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Abstract  
DC motor applications are very widely used because DC motors are 
very suitable for applications, especially control. Thus, a proper DC 
motor controller design is required. DC motor speed control is very 
important to maintain the stability of motor operation. A recent type 
of metaheuristic algorithm that mimics the motion of atoms is 
introduced. Atom search optimization (ASO) is a mathematical model 
and duplicates the behavior of atoms in nature. Atoms 
intercommunicate with each other via the delivering contact force in 
the form of the Lennard-Jones potential and the constraint force 
produced from the potential bond length. The algorithm is simple and 
easy to be applied. In this study, the atomic search optimization 
(ASO) algorithm is proposed as a speed controller for the control dc 
motor. First, the ASO proposed by the algorithm is applied for the 
optimization of the neural network. Second, the ASO-NN proposal 
was the result compared to other algorithms. This paper compares 
the performance of two different control techniques applied to DC 
motors, namely the ASO-NN and proportional integral derivative 
(PID) methods. The results show that the proposed method has 
effectiveness. The calculation of the proposed ASO-NN control 
shows the best performance in the settling time. The ASO-NN 
method has the capability of settling time 0.04 seconds faster than 
the PID method. 
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INTRODUCTION 

The basic equipment in almost all motion-
related engineering applications is a dc motor. 
Some of the advantages of using a dc motor are 
simple operation using various inputs, low prices, 
and a variety of applications in various prototypes. 
For various purposes, the speed of this DC motor 
must be controlled to match the required speed. 
DC motor speed control can be done by adjusting 
the armature current or field current of the motor. 
This current regulation can be made by adjusting 
the motor voltage. 

The main problem faced by engineers and 
researchers is the uncertainty of parameters. This 
is due to several factors, such as the erratic scope 
of operation, the presence of installation noise, 
and the gradient, which is influenced by the usage 

and age of the equipment. The parameter 
uncertainty is due to the variation of the DC motor 
parameters. The condition is unpredictable and 
can affect the control system. 

The famous traditional controller used is the 
Proportional + Integral + Derivative (PID) 
controller. PID has often been applied to fix the 
transient behavior and Steady State of the system 
[1, 2, 3]. 

In line with technological developments and 
methods, the solutions that often arise in DC 
motors have been sought for solutions. Designing 
an efficient and optimal off-line control system is 
one of the methods used. The method used to 
solve a limited series of uncertainties is to use a 
method that relies on the difference between the 
actual system and the system model [4]. It is used 
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to design a controller. DC motor speed regulation 
by various methods has been developed.  

The development of artificial intelligence 
theory continues to increase the impact on the DC 
motor control system. Several methods used in 
DC motor control, namely particle swarm 
optimization [5][6], Ant Colony optimization [7][8], 
teaching-learning-based optimization [9][10], Jaya 
optimization algorithm [11][12], Harris Hawks 
Optimization [13][14], Flower pollination algorithm 
[15][16], Fuzzy [17][18], and Artificial Neural 
Network [19][20]. 

The research uses the Atom Search 
Optimization (ASO) method to increase the 
capabilities of the Feed-Forward neural network. 
This method is used to adjust the speed of a DC 
motor. The main contribution of this work is the 
presentation of adaptive control strategies based 
on metaheuristic optimization and neural 
networks, which prove to be efficient in 
compensation for the uncertainties presented in 
DC motors and are feasible in terms of practical 
experimental settings. The performance of the 
proposed method will be compared with the PID 
method and the neural network. The PID controller 
was chosen for comparison because it has a 
feedback tool. 

This paper is structured as follows: the 
method chapter presents the atomic search 
optimization method, neural network, DC motor 
theory, and the proposed model. In the results and 
discussion section, the results of the proposed 
method on DC motors are presented. Finally, 
conclusions can be drawn. 
 
METHOD 
Atom Search Optimization 

The Atom Search Optimization (ASO) 
method is a population-based algorithm that can 
be applied to break the issue. ASO is conceptually 
mathematics, and modeling mimics the motion of 
atoms in nature. Atoms have a style of interaction 
with other atoms. The facts are results from the 
potential for Lennard-jones and the resulting 
lifestyle potential of the bond length. ASO has an 
algorithm that is simple and easy to apply [21]. 

