
24

TEKNIKA, Volume 5, Nomor 1, November 2016

ISSN: 2549-8037, E-ISSN: 2549-8045

%XGL��'��6���GNN���$QDOLVLV�3HPLOLKDQ�3HQHUDSDQ�3UR\HN�0HWRGRORJL�3HQJHPEDQJDQ«

Analisis Pemilihan Penerapan Proyek

Metodologi Pengembangan Rekayasa Perangkat

Lunak

Darmawan Setiya Budi

Magister Teknik Informatika

STIMIK Amikom

darmawan.setiyabudi@gmail.com

Taghfirul Azhima Yoga Siswa

Magister Teknik Informatika

STIMIK Amikom

taghfirul.yoga@yahoo.co.id

Heri Abijono

Magister Teknik Informatika

STIMIK Amikom

ahabijono@gmail.com

Abstrak - Metodologi merupakan kerangka pijakan utama

dalam perancangan dan pengembangan perangkat lunak

profesional untuk menghasilkan sebuah sistem informasi yang

sesuai dengan kebutuhan bisnis sebuah organisasi.

Keberhasilan pengembangan perangkat lunak bergantung

pada pengelolaan proyek perangkat lunak secara keseluruhan.

Tidak ada metodologi yang benar-benar sesuai dengan semua

jenis organsasi, sehingga dibutuhkan pendekatan lebih lanjut

untuk memilih metodologi mana yang paling sesuai untuk

dapat diterapkan pada organisasi tertentu. Paper ini

menjelaskan dan menganalisa metodologi pengembangan
perangkat lunak yang meliputi: Linear Sequential Model atau

Waterfall, Parallel Model, Iterative Model, Prototyping Model,

RAD (Rapid Application Development) Model, Spiral Model, V-

Shaped Model dan Agile Development untuk membuat

perbandingan yang menunjukan kelebihan dan kelemahan

masing-masing. Hasil paper ini menunjukan pertimbangan

pemilihan metodologi yang didasarkan pada faktor-faktor

kriteria penilaian yang terdiri dari kejelasan persyaratan

pengguna, keakraban dengan teknologi, kompleksitas sistem,

sistem keandalan, jadwal waktu singkat dan visibility jadwal

hingga mereferensi beberapa pendapat dari jurnal ilmiah.

Kata Kunci : metodologi pengembangan rekayasa perangkat

lunak, Linear Sequential Model, Waterfall, Parallel Model,

Iterative Model, Prototyping Model, RAD (Rapid Application

Development) Model, Spiral Model, V-Shaped Model, Agile

Development

I. PENDAHULUAN

Keberhasilan pengembangan perangkat lunak

bergantung pada pengelolaan proyek perangkat lunak secara

keseluruhan. Menetapkan sebuah metodologi memiliki

dinamisasi yang tinggi dalam tahap-tahap perancangan

model yang menggambarkan tahap-tahap aktivitas dan daur

hidup suatu sistem.

Metodologi merupakan kerangka pijakan utama dalam

perancangan dan pengembangan perangkat lunak

profesional untuk menghasilkan sebuah sistem informasi

yang sesuai dengan kebutuhan bisnis sebuah organisasi.

Memilih sebuah metodologi bukanlah hal yang mudah

dilakukan karena tidak satupun metodologi yang dapat

dikatakan terbaik. Setiap organisasi biasanya memiliki

standarisasi tertentu. Sehingga hal ini menjadi alasan paper

ini dapat mejawab tuntutan tersebut

Metodologi Pengembangan Perangkat Lunak dapat

diartikan sebagai proses membuat suatu perangkat lunak

baru untuk menggantikan perangkat lunak lama secara

keseluruhan atau memperbaiki perangkat lunak yang telah

ada. Metodologi pengembangan perangkat lunak ini sangat

diperlukan agar dapat lebih cepat dan tepat dalam

mendeskripsikan solusi dan mengembangkan perangkat

lunak. Dengan metodologi pengembangan ini nantinya juga

dapat membantu untuk menghasilkan perangkat lunak yang

berkualitas.

II. METODOLOGI PENGEMBANGAN PERANGKAT

LUNAK

Menurut Azhar Susanto menyatakan bahwa SDLC

(System Development Life Cycle) adalah salah satu metode

pengembangan sistem informasi yang popular pada saat

sistem informasi pertama kali dibuat [1].

Terdapat empat tahapan dalam membangun atau

mengembangkan sistem informasi dengan menggunakan

SDLC, yaitu: planning, analysis, design, dan

implementation. Adapun dalam implementasi SDLC

terdapat berbagai metodologi yang dapat dipergunakan.

Penggunaan metodologi akan bervariasi tergantung kepada

penekanannya, apakah terhadap bisnis proses ataukah pada

data pendukung bisnis.

Gambar 1. System Development Life Cycle.

Berdasarkan pengertian tersebut, secara umum dapat

dikatakan bahwa proses pengembangan perangkat lunak

mengikuti tahap-tahap:

1) Menentukan APA yang harus dikerjakan oleh perangkat

lunak dalam satu rentang waktu tertentu.

2) Mendefinisikan BAGAIMANA perangkat lunak dibuat,

mencakup arsitektur perangkat lunaknya, antar muka

internal, algoritma, dan lain-lain.

3) Penerapan (penulisan program) dan pengujian unit-unit

program.

4) Integrasi dan pengujian modul-modul program.

25

TEKNIKA, Volume 5, Nomor 1, November 2016

ISSN: 2549-8037, E-ISSN: 2549-8045

Budi, D. S., dkk.: Analisis Pemilihan PeneraSDQ�3UR\HN�0HWRGRORJL�3HQJHPEDQJDQ«

5) Validasi perangkat lunak secara keseluruhan (pengujian

sistem).

A. Komponen dan Karakteristik Proyek Metodologi

Pengembangan Perangkat Lunak

Menurut Pressman bahwa komponen metodologi

pengembangan perangkat lunak dapat dibagi ke dalam tiga

unit, yaitu [2]:

1) Metode, yaitu suatu cