. DEs (both ordinary and partial) 

are vital in many fields including, but not limited to, 

biology, economics, physics, chemistry and engineering. 

For the simpler linear equations, established analytical 

solutions often exist and are well-defined. However, for 

more complicated DEs, exact solutions cannot be 

expressed in elementary functions or may not even exist. 

As a result, numerical methods are frequently utilised to 

approximate these solutions, up to a certain amount of 

error. 

With the advent of deep learning, neural networks 

(NNs) have resurfaced onto the field of computer 

simulation. Having evolved from the simple perceptron 

model [1] to the multilayer perceptron [2] and finally to 

the modern variants known today such as convolutional 

and recurrent networks [3], NNs are capable of solving a 

variety of machine learning tasks. Specifically, they have 

exhibited superb results in classification and regression 

problems, surpassing even human-level performance on 

particular image classification datasets [4]. In addition to 

computer vision, NNs have also advanced the field of 

natural language processing, in problems such as 

language understanding and machine translation [5], [6]. 

NNs possess these capabilities owing to their versatility 

as black-box function approximators. Given sufficient 

data, NNs can be trained to model complex and non-trivial 

input-output relationships. 

Via the formulation of an initial value problem (IVP) 

or a boundary value problem (BVP) as a semi-supervised 

optimisation problem [7]–[10], the vast repertoire of 

techniques from NNs can be applied in order to approach 

the solution of an ordinary differential equation (ODE) or 

partial differential equation (PDE). Operating as universal 

function approximators [11], artificial NNs are capable of 

modelling continuous functions to a substantial extent 

with appropriate activation functions—the only limiting 

factor being the complexity of the network architecture 

itself. 

One such approach is the work of Dissanayake and 

Phan-Thien [7], henceforth referred to as the naive 

method, wherein the DE and initial or boundary 

conditions are rewritten as a convex loss function 

parametrised by the network weights. The objective of the 

optimisation problem is thus to minimise this loss 

function with respect to the weights. Lagaris et al. [8] 

improves upon the naive method by introducing an ansatz 

for the solution. Constructing such an ansatz allows the 

form of the solution to be readily constrained, eliminating 

the need for the condition loss functions. This removal 

focuses the total loss function, accelerating convergence 

and preventing suboptimal trivial solutions. The ansatz 

method, however, requires knowledge of a suitable ansatz 

beforehand. 

Further refinements include [9], in which it is suggested 

that the network be first pretrained on the condition loss 

alone in order to roughly gauge the range of the solution. 

Another study [10] proposed the Deep Galerkin Method 

(DGM), which tries to incorporate the stochasticity of 

conventional NN training, i.e., stochastic gradient descent 

(SGD) [12]. Samples of the input domain are randomly 
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generated at every iteration to be fed into the network, 

conserving memory on what would otherwise be 

consumed by high-dimensional grids or discretisations. 

Several applications of the aforementioned methods 

include utilising NNs in cosmological phase transitions 

and quantum field theory [13]; applying NNs to solve the 

Navier-Stokes equations with various boundary 

conditions [14]; and solving Poisson’s equation in two 
and three dimensions for electric potential using 

convolutional NNs [15]. 

This work will focus on the implementation of deep 

neural network solvers for various types of differential 

equations including linear, semilinear, quasilinear, 

nonlinear ODEs and PDEs of predominantly the first and 

second orders, using TensorFlow [16], [17]. In addition, 

various architectures for the network will be analysed and 

compared to traditional numerical schemes in terms of 

error. The robustness of the training will also be tested by 

varying parameters of the NN, such as layers and the input 

domain. Finally, the resulting network outputs for certain 

simulatable problems will be validated using 

experimental data. 

The structure of this paper is organised as follows: the 

introduction highlights the significance of the DE 

problem and provides a brief look into the evolution of 

NNs as well as how they have been used to solve this 

problem. The second section delineates the problem 

definition in depth and shows how one can reproduce the 

experimental methods alongside the implementation 

details and cases. In the third section, the results of the 

experiments are thoroughly discussed and analysed. 