All matter originates from atoms that are 
always in motion over time. Atomic motion is 
based on classical techniques. According to 
newton’s second law, it is assumed that the force 

𝑗𝑖 is the interaction force and 𝑘𝑖 It is the limiting 

force acting together on the i-th atom in the atomic 

system. The acceleration 𝑎𝑖associated with 𝑚𝑖 
the mass of energy is given as (1). 𝑎𝑖 = 𝑗𝑖+𝑘𝑖𝑚𝑖  (1) 

The interaction force that applies to i-th atom of the 
j-th atom in the d-th dimension at time t is based 
on the Lennard-jones (L-J) potential theory, which 
can be formulated as (2) and (3). 𝑗𝑖𝑗𝑑 = 24𝜀(𝑡)𝜎(𝑡) = [2( 𝜎(𝑡)𝑟𝑖𝑗(𝑡))13 − ( 𝜎(𝑡)𝑟𝑖𝑗(𝑡))7] 𝑟𝑖𝑗(𝑡)𝑟𝑖𝑗𝑑(𝑡) (2) 𝑗𝑖𝑗′ = 24𝜀(𝑡)𝜎(𝑡) = [2( 𝜎(𝑡)𝑟𝑖𝑗(𝑡))13 − ( 𝜎(𝑡)𝑟𝑖𝑗(𝑡))7] (3) 

The interaction force on the distance 
between atoms can be seen in Figure 1. Atoms 
are seen adjusting the relative distances that vary 
in a certain range over time due to their repulsion 
or attraction. The value of the change in repulsion 
relative to the equilibrium distance (r = 1.12σ) is 
much greater than the attractiveness. The atoms 
will not converge in certain ways. This is due to the 
negative attraction and positive repulsion. So that 
(3) does not work and is revised with (4). 𝑗𝑖𝑗′ = −𝜂(𝑡)[2(ℎ𝑖𝑗(𝑡))13 − (ℎ𝑖𝑗(𝑡))7] (4) 

where 𝜂  is a function of depth to set the area of 
repulsion or area of attraction, which can be 
defined as (5). 𝜂(𝑡) = 𝛼(1 − 𝑡−1𝑇 )3𝑒−20𝑡𝑇  (5) 

where 𝛼 is the distance weight, and T is the 

maximum of iterations.  
Figure 2 is an illustration of the behavior of 

the function 𝑗′ with different values following 
values of h in the range of 0.9 to 2.  The different 
values of a are due to the repulsion occurring at 
the value of h ranging from 0.9 to 1.12. The 
attraction occurs when h is between 1.12 and 2, 
and the equilibration occurs when h = 1.12. The 
lower limit of repulsion and the upper limit of 
attraction is set in ASO. This is to increase 
exploration. The lower limit of repulsion is set 
close to h = 1.1, and the upper limit of attraction is 
set to h = 2.4, so h can be formulated as (6) and 
(7). 
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Figure 1. Atoms force interaction [21] 

 

 
Figure 2. Function rule of j’ with different values of 𝜂 [21] 
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ℎ𝑖𝑗(𝑡) = {  
  ℎ𝑚𝑖𝑛   𝑟𝑖𝑗(𝑡)𝜎(𝑡) <  ℎ𝑚𝑖𝑛                  𝑟𝑖𝑗(𝑡)𝜎(𝑡)    ℎ𝑚𝑖𝑛 ≤ 𝑟𝑖𝑗(𝑡)𝜎(𝑡) ≤  ℎ𝑚𝑎𝑥ℎ𝑚𝑎𝑥    𝑟𝑖𝑗(𝑡)𝜎(𝑡) >  ℎ𝑚𝑎𝑥                (6) 

𝜎(𝑡) = ‖𝑥𝑖𝑗(𝑡), ∑ 𝑥𝑖𝑗(𝑡)𝑔𝜖𝑘𝑏𝑒𝑠𝑡𝑘(𝑡) ‖2 (7) 

{ℎ𝑚𝑖𝑛 =  𝑔0 + 𝑔(𝑡)ℎ𝑚𝑎𝑥 = 𝑢                (8) 

where ℎ𝑚𝑖𝑛 and ℎ𝑚𝑎𝑥 are the lower and upper 
limits of h, respectively. Kbest is a subset of an atom 
population, which is made up of the first K atoms 
with the best fitness, g is a traverse factor that 
shifts the algorithm from exploration to 
exploitation. 𝑔(𝑡) = 0.1𝑥 sin(𝜋2 𝑥 𝑡𝑇) (9) 

