
NOVATEUR PUBLICATIONS
International Journal Of Research Publications In Engineering And Technology [IJRPET]

ISSN: 2454-7875
 VOLUME 2, ISSUE 12, Dec. -2016

21 | P a g e

FPGA IMPLEMENTATION OF 16 BIT RISC CPU AND PERFORMANCE

ANALYSIS
DINESH B BORUDE

Student, Electronics and Telecommunication Engg, MIT College of Engineering, Aurangabad,

Maharashtra, India

PROF.S.V.VERMA
 Assistant professor, Electronics and Telecommunication Engg, MIT College of Engineering,

Aurangabad, Maharashtra, India

 ABSTRACT:

 RISC (Reduced Instruction Set Computer) found

several application in the engineering. In this paper,

authors have design, implement and performance

analysis of a 16-bit Reduced Instruction Set (RISC) CPU

using XILINX tool. The significant attribute of the RISC

processor is that it is incredibly simple and sustains

load/store architecture. The processor includes the

ALU, Shifter, Register array, Instruction register,

program counter, address register, Operand register,

Comparator and Control unit. The performance

parameters like area and propagation interruption are

analyzed at 90 nm process tools using SPARTAN 3-

XC3S400 FPGA and XILINX tool.

KEYWORDS: FPGA, Xilinx, VHDL, RISC.

INTRODUCTION:

Recently computers are crucial tools for most of

daily activities. RISC is an expansion of the architecture

morality of the Reduced Instruction Set Computer

(hereafter RISC). The effortless design provides

outstanding recital and is ideal for use in a broad family of

cost-effective, compatible systems.

The foremost purpose of this paper is to design and

execute a 16-bit RISC processor using XILINX tool and

Spartan 3- XC3S400 FPGA. The essential components of this

processor comprise the Arithmetic Logic Unit, Shifter,

output register, instruction register, program counter,

register array, address register, comparator and Control

unit [1]. The architecture supports Arithmetic, Logical,

Shifting, Branch and Rotational operations.

ARCHITECTURE OF 16-BIT RISC PROCESSOR:

The design of a 16-bit RISC processor is shown in

“fig. 1”. [1]This consists of arithmetic logic unit, control

unit, shifter and Register array, instruction register,

program counter, comparator and output register. The

processor is deliberate with load/store (Von Neumann)

design .One mutual memory for instructions (program) and

data with one data bus and one address bus between

processor and memory. Instruction and data are fetched in

chronological order so that the latency incurred between

the machine cycles can be reduced. The instruction in RISC

CPU would be executed in three stages i.e. fetch, decode,

execute. In fetch, instruction and the necessary data are

haggard from the memory. While in decode, the instruction

and data that are drained from the memory are separated

triggering the components and the data path so as to

execute and finally in execution, the instruction is executed,

data is manipulated and the result is stored.

Fig-1: Architecture of 16-Bit RISC Processor

The control unit interprets the opcode and

instruction bits and then creates control signals as outputs

that trigger the respective components and data path to

perform the desired task [3]. The control unit with two

instruction decoders which decodes instruction bits and

decoded output of the control unit is nourished as control

signal either into Arithmetic logic unit (ALU) or Universal

shifter .From register A and register B operands are

received by the ALU. Depending on control signal from

control unit the ALU performs either mathematics or

judgmental operations. After the carrying out of the

instruction, the result is stored in the output register (Out

Reg.). The shifted data is accumulated in destination

register which is nothing but the Out Reg.

2.1 CPU MODULES

It consists of different module designs like control unit,

ALU, Universal shift register, comparator, address register,

NOVATEUR PUBLICATIONS
International Journal Of Research Publications In Engineering And Technology [IJRPET]

ISSN: 2454-7875
 VOLUME 2, ISSUE 12, Dec. -2016

22 | P a g e

output register, program counter, control unit, CPU unit,

register array and general purpose registers[2].

I) ALU:

The first module illustrated is the ALU [2]. It

executes arithmetic or logical operations on one or more

input busses. A representation for ALU is shown in Fig- 2.

