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ABSTRACT: 

Discussed the phase space structure 

and theoretical spectrum of this model 

has been determined by Quantization 

named as Usual Quantization. BRST 

Quantization and alternative 

quantization also has been discussed. 

An alternative quantization of the gauge 

symmetric version of the model has been 

studied with Lorentz gauge to determine 

the phase space structure.  

 

Keywords: BRST Quantization, Dirac 

Quantization, Alternative Quantization 

 

INTRODUCTION: 

A lagrangian is said to be singular when 

det[ ∂
2 L 

i    j 

 

] = 0, and that signifies the presence of 

constraint in the usual phase space [1, 2]. 

Constraint means velocity independent 

relation between coordinate and momentum 

[1, 2]. So all the velocities of the dynamical 

variables of a theory can not be determined 

in terms of momenta and as a result the 

precise canonical quantization gets 

threatened when a system contains 

constraints in its phase space. So 

quantization of this type of system is 

interesting in its own right and this type of 

quanti- zation is known as Dirac scheme of 

quantization of constraint system. This 

quantization has been done in the usual 

phase space [1, 2]. Through this quantiation 

it is possible to determine theoretical 

spectrum of a given model [1, 2]. 

An interesting extension based on Dirac 

method of quantization of constraint 

system is the well celebrated BRST 

formulation [3, 4, 5, 6, 7]. This formulation is 

applied to get the BRST invariant 

reformulation of lower dimensional models. 

BRST is a process to enlarge the phase 

space of a gauge theory and to restore the 

symmetry of the gauge fixed action in the 

extended phase space. But the process keeps 

the physical contents of the theory intact. It 

is an useful instrument to study unitarity 

and renormalizability of a given the- ory. 

Therefore we study the BRST invariant 

reformulations of a model [8, 9, 10] . BRST 

invariant reformulation of this model have 

been obtained using the Batalin, Fradkin  

and  Vilkovisky  (BFV)formalism  [11,  12, 13, 

14,15]. The formalism of Batalin, Fradkin and 

Vilkovisky for quantization of a system is 

based on that a system with second class 

constraint is made first class in the extended 

phase space. The fields are needed for this 

transmutation, are converted into the Wess-

Zumino scalar [16] with the appropriate 

choice of gauge condition. 

In order to get BRST invariant action, 

auxiliary fields and ghost and anti-ghost 

fields are        introduced. We also study 

the physical spectrum of the model using Dirac’s scheme of quantization of 

constrained system. 

In presence of Wess-Zumino term , alternative 

quantization is discussed here which is helpful 

to determine the canonical pair of fields which 
describe the Fock-space. The Lorentz type 
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gauge fixing term at the action level is chosen 

for quantization in the alternative manner [5, 

6, 7, 8, 9, 10]. Alternative quantization is the 

quantization in the extended phase space. 

The paper is organied as follows the paper 

is organized as follows, in Section 2. phase 

space structure of the model has discussed 

through Dirac scheme of quantization. In 

Section 3. we briefly discuss BFV formalism 

and applying BFV formalism, how one can  

obtain the BRST invariant reformulation of 

this model. In  sec  4  we have studied 

alterna tive  quantization.  

 

DISCUSSION OF  QUANTIZATION IN THE 

USUAL PHASE SPACE: In the usual phase space of theory, Dirac’s 
scheme of quantization [1, 2, 3] plays a crucial 

role to determine the phase space structure of 

a theory.   The canonical method of 

quantization requires the determination of 

momenta corresponding to the different field 

variables. As usual, A0 has no canonical 

conjugate, so there is a primary constraint π0 = 

0. To preserve this constraint in time, it is 

necessary to have a further constraint, and this 

preservation may gives Gausss law. If the 

theory is anomaly free then no further 

constraint arises, and the above two 

constraints have vanishing Poisson brackets, i.e., are first class. In anomalous theories, two 
things occurs. If the constraints turn out to 

have nonvanishing Poisson brackets with 

among themselves, so that one always has 

second class constraints and there is no gauge 

invariance. In the other case, the closure of the 

set of second class constraints at the level of 

Gauss law indicates the occurrence of 

additional degrees of freedom. If the gauge 

current of the model is anomalous which leads 

to a gauge non-invariant structure. This 

quantization has been done in the usual phase 

space [1, 2]. Through this quantization it is 

possible to determine theoretical spectrum of a 

given model [1, 2]. 

When the  model is not gauge invariant due to 

anomaly in the system. So, the study about the 

restoration of symmetry would be instructive 

which we have discussed in the next section 

using BFV formalism.

 

BRIEF DESCRIPTION OF BFV 

FORMALISM: 

To make a theory BRST symmetric [3, 4, 5, 6, 

7] we have to  go through BFV formalism 

which consists of two steps. First step 

consists of converting the second class 

system to a first class system. Auxiliary 

fields are needed for this conversion. In 

the second step the ghost and anti-ghost 

fields are introduced. Some gauge fixing 

function are chosen. This allows one to 

define  BRST  charge  and  obtain  BRST  

transformation  of  the  fields. The 

unphysical ghost field is useful to bring back 

the symmetry of the gauge fixed action 

maintaining unitarity. This symmetry 

mixes all the fields (physical and ghost) in 

such a way that all the fields are treated in 

a same footing.  But all the fields are forced 

to obey as different components in a single 

geometrical object. 