The total force that applies between atoms 
is the sum of the weighted components in the d-th 
dimension. The situation can be formulated as 
follows: 𝑗𝑖𝑑(𝑡) = ∑ 𝑟𝑎𝑛𝑑𝑗𝑔𝜖𝑘𝑏𝑒𝑠𝑡 𝑗𝑖𝑗𝑑(𝑡)  (10) 

where 𝑟𝑎𝑛𝑑𝑗 is a random number in [0,1].As 

referred from Newton’s third law: 𝑗𝑖𝑗 = −𝑗𝑗𝑖                                                              (11) 

Molecular dynamics within the boundaries 
of geometry play a key role in the motion of atoms. 
The best atoms have covalence bonds with each 
atom according to the ASO rule. Each atom will 
follow the rules of the best atom (𝑋𝑏𝑒𝑠𝑡). The 𝑏𝑖,𝑏𝑒𝑠𝑡 
Is the fixed bond length between the 𝑖𝑡ℎ atom and 
the best atom. Atomic constraints can be 
formulated as follows: 𝜃𝑖(𝑡) = [|𝑋𝑖(𝑡) − 𝑋𝑏𝑒𝑠𝑡(𝑡)|2 − 𝑏2𝑖,𝑏𝑒𝑠𝑡(𝑡)]     (12) 

The constraint force can be obtained by: 𝐺𝑖𝑑(𝑡) = −𝜆(𝑡)∇𝜃𝑖𝑑(𝑡) = −2𝜆(𝑡)(𝑋𝑖𝑑(𝑡) − 𝑋𝑏𝑒𝑠𝑡𝑑 (𝑡))  
                                                                        (13) 
By change of 2λ with λ: 𝐺𝑖𝑑(𝑡) = 𝜆(𝑡)(𝑋𝑖𝑑(𝑡) − 𝑋𝑏𝑒𝑠𝑡𝑑 (𝑡))                        (14) 𝜆(𝑡) = 𝛽. exp (− 20𝑡𝑇 )                                          (15) 

where  is the factor weight. The acceleration of 
the ith atom at time t can be formulated as follows 𝑎𝑖𝑑(𝑡) = 𝑗𝑖𝑑(𝑡)𝑚𝑖𝑑(𝑡) + 𝐺𝑖𝑑(𝑡)𝑚𝑖𝑑(𝑡)= −𝛼 (1 − 𝑡 − 1𝑇 )3 𝑒−20𝑡𝑇 ,                                      

 ∑ 𝑟𝑎𝑛𝑑𝑗[2.2(ℎ𝑖𝑗(𝑡))13−(ℎ𝑖𝑗(𝑡))7]𝑚𝑖(𝑡)𝑔𝜖𝑘𝑏𝑒𝑠𝑡 ,                    (16) 

where 𝑚𝑖(𝑡) is the mass of the 𝑖𝑡ℎ atom in the 𝑡𝑡ℎ 
iteration.  𝑀𝑖(𝑡) = 𝑒 𝐹𝑖𝑡𝑖(𝑡)−𝐹𝑖𝑡𝑏𝑒𝑠𝑡(𝑡)𝐹𝑖𝑡𝑤𝑜𝑟𝑠𝑡(𝑡)−𝐹𝑖𝑡𝑏𝑒𝑠𝑡(𝑡) (17) 𝑚𝑖(𝑡) = 𝑀𝑖(𝑡)∑ 𝑀𝑗(𝑡)𝑁𝑗=1  (18) 𝐹𝑖𝑡𝑏𝑒𝑠𝑡(𝑡) = 𝑚𝑖𝑛𝑖𝜖{1,2….𝑁} (19) 𝐹𝑖𝑡𝑤𝑜𝑟𝑠𝑡(𝑡) = 𝑚𝑎𝑥𝑖𝜖{1,2….𝑁} (20) 

where 𝐹𝑖𝑡𝑤𝑜𝑟𝑠𝑡(𝑡) and 𝐹𝑖𝑡𝑏𝑒𝑠𝑡(𝑡) are the atomic 
maximum and minimum fitness values at iteration 
t, consecutively. 𝐹𝑖𝑡𝑖(𝑡) is the fitness values of the 
atomic function 𝑖 in iteration t. 𝑁 is the population 
of atoms. The position and velocity of the iterate 
atom (t + 1) can be formulated as follows: 𝑣𝑖𝑑(𝑡 + 1) = 𝑟𝑎𝑛𝑑𝑖𝑑𝑣𝑖𝑑(𝑡) + 𝑎𝑖𝑑(𝑡) (21) 𝑥𝑖𝑑(𝑡 + 1) = 𝑥𝑖𝑑(𝑡) + 𝑣𝑖𝑑(𝑡 + 1) (22) 

