
NOVATEUR PUBLICATIONS
International Journal of Research Publications in Engineering and Technology [IJRPET]

ISSN: 2454-7875
VOLUME 3, ISSUE 4, Apr.-2017

139 | P a g e

VOICE OVER PROGRAMMING
MR. SHARDUL P. GAVANDE

Department: Master of Computer Applications Bharati Vidyapeeth’s Institute of Management and Information Technology

Navi Mumbai, India shardulgavande@gmail.com

PROF. ZAHIR MULANI

Department: Master of Computer Applications Bharati Vidyapeeth’s Institute of Management and Information Technology

Navi Mumbai, India zmulani8@gmail.com

ABSTRACT:

 Programmers who are passionate about their work

suffer from back pain and carpel tunnel syndrome.

Why? It is because they are addicted to their

computers and keep coding or typing for long hours.

Also for physically handicapped and blind people it is

difficult for them to code. So is there any solution for

it? Well, there isn't any but being a programmer we

can build such a tool which is completely voice based.

This technology is all about simply talking to your

computer to create software. Instead of typing 'n'

number of line of codes we can just simply fire a

command through our voice to the computer and

simply develop, compile and run our software.

KEYWORDS: VOP, VSCD, SAPI, IBM.

I. INTRODUCTION:

The VOP (Voice Over Programming) System

introduces an innovative method for collecting and

organizing programmer codes. The VOP data entry system

allows programmers to capture their verbalizations using

voice manager and facilitate coding at the same time as the

commands are been delivered. The verbalizations

produced by the programmers appear as text in a window

next to the voice space. The VOP works on the premise that

as programmers can verbalize their code logic into a text

format . This technique is similar to the think-aloud

protocol commonly used for usability studies (Ericson &

Simon, 1984). In usability studies, participants are asked to

talk aloud their thoughts and tell what they are doing, why

they are doing it, and what they think the result will be.

This is considered a standard usability technique that is

used to find out about a design simply by listening to the

participant’s thought process without interfering with the

user’s ability to carry out the task (Schneiderman, 1998).

 In this paper, a result of the pilot study is carried

out to evaluate the usage of the VOP, a discussion and

overview of the future work. An important research

activity is thus to investigate and develop such a

framework which can listen to human voice command,

understand it and then do the routine coding and if there

occur any possible errors the system will ask verbally for

its clarification. Various program understanding

techniques divided into two main categories, prevenient

and posterior, have been designed to address these issues

and have had varying degrees of success The prevenient

approach is to document the source code with

programmer’s understanding information along with the

development of the program. The programmer

understands information typically takes the form of

comments, specifications and design documents, and

source code descriptions.

II. LITERATURE SURVEY:

 New programming development environments

such as “Elucidative Programming”, “Literate

Programming” and Verbal Source Code Descriptor are

being developed in an attempt to overcome some of these

deterrents. Capturing essential understanding information

from programmers and relating that information to

relevant program units is the major goal of these

techniques. Literate programming, introduced by Knuth

considers a program and its documentation as literature,

which are read by programmers in the same way as

technical papers. Program fragments annotate the

comments instead of the other way around (more common

commenting technique). One of the major problems with

this approach is that source code becomes fragmented

pieces between documentation. Assembling the code for

compilation, and finding and debugging syntax and run-

time errors become more complicated and cumbersome

processes. Elucidative programming is a variant of literate

programming designed to address the problem of

assembling the program fragments for compilation in

literate programming. Elucidative programming attempts

to solve this problem by separating the code from the

documentation in a side-by-side development

environment.

 The Verbal Source Code Descriptor (VSCD) is a

tool designed to allow programmers to document their

software verbally rather than by typing them. The

underlying concept is that as programmers develop code,

they can verbalize their thoughts without interruption to

their coding tasks. One of the unique characteristics of

VSCD compared to other prevenient approaches is that the

documentation and coding tasks can be done

simultaneously. It is not necessary to stop programming to

create the documentation. Programmers type their code

and explain their coding verbally at the same time.

NOVATEUR PUBLICATIONS
International Journal of Research Publications in Engineering and Technology [IJRPET]

ISSN: 2454-7875
VOLUME 3, ISSUE 4, Apr.-2017

140 | P a g e

 This paper contains a detailed research in depth

on how a programmer can code programs by his voice

commands and evaluate the effectiveness of this technique.

III. METHODOLOGY:

 The design of the system is focused on enhancing

the voice capturing, collecting and processing it that is

commonly referred to as Voice Over Programming(VOP)

which completes the desired code and it's functionality.

The data entry system uses voice 3 recognition to capture

programmer verbalizations while these programmers are

delivering commands; an exercise that does not seem to

interfere with the cognitive effort required to generate

code. In the first prototype of the VOP, the IBM

(International Business Machines) Via Voice engine and

Microsoft SAPI (Speech Application Programming

Interface) are used for voice recognition. The voice system

can be manipulated (on/off/sleep) and the resulting code

file can be edited from the VOP interface too. Programmers

before starting need to select the mode of developing the

code that is through traditional typing or by VOP. Once the

voice system is in the “listen” state, all verbalization are

captured, excluding the non-technical words, converting

them to text and finally displaying them in the coding

window of the system. The system may also provide access

to the some of the standard voice recognition commands

such as "Select this", "Cut this", "Copy this", "Paste this”.