Now we give the brief description of BFV 

formalism [11, 12]. Let us consider 

canonical Hamiltonian  Hc(qi, pi)  and  the  

constraints  wi(qi, pi)  are  expressed  in  

terms  of  canonical variables  (qi, pi)  in  the  

phase  space  of  a  theory.   Suppose  that  the  

constraints  obey  the following algebra 

[wa, wb] = iwcUc , [Hc, wa] = iwbV a, 
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ab b 

b 

 

a 

 

here Uc 

 b b 

 

and V a are represented structure 

coefficients. 

 

In order to extract out the physical degrees 

of freedom, the N number of additional 

condi- tions φa = 0 are introduced. These 

additional conditions φa ≈ 0 choose in such 

a way that 

 

we get [φa, wa] /= 0. φa play the role of 

gauge fixing functions. The constraints φa = 

0 and 

wa = 0 together with the Hamiltonian 

equations may be obtained from the action 

S = 
∫  

[piq̇ i  − H(pi, qi) − λawa + πaφa]dt, (24) where λa, πa are the lagrange λ π
iδa. 

We introduce (Ci, P̄i) and (P i, C̄i) 

satisfying the following algebra [Ci, P̄i] = 

iδ(x−y), [P i, C̄i] = iδ(x−y) to make an 

equivalence to the initial theory. The 

partition function in the extended phase 

space which describe the quantum 

theory is given by 

zψ  = 
∫ 

[dqidpidλadπadCadP̄adP adC̄aeiS (25) 

The effective action in partition function’s 

numerator is given as follows 

S = 
∫  

[piq̇ i  + P̄iC̄i  + C̄aṖa  − Hm + λ̇aπa 

+ i[Q, X]dt. (26) 

Here Hm is the minimal Hamiltonian, Q is 

the BRST charge and X is the gauge 

fixing function. 

Hm is minimal Hamiltonian as termed by 

Batalin and Fradkin. It is given by the 

following 

 

Hm = Hc + P̄aV aCb. 27) 

The BRST charge Q and the fermionic 

gauge fixing function ψ are respectively 

given by 

Q = Caω — 
1 

CbC  Uc  P̄a  + Paπ  ,(28) 

ψ = C̄cχa + P̄aλa, 

where χ, s are expressed through the gauge 

fixing condition 

 Φa = λ˙a + χa. 

We can get manifestly covariant action by 

choosing fermionic degrees of freedom φ 

properly. In order to show the equivalence 

between the BFV and the usual phase space 

quantization, the quantum effects related 

with the ghosts and the pure degrees of 

freedom, they mutually cancel each other.   

To make a theory BRST invariant we need to 

enlarge the Hilbert space of the theory to restore the symmetry in the gauge fixed 
action. The extended phase space includes auxiliary fields, ghost fields and anti-ghost fields in order to make BRST symmetric. 
There are various ways to get BRST 

invariant reformulation, BFV formalism is 

one of the them and the advantage of BFV 

formalism is already mentioned above. We 

get Wess Zumino [16] term in a transparent 

way, we use the Batalin, Fradkin and 

Vilkovisky (BFV)  formalism. In fact one can 

apply developed version of FIK formalism to 

get BRST invariant effective action. 

 

DISCUSSION ON ALTERNATIVE 

QUANTIZATION: 

A gauge non invariant theory is made gauge 

invariant with the inclusion of Wess-Zumino 

[13] field in the extended phase space. In 
presence of Wess-Zumino term an attempt 

towards an alternative quantization is 

discussed here to determine the canonical pair of fields which describe the Fock-space. The Lorentz type gauge fixing term at the 
action level is chosen for quantization in the 

a 
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alternative manner. We conclude that, we 

get same spectrum through the alternative 

quantization as we got through the 

quantization in the usual phase space. This 

spectrum which is exact agreement with the 

mass term one can get through the Dirac 

scheme of quantization for gauge non 

invariant version of the same model in the 

usual phase space . Phase space needs to 

extended in order to restore the gauge symmetry. The fields needed for the 
extension will allocate themselves in the un-

physical sector of the theory [6, 7].  

 

CONCLUSION: 

We have discussed quantization in the Usual 

Phase space. Through this quantization it is 

possible to determine theoretical spectrum 

of a given model [1, 2]. We have 

described the BRST invariant 

reformulation. In the BRST invariant 

reformulations of the models, 

extension of phase space have been 

needed because of the entry of the auxiliary fields in an essential way. The fields needed for the extension 
however keep themselves laid in the 

unphysical sector of the theory and the 

process keeps the physical content of 

the theory intact. Beauty as well as the 

advantage of this formalism is that the 

Wess Zumino terms appears 

automatically during the process of 

quantization. Note that the role of gauge fixing is very crucial to get the 
appropriate Wess-Zumino term in 

every case. 

To establish the fact that the physical 

contents of the theory remains 

unaltered, alternative quantization of 

the gauge invariant models are needed 

out using Lorentz gauge [8, 9]. The 

spectrum suggests the appearance 

massive And massless boson. The extra 

equations appear because of the presence of the auxiliary field B in the Lorentz type gauge fixing term at the 
action level. The mass term of the 

massive boson remains the same in 

usual phase space and extended phase 

space too. It has found that the fields 
needed for the extension allocate 

themselves in the unphysical sector of 

the theory without hampering physical 

sector [6, 7]. 
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