Each atom reacts with an atom with a better 
correspondence value under the ASO rule to 
improve reconnaissance in the previous iteration. 
Each atom reacts with the atom having the least 
possible better match value to improve proficiency 
in subsequent iterations. K gradually decreases as 
the iteration passes and is calculated using the 
formula expressed as (23).  𝐾(𝑡) = 𝑁 − (𝑁 − 2)𝑥√𝑡𝑇 (23) 

Feed-Forward Neural Network 
Artificial neural networks or connectionist 

systems are machine learning tools inspired by 
biological neural networks and can process the 
same data as the human brain [22]. ANN can 
develop linear and nonlinear models for time 
series. ANN is widely accepted and applied as an 
effective tool for optimization and forecasting. The 
feed-forward back propagation neural network 
(FFNN) architecture consists of an input, output 
layer, and one or more hidden neuron layers. The 
FFNN architecture can be seen in Figure 3. 

FFNN has efficiency in solving various 
types of problems. On the other hand, finding an 
efficient FFNN training algorithm is a challenge in 
itself. Solving FFNN problems can be solved by 
optimizing all the weights of the network. FFNN 
consists of an input layer that accepts input to be 
forwarded into the network. The input is passed to 
the hidden layer via neurons, and the output is 
computed [24][25]. 

In FFNN, the input data (𝐼𝑛) is multiplied by 
the weighting 𝑊𝑖𝑗 . The addition function is the sum 

of the input with weight (𝑊𝑖𝑗) and bias (𝑏1) on layer 

1. 𝑋2(𝑡) is activation function. 
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𝑋1(𝑡) = ∑ 𝑊𝑖𝑗𝐼𝑛(t) + 𝑏1𝑗𝑖=1   (24) 𝑋2(𝑡) = 𝑓(𝑥1(𝑡)) = 11+𝑒𝑥𝑝𝑥1 (25) 

In layer 2, the output from layer 1 (𝑋2(t)) is 
multiplied weights layer 2 (𝑊𝑗𝑘). The addition 

function of Layer 2 is a sum of output layer 1 
(𝑋2(𝑡)) with weight (𝑊𝑗𝑘) and bias (𝑏2).  𝑋3(𝑡) = ∑ 𝑊𝑗𝑘𝑋2(t) + 𝑏2𝑘𝑗=1  (26) 𝑋4(𝑡) = 𝑓(𝑋3(𝑡)) = 11+𝑒𝑥𝑝𝑋3 (27) 

 

.

.

.

Input
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Hidden
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Output

Layer

In X4

 
Figure 3. FFNN Structure 

 

DC Motor 

DC motor has two controllers. The 
controllers are armature control and field control. 
DC motors require a direct voltage supply to the 
field coil to be converted into mechanical energy 
[4]. The main part of a DC motor is the stator and 
rotor, where the field coil on the dc motor is called 
the stator (the part that doesn’t rotate), and the 
armature coil is called the rotor (the rotating part). 
DC motor with armature control uses the armature 
current as of the controlling variable. Current coils 
or permanent magnets can produce a stator field. 
When a fixed field current pours in the field coil, 
the motor torque (𝜏m) i.e. 𝑇𝑚(𝑠) = (𝐾1𝐾𝑓𝐼𝑓)𝐼𝑎(𝑠) = 𝐾𝑚𝐼𝑎(𝑠) (28) 

If using permanent magnets, then 𝑇𝑚(𝑠) = 𝐾𝑚𝐼𝑎(𝑠) (29) 

The relationship between the armature current 
and the input voltage in the armature circuit can be 
formulated as (30) and (31).  𝑉𝑎(𝑠) = (𝑅𝑎 + 𝐿𝑎 . 𝑠). 𝐼𝑎(𝑠) + 𝑒𝑏(𝑠) (30) 𝑒𝑏(𝑠) = 𝐾𝑏𝜔(𝑠) (31) 

The torque in the motor is the same as the torque 
delivered to the load. 

𝜏𝑚(𝑠) = 𝜏𝐿(𝑠) + 𝜏𝑑(𝑠) (32) 

The load torque for a rotating object is written as 
 𝜏𝐿(𝑠) = 𝐽𝑠𝜔(𝑠) + 𝐵𝜔(𝑠) (33) 
 
Table 1 listed the DC motor parameter. 
Schematically of the DC motor are shown in 
Figure 4. 
 