Lastly, the conclusion summarises this research and puts 

forward several directions in which future work can be 

carried out. 

II. METHODOLOGY 

Consider the following IVP, consisting of an explicit 

first order ODE and an initial condition; and the function 𝑓 on the right-hand side of the ODE is known. 

d𝑦
d𝑥 = 𝑓(𝑥, 𝑦),  𝑦(𝑥0) = 𝑦0 (1) 

The unknown solution 𝑦(𝑥) can be approximated as a 

neural network 𝑦∗(𝑥,𝐖), wherein 𝐖 denotes the 

network’s weights. In particular, the type of networks 

employed here are feedforward, also known as dense, 

NNs, consisting of a sequence of layers where the outputs 

of one layer are fed as the inputs of the next layer. Each 

dense layer is made up of a number of neurons, and each 

neuron is connected to all neurons of the previous layer. 

Mathematically, given an input 𝑥, a dense layer 𝑎𝑖 is 

modelled as the transformation 𝑎𝑖(𝑥) = 𝜎𝑖(W𝑖𝑥 + �⃑� 𝑖). 

Each layer is parametrised by its kernel matrix W𝑖 and bias 

vector �⃑� 𝑖, which together are known collectively as the 

weights 𝐖. The activation function 𝜎𝑖(⋅) serves to imbue 

nonlinearities in the network. 

For example, a dense neural network with two hidden 

layers and one output layer can be written as the 

composition 𝑦∗(𝑥,𝐖) = 𝑎3 (𝑎2(𝑎1(𝑥))). When used for 

function approximation, hidden activations are typically 

sigmoid or hyperbolic tangent functions, whereas the 

output activation is not applied, i.e., linear activation. 

Under this formulation, errors are then introduced in both 

the ODE and the condition, known respectively as the 

equation loss (ϵ1) and the condition loss (ϵ2) as shown in 

equation (2). ∂𝑦∗∂𝑥 = 𝑓(𝑥, 𝑦∗) + ϵ1,  𝑦∗(𝑥0,𝐖) = 𝑦0 + ϵ2 (2) 

The sum of the squares of these losses provides a 

suitable objective function which the network can be 

trained to minimise, i.e., ℒ = ϵ12 + ϵ22. Such loss 

functions, which include both losses, are characteristic of 

the naive method. By a similar derivation, these loss 

functions can be extended to higher-order problems, 

PDEs, and systems of DEs. The training dataset then 

consists of all points inside the discretised input domain 

on which a solution is desired. Using one of the many 

variants of SGD, such as the Adam optimiser [18], the 

weights can be iteratively updated until convergence. 

On the other hand, ansatz or trial functions can also be 

constructed to approximate the solutions, as shown in [8]. 

For instance, the following ansatz may be used to solve 

equation (1). Note that the initial condition is 

automatically satisfied regardless of the state of the 

network weights. Similar trial functions can be contrived 

for higher order ODEs, PDEs, and systems of DEs as well. 𝑦ansatz = (𝑥 − 𝑥0)𝑦∗(𝑥,𝐖) + 𝑦0 (3) 

As for the dataset used in the experiments to train the 

NNs, due to the relatively low dimensionality of the 

problems considered, an input batch generator similar to 

[10] is deemed unnecessary since the dataset shall fit 

entirely in memory. To construct this training dataset, the 

concerned domain is discretised into a grid of equidistant 

points containing the initial or boundary conditions. 

Supposing that the IVP in equation (1) is to be solved in 

the real interval given by [𝑥0, 𝑥0 + 𝐿], where 𝐿 denotes 

the length of the domain, then the training dataset 𝑋 is 

described as the following set of 𝑁 points. 