Fig- 2: ALU Entity

Inputs “a” and “b” are the two input buses upon

which the ALU functions are executed. Output bus “c”

returns the outcome of the ALU operation. Input sel

determines which operation is completed. The ALU can

perform arithmetic actions such as add, subtract,

increment, decrement, and some logical operations such as

AND, OR and XOR, NOT etc.

II) COMPARATOR:

The next module described is the comparator. It

compares two values and returns either a ‘1’ or ‘0’

depending on the type of comparison requested and the

values being compared. A symbol showing the ports of the

comparator is shown in figure 3[4].

Fig- 3: Comparator

The comparison type is resolute by the value on

input port sel. For instance, to compare if inputs “a” and “b”

are equal, apply the value eq to port sel. If ports “a” and “b”

have the same value, port compout returns ‘1’. If the values

are not equal, ‘0’ is returned.

III) REGISTER:

It is used for the address register and the

instruction register. These registers need to be able to

confine input data on a rising edge of the clk input and

drive output q with the captured data. The value of input a

is assigned to output q when a rising edge occurs on input

clk. [4] The assignment is delayed by 1 nanosecond to

remove delta delay problems during simulation.

Fig- 4: Register Entity

IV) REGISTER ARRAY:

Fig- 5: Register Array Entity

It is used to model the set of registers within the

CPU that are used to store intermediate values during

instruction processing [4]. These registers are read from

and written to during the execution of instructions. The set

of registers is modeled as a RAM of eight 16-bit words.[4]

To write a location in the register array, set input sel to the

location to be written, input data with the data to be

written, and put a rising edge on input clk. To read a

location from register array, set input sel to the location to

be read and set input ld to a ‘1’; the data is output on port

q[3]

V)SHIFTER:

The next module to be described is the shifter. The

shifter is used to perform shifting and rotation operations

within the CPU. The shift has a 16-bit input bus, a 16-bit

output bus, and a sel input that determines which shift

operation to perform.

Fig- 6: Shifter Entity

Shifter block can shift the data towards left or right

side by n-bit depending on sel signal. Same block can be

used to rotate the Signal values.

VI) CONTROL UNIT:

It provides the essential signal interactions to compose the

data flow properly through CPU and carry out the expected

functions [5]. A representation for control block is shown in

Figure below. The control symbol has only a few inputs, but

many outputs. The control block present all of the control

signals to regulate data traffic for the CPU.

Architecture rtl contains two processes. The first is a

combinational (not clocked) that inspect the current state

and all inputs, produces output control values and next

state output. The second is a sequential process (has a

clock) that is used to store the current state and copy the

next state to the current state [3]. The next state transitions

occur on rising edges of the clock input. Executing all of the

states for an instruction performs the necessary steps to

complete the instruction. If the reset signal is high, the

sequential process labeled controlffProc sets signal

current_state to state value reset1.

NOVATEUR PUBLICATIONS
International Journal Of Research Publications In Engineering And Technology [IJRPET]

ISSN: 2454-7875
 VOLUME 2, ISSUE 12, Dec. -2016

23 | P a g e

Fig- 7: Control Unit Entity

DESIGN AND VERIFICATION:

Table -1: ALU Operations

Sel input Action

bypass C = A

andOp C = A AND B

orOp C = A OR B

notOp C = NOT A

xorOp C = A XOR B

add C = A + B

sub C = A – B

Inc C = A + 1

Dec C = A – 1

zero C = 0

Comp2op C=NOT A+1

The architecture uses a large case statement on

input sel to determine which of the arithmetic or logical

operations to perform. The possible values of signal sel are

determined by type t_alu described in package cpu_lib in

file cpulib.vhd. After the new value for output c is

calculated, all of the resulting values are assigned with a 1-

nanosecond time delay to eliminate delta delay problems

during RTL simulation.

Table -2: Comparator Operation

SOFTWARE AND TOOLS USED:

Synthesis is done using Xilinx ISE 8.1i and

implementation is Done On Spartan 3 –XC3S400 FPGA kit.

4.1. SPARTAN -III FPGA FEATURES

 400 k logic cell SPARTAN -III FPGA in PQ208 Plastic

Quad Flat Package (MXS3FK-004-DSP)

 Three families Spartan 3 /Spartan 3L/Spartan 3 XA.

 Low cost, high-performance logic solution for high-

volume, consumer oriented applications.

 Densities as high as 74,880 logic cells.

 Three power rails for core (1.2V), I/O’s (1.2V to

3.3V) and Auxiliary purpose (2.5V).

 326 MHz system clock rate.

 90 nm process technology.

 18 single-ended signal standards.

 Up to 1,872 Kbits of total block RAM.

4.2. VHDL:

VHDL or VHSIC (Very High Speed Integrated

Circuits) Hardware Description Language is commonly

used as a design-entry language for field programmable

gate arrays and application specified integrated circuits in

electronic design automation of digital circuits. It expresses

the performance of an electronic system, from which the

physical circuit or system can be implemented. It is a

typical technology/vendor sovereign language, and is

therefore portable and reusable.

RESULTS AND DISCUSSION:

5.1 SIMULATION RESULTS:

I)ALU

II)COMPARATOR:

Sel

input

Sel input

value

Comparison

EQ 00 Compout = 1 when a equals

b

NEQ 01 Compout = 1 when a is not

equal to b

GT 10 Compout = 1 when a is

greater than b

LT 11 Compout = 1 when a is less

than b

NOVATEUR PUBLICATIONS
International Journal Of Research Publications In Engineering And Technology [IJRPET]

ISSN: 2454-7875
 VOLUME 2, ISSUE 12, Dec. -2016

24 | P a g e

III)SHIFTER:

IV) REGISTER

5.2 SYNTHESIS RESULT

The following Synthesis table shows the device

utilization summary. These are estimated values which are

generated by XILINX software by clicking on option of

synthesis report. The logic utilization having different

parameters like number of slices, Number of Slice Flip Flops

etc. according to ratio between used parameters over

available parameters we can determine the device

utilization factor.

Table -3: Device Utilization Summaries (processor Entity)

Table -4: Delay and area calculations

Module

Name

Delay(ns) Slices

Utiliz

ed

Utilization in% (area)

out of 3584

ALU 17.511 78 2.17

Shifter 10.790 27 0.75

Register

Array

9.41 106 2.95

Program

counter

6.84 9 0.25

Output

register

2.290 9 0.25

Instruction

register

2.290 9 0.25

Address

register

2.290 9 0.25

comparator 10.97 21 0.58

Control unit 15.417 77 2.14

CPU 19.438 371 10.35

TOTAL 97.246 716 ----

CONCLUSION:

In this project I have implemented a 16 bit central

processing unit using VHDL code. Design includes

processor and a memory block which communicates

through a bi-directional data bus, an address bus, and a few

control lines. The instructions are stored in the instruction

register (IR) and decoded by the control unit. This

processor can perform 16 bit data transfer, simple

arithmetic & logical operation and branching operation.

REFERENCES:

1) Tessy Ninan “Design And Analysis Of 16-Bit Micro

Processor Using Xilinx Tool” ISSN 2278 – 0882

International Journal of Scientific Research Engineering

& Technology (IJSRET) Volume 4, Issue 9, September

2015.

2) Anuruddh Sharma and Mukti Awad,“8-Bit Risc

Processor Using Harvard Architecture” ISSN: 2278 –

1323 International Journal of Advanced Research in

Computer Engineering & Technology Volume 1, Issue 5,

July 2012.

3) Vijay R. Wadhankar and Vaishali Tehre “ A FPGA

Implementation of a RISC Processor for Computer

Architecture” National Conference on Innovative

Paradigms in Engineering & Technology (NCIPET-

2012) Proceedings published by International Journal

of Computer Applications® (IJCA)

4) Nidhi Maheshwari “A 16-Bit Fully Functional Single

Cycle Processor” International Journal of Engineering

Science and Technology (IJEST)

Logic Utilization Used Available Utilization

Number of Slices: 371 3584 10%

Number of Slice

Flip Flops:

321 7168 3%

Number of 4 input

LUTs:

527 7168 4%

Number of bonded

IOBs:

18 141 12%

Number of GCLKs: 1 8 12%