 Two types of connecting tools are provided:

connect from command to source code and connect from

source code to command(for error clarification). The

connection from command to source code tool captures

the delivered commands, processes them by matching

their associative value stored in the system and prints the

code. This type of link is used when a piece of code needs

to be developed from scratch. The connection from source

code to command tool is the reverse order of connection

from command to source code. In this, the system talks

back to the user of in case of some error or syntax

clarification needs to be done. This type of link could be

used when a program variable or function is not properly

defined and also if we want to save or run the program.

IV. ARCHITECTURAL DESIGN:

The VOP System consists of four main layers:

A. USER INTERFACE LAYER:

This provides users with tools and functions to develop

source code by connecting to the voice recognition system.

B. FUNCTIONALITY LAYER:

This layer provides the core functionality of the VOP. It

consists of four sub-layers.

1) DATA MANAGER: This extracts updated information of

the key-value pair and stores them in the database.

2) SOURCE CODE MANAGER: When user fires voice

commands the source code manager works with a query

engine to respond to the user’s request.

3) QUERY ENGINE: It extracts link information from the

database.

4) VOICE MANAGER: It communicates with the voice

engine to establish connections, provide users with voice

recognition results and also terminates the connection

upon request.

C. DATA LAYER:

This layer consists of all the information used by the

VOP. It consists of various functions, variables, classes and

related documentation. It also contains a database, which

is used to store projects, files and link information.

D. VOICE RECOGNITION LAYER:

This layer includes the voice recognition engine that

recognizes verbalizations made by the programmers and

converts them to text.

V. ALGORITHM:

The VOP (Voice Over Programming) is a tool designed

to allow programmers to develop code for their software

verbally rather than by typing them. Applications involving

automatic speech recognition fall into this approach which

is characterized by understanding the spoken words or

commands, interpreting them and performing the desired

task.

A. STEP 1:

Open the VOP tool and select the language and mode of

coding that is through voice commands or by traditional

way.

B. STEP 2:

Deliver standard voice commands as defined by the

system.

C. STEP 3:

VOP will automatically capture those voice commands,

discard the non-technical words, converting them to text

and finally displaying them in the coding window of the

system.

 If the voice command from input frame reaches the

estimated threshold value, a VOP decision (VOP = 1) is

computed which declares that speech is present.

 Otherwise, a VOP decision (VOP = 0) is computed which

declares the absence of speech in the input frame.

NOVATEUR PUBLICATIONS
International Journal of Research Publications in Engineering and Technology [IJRPET]

ISSN: 2454-7875
VOLUME 3, ISSUE 4, Apr.-2017

141 | P a g e

D. STEP 4:

If there occur any possibility of errors, the system will

ask for further clarifications and return voice recognition

results.

VI. DISCUSSION

In this research activity discussion is based on the

influence of VOP on a user's experience of programming.

Accordingly, the following research questions were posed

as guides for our research study:

 How easy and efficient is the use of Voice Over

Programming in compare to existing software

development environments to develop the source code

and whether it can decrease the programmer’s

overhead in traditional typing?

 What are the differences between the program

understanding information obtained from the

traditional methods of writing source code than those

of VOP?

VII. FINDINGS:

 As in the existing software development,

programmers use to type code on their keyboard, debug

and run them which would take a lot of time in thinking

and writing those line of codes. Using the concept of VOP a

programmer can simply develop his coding simultaneously

as he processes it through his brains. It can decrease the

programmer's overhead and health problems as sitting at

one place continously and coding may affect but by using

VOP he can avail any place nearby system an fire

command to the system as we do for robots.

 The difference between the traditional manner of

coding and VOP is that it is completely based on voice

commands. A programmer will have to speak only those

commands which are defined into the system for code

development. Although other non-technical words will be

filtered out by the system, but it is always suggested to

follow the standard way of delivering commands. An

example of voice commands would be :

 Create a method: It will create by default method

with return type true.

 Create a class Hello: It will create a class with name

Hello along with open and closed curly braces.

 Generate for loop for i: It will create a for loop for

variable i by default starting with 0.

 Delete line number 20: It will delete that particular

line of code at number 20.

CONCLUSION:

 This paper introduces efficient way of

programming by using VOP. While a full derivation of the

commands of source code for every programming

language is not yet presented in this paper. An

understanding of the reasons how and why a programmer

faces a problem to code and how it can be resolved. VOP as

a framework can also lead beneficial for physically

handicapped and blind people by providing them a

programming platform to develop code in an easier way.

There is no report on any substantial experience with VOP

in this paper. This will be done in papers after practically

implementing it. With this paper only the idea and concept

is introduced. Longitudinal and more extensive studies are

still required to determine the usefulness of the VOP

generated source code for programmers.

REFERENCES

1) IBM Embedded ViaVoice - Providing natural, voice-

based user interfaces to information and services that

reside in vehicles, mobile devices and appliances

2) Kurt Nørmark, Requirements for an Elucidative

Programming Environment.

3) http://www.ryerson.ca/content/dam/imdc

4) https://en.wikipedia.org/wiki/Microsoft_Speech_API

5) https://en.wikipedia.org/wiki/Think_aloud_protocol.