𝑋 = {𝑥𝑖 ∈ [𝑥0, 𝑥0 + 𝐿] ∣ 𝑥𝑖 = 𝑥0 + 𝐿𝑁 − 1 𝑖} (4𝑎) 

Alternatively, the training dataset 𝑋 can also be 

described explicitly as the sequence of equidistant points {𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑁−1}: 𝑋 = {𝑥0, 𝑥0 + 𝐿𝑁 − 1 , 𝑥0 + 2𝐿𝑁 − 1 ,… , 𝑥0 + 𝐿} (4b) 

The training algorithms are implemented in 

TensorFlow, an open-source platform for machine 

learning. Key features of the library which facilitate the 

programming of the algorithms include: an object-

oriented paradigm for building the models, support for 

hardware acceleration, a diverse accoutrement of 
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mathematical functions, and most importantly, the ability 

to compute arbitrary derivatives using auto-

differentiation. Unlike typical loss functions found in 

supervised learning, the loss functions implemented to 

train neural solvers can depend on not only the network 

outputs, but also the inputs themselves and derivatives 

with respect to those inputs. Therefore, being able to 

compute and backpropagate through these peculiar loss 

functions is paramount. 

Neural solvers will be implemented to solve the 

following cases: first and second order ODEs with 

varying degrees of linearity; elliptic (Poisson’s equation), 
parabolic (heat equation), and hyperbolic (the inviscid 

Burgers’ equation) PDEs, shown in equations (5, 6, 7) 

along with their respective boundary or initial conditions. 

Poisson’s equation with Dirichlet boundary conditions: ∂2𝑢∂𝑥2 + ∂2𝑢∂𝑦2 = sin(𝜋𝑥)sin(𝜋𝑦) (5) 

𝑢(0, 𝑦) = 𝑢(1, 𝑦) = 𝑢(𝑥, 0) = 𝑢(𝑥, 1) = 0 

 

The heat equation with Dirichlet boundary conditions: ∂𝑢∂𝑡 = ∂2𝑢∂𝑥2 (6) 

𝑢(𝑡, 0) = 𝑢(𝑡, 1) = 0 𝑢(0, 𝑥) = sin(𝜋𝑥) 

 

The inviscid Burgers’ equation with the initial 
condition (both positive and negative initial conditions 

will be attempted): ∂𝑢∂𝑡 + 𝑢 ∂𝑢∂𝑥 = 0 (7) 

𝑢(0, 𝑥) = ±sin(2𝜋𝑥) 

 

To analyse their overall performance, the error across 

the domain is compared to that of conventional numerical 

schemes, e.g., forward Euler and Runge-Kutta schemes 

for ODEs, and the finite-difference method (FDM) for 

PDEs. 

As for experimental validation, the neural solver 

method will be applied to the simulation of two problems 

and juxtaposed with their respective experimental 

measurements. The first experiment involves the classical 

spring-mass system, modelled by the linear constant-

coefficient second order ODE. Letting 𝑦 represent the 

vertical displacement, 𝑡 the time, 𝑦0 the initial 

displacement, and 𝑣0 the initial velocity, the model is 

given in equation (8). 

𝑚 d2𝑦
d𝑡2 + 𝑏 d𝑦

d𝑡 + 𝑘𝑦 = 0, 𝑦(0) = 𝑦0 , 𝑦′(0) = 𝑣0 (8) 

The constants which define the characteristic solution 

are the mass 𝑚, the friction 𝑏, and the spring constant 𝑘. 

The second experiment, performed by Moradi and 

Marvasti [19], is governed by Gauss’s law of 
electrostatics for the electric field 𝐄 within a domain 

containing zero charge, ∇ ⋅ 𝐄 = 0. Substituting with the 

electric potential instead, 𝐄 = ∇𝑢, the law boils down to 

Laplace’s equation in two dimensions with Dirichlet 
boundary conditions: ∂2𝑢∂𝑥2 + ∂2𝑢∂𝑦2 = 0 (9) 

𝑢(𝑥, 𝑦0) = 𝑢1,  𝑢(𝑥1, 𝑦) = 𝑢2 𝑢(𝑥, 𝑦1) = 𝑢3,  𝑢(𝑥0, 𝑦) = 𝑢4 

III. RESULTS AND DISCUSSION 

For ODEs, three dense NNs, each with two hidden 

layers with hyperbolic tangent activations, are trained 

according to the naive loss for a total of 1000 epochs each 

using the Adam optimiser. The hidden sizes are denoted 

within the brackets in the legend. The minimum error 

achieved against the exact solution is recorded and 

compared to that of traditional schemes such as the 

forward Euler and fourth order Runge-Kutta methods for 

IVPs; and the FDM for BVPs, over increasingly larger 

grid sizes. The mean squared error is used as the common 

metric. In most cases, the neural method managed to 

achieve similar, if not smaller, errors as shown in the 

following figures. 