Table 1. DC motor parameters [23] 
Notation Information 

Ra Armature resistance 

La Armature inductance 

va Armature voltage 

eb Back electromotive force 

J The inertia of the DC motor 

B Damping friction ratio 𝜏m Motor torque 𝜏L The torque connected to the load 𝜏𝑑 Fault torque 

Ke Constant for converting the voltage on the 
motor to the rotational speed 

Kt Motor torque constant can be determined 
from the value of torque (T) and armature 
current (Ia) 

Km The permeability function of the magnetic 
material 
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Figure 4. DC Motor System 
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The Proposed ASO-NN Model 
Data retrieved from the system is 

processed and mapped to be used as training 
data. Then, the neural network is configured and 
trained. The initial weighting used by the neural 
network is random. This value is optimized using 
the ASO method. The flowchart of the ASO - NN 
hybrid method is presented in Figure 5. ASO and 
NN work independently. The two processes 
further interact with each other to form the ASO-
NN method. 
 
RESULTS AND DISCUSSION 

DC motors with PID controllers are 
designed first to get the output used for training. 
PID controller parameters can be seen in Table 2. 
The ASO-NN method, response simulation, and 
analysis were carried out using MATLAB / 
Simulink software. The parameters of the ASO-
NN algorithm used in this study are presented in 
Table 3.  

The application of the proposed method is 
carried out using the Matlab application using data 
from Table 3. Figure 6 is showing the application 
of population variations to the ASO-NN method. 
The application of the 200 population has an effect 
on the smaller convergence value. 

 
Table 2. Parameter of PID 

Parameter Value 

Kp 2 

KI 6.5 

KD 0.01 

 
Table 3. Parameter of ASO-NN 
Parameter Value 

Hidden Layer 4 
Training Levenberg-Marquardt 
Number of Atom 
(population) 200 
α, β 50, 0.2 
Maximum Iteration 
Number 100 

 
In order to see the effectiveness and 

advantages of the proposed ASO-NN approach, 
the ASO-NN controller was compared with the 
PID. Comparative analysis that produces the best 
value will be sharpened. The significant outcome 
of the paper is pointed in these subsections. In 
Figure 7, it can be seen the speed response of the 
DC motor for the PID and ASO-NN. 

 

 

 

 
Figure 6. Convergence Curve of ASO-NN 
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Figure 7. Output Speed of the DC motor 

 
In Table 4, the comparative analysis 

between the proposed ASO-NN and PID is 
presented in the transient response. The results of 
the speed simulation using the ASO-NN controller 
experienced a little overshoot. The proposed 
method has a better stability index than the PID 
controller. 

 
Table 4. Comparison for various controllers. 

Controller Overshoot 
Settling 
Time (s) 

Rise Time 
(s) 

PID 1.003 0.2 0.02005 
ASO-NN 1.042 0.16 0.0207 

 
In this study, two performance criteria are 

used: Integral of time multiplied by squared error 
(ITSE) and Integral of time multiplied by absolute 
error (ITAE). The ITSE performance index was 
also chosen for comparison because of its wide 
use. ITSE has an additional time multiplier of the 
error function, which focuses on the length of the 
error duration. Therefore, this criterion is most 
often applied in the system requires fast setup 
time. The ITSE index formula is given as follows 𝐼𝑇𝑆𝐸 = ∫ 𝑡. 𝑒2(𝑡). 𝑑𝑡∞0  (33) 

ITAE is integrating the absolute error 
multiplied by time after time. Minimizing integral of 
time-weighted absolute error (ITAE) is commonly 
referred to as a good performance index in 
designing controllers. 𝐼𝑇𝐴𝐸 = ∫ 𝑡. 𝑒(𝑡). 𝑑𝑡∞0  (34) 

 

Table 5. Performance indices comparison  
Controller ITAE ITSE 

PID 0.0594 0.2002  
ASO-NN 0.0355 0.1501 

 
The ITSE and ITAE results can be seen in 

Table 5. The ITAE and ITSE results from the 
proposed method have the same value as the PID 
method. 

 
CONCLUSION 

Setting up the DC motor controller is a very 
challenging process. Setting in the predetermined 
setpoint value is a process that sees the condition 
as successful and has to be efficient. In this study, 
the ASO-NN method is proposed as a dc motor 
controller. From the research, it was found that the 
proposed method had a better settling time than 
the PID method. The index performance 
measurement obtained the same value between 
the proposed method and the PID.  This research 
is using a simple DC motor as an object. It needs 
testing using a more varied and more complex 
object. The testing is to get the effectiveness and 
toughness of the proposed method at different 
levels of testing. 
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