Note that a fresh network is created for each 

combination of grid size and network architecture in order 

to ensure that the initial weights are randomly initialised 

and so that the training process is fair. 

 

 

Figure 1. Error comparisons against the exact solution for 

neural solvers of varying sizes, the forward Euler and fourth 

order Runge-Kutta schemes for the first order linear ODE. The 

number within the brackets in the legend denotes the number of 

neurons in each hidden layer of the network. 
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Figure 2. Error comparisons against the exact solution for 

neural solvers of varying sizes, the forward Euler and fourth 

order Runge-Kutta schemes for the first order semilinear ODE. 

 

Figure 3. Error comparisons against the exact solution for 

neural solvers of varying sizes, the forward Euler and fourth 

order Runge-Kutta schemes for the first order nonlinear ODE. 

 

Figure 4. Error comparisons against the exact solution for 

neural solvers of varying sizes and the FDM for the second 

order linear ODE. 

In certain cases, such as in Figures 2 and 3, the overall 

errors with respect to the exact solutions for the neural 

method across all tested grid sizes were smaller than that 

of forward Euler and Runge-Kutta schemes by roughly a 

couple orders of magnitude, though this is not always the 

case, as shown in Figure 1, where the neural method only 

manages to outperform the traditional schemes on finer 

grids. Ultimately, their performance varies on a case-by-

case basis according to the problem. As for the BVP in 

Figure 4, the neural solvers achieved a much smaller 

magnitude of error than the FDM. 

The superior performance of the neural solvers can be 

attributed to their powerful approximation capabilities, in 

the sense that, unlike traditional time-stepping schemes 

which deterministically yield a discrete set of points, the 

neural solvers can be iteratively trained for multiple 

epochs. On top of that, because of the choice of the 

hyperbolic tangent activation, the network output is 

constrained to be continuous and smooth, which further 

improves the quality of the neural solution. Generally, 

increasing the size of the network causes the error to 

decrease due to the greater modelling capacity of the 

network, though this difference is not always clear-cut. 

Similar results were observed for PDEs over many grid 

sizes, as shown in Figures 5 and 6, which respectively 

correspond to the test equations of Poisson’s equation (see 
equation (5) and the heat equation (see equation (6)). The 

mean squared errors are again computed with respect to 

the exact solutions, and the mean squared error is again 

used as the common metric for comparison. 

Due to the greater difficulty of solving PDEs as 

compared to ODEs, i.e., the higher number of independent 

variables (dimensions), smaller NNs with shallower and 

less wide layers are unable to correctly solve PDEs as a 

consequence of their limited modelling capacities. Thus, 

a sufficiently deep NN with three hidden layers of fifty 

neurons each is chosen here. This choice of architecture 

proves to possess enough flexibility to approximate the 

more difficult PDEs. 

 

 

Figure 5. Error comparisons against the exact solution for 

neural solvers and the FDM for Poisson’s equation (see 

equation (5)). 



Comparison and Analysis of Neural Solver Methods for Differential Equations in Physical Systems (F.M. Sim,et al.)  

- 138 - 

 

 

Figure 6. Error comparisons against the exact solution for 

neural solvers and the Backward-Time Central-Space (BTCS) 

method for the heat equation (see equation (6)). 

Although the neural solvers demonstrate smaller errors 

over the majority of grid sizes, they experience 

diminishing returns after which traditional schemes 

overtake them. It can be inferred that the neural method 

fares better on sparse grids for PDEs. In fact, they were 

able to converge on grids where explicit time-marching 

schemes would have diverged. This is evident in the case 

of the heat equation, where an equidistant two-

dimensional grid was used. If the explicit Forward-Time 

Central-Space (FTCS) method had been used instead of 

the implicit BTCS, the Courant-Friedrichs-Lewy (CFL) 

condition [20] would have been violated, and the 

numerical instability would have caused the scheme to 

diverge. On the contrary, the neural method fares well for 

a grid with such a large Courant number, behaving very 

stably as though it were implicit. 

The numerical stability demonstrated by neural solvers 

when solving PDEs can be traced back to the very nature 

of NN training. In contrast to explicit time-marching 

schemes which compute future values of the solution 

based solely on known present values, neural solvers are 

granted access to the entire temporal domain during the 

training process. It is precisely due to this process that 

neural solvers are capable of exhibiting the numerical 

stability which implicit schemes often achieve through an 

additional computation step. 

 

Figure 7. Inviscid Burgers’ equation (see equation (7)) results 

(convergent). 

 

Figure 8. Inviscid Burgers’ equation (see equation (7)) results 

(divergent). 

Convergence of a solution to the inviscid Burgers’ 
equation (see equation (7)), on the other hand, is solely 

dependent upon the absence of any shock waves, i.e., 

discontinuities where the PDE is not well-defined. Unlike 

finite-volume schemes, wherein volume integrals are 

conserved throughout the domain, the neural method 

relies on the bona-fide PDE itself for stability. In this case, 

due to the formation of shock waves, the equation 

becomes ill-defined and the method destabilises. The 

collapse of the training algorithm occurs not only in the 

vicinity of the shock wave but also percolates everywhere 

else in the domain, as in Figure 8. Nonetheless, initial 

conditions that do not lead to shock wave formation can 

converge successfully (Figure 7). 

For experimental validation, the classical spring-mass 

system was implemented, and measurement data was 

obtained for comparison with the solutions to its 

mathematical model in equation (8). It can be observed in 

Figure 9 that the neural method closely follows the exact 

solution and differs from the measurement results by a 

small margin of error (see Figure 10). 

 

 

Figure 9. Spring-mass system (see equation (8)) results: 

solutions. 
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Figure 10. Spring-mass system (see equation (8)) results: 

errors. 

In addition, the neural method is also applied to the 

experiment performed in [19], wherein the left and top 

sides of the domain are held at ground potential while the 

right and bottom sides are connected to a potential of a 

hundred millivolts. In terms of equation (9), these 

conditions correspond to 𝑢(𝑥, 0) = 𝑢(0.3, 𝑦) = 0.1 and 𝑢(𝑥, 0.2) = 𝑢(0, 𝑦) = 0. Due to measurement noise, the 

contours of the experimental plot shown in Figure 11 

appear slightly jagged. 

 

Figure 11. Gauss’s law (see equation (9)) results: measurement 

data from [19]. 

 

Figure 12. Gauss’s law (see equation (9)) results: ansatz 

solution. 

 

Figure 13. Gauss’s law (see equation (9)) results: naive 

solution. 

As observed in Figure 12 and 13, the networks manage 

to capture the gradation of the potential field smoothly. 

The corner discontinuities as well as the border potentials, 

however, are only prominent in the ansatz solution of 

Figure 12, since the boundary conditions are already 

satisfied by construction. 

IV. CONCLUSION 

In summary, the neural method for solving differential 

equations was implemented in TensorFlow for a large 

collection of cases, namely ordinary differential equations 

with varying degrees of linearity, and partial differential 

equations, exhibiting excellent convergence and smaller 

true errors by a couple orders of magnitude compared to 

traditional schemes such as Runge-Kutta and finite-

difference. As for numerical stability, the neural method 

has been shown to be unaffected by constraints such as 

the Courant-Friedrichs-Lewy condition and is in fact 

capable of solving partial differential equations on 

extremely coarse grids. Finally, the neural method is 

validated with experimental measurements. 

Future work related to this topic may incorporate: the 

implementation of lattice networks to solve differential 

equations in a more constrained manner; the investigation 

of the precise convergence criteria of loss functions that 

depend on not only the network output, but also its inputs 

and derivatives; and further development on techniques to 

accelerate convergence. 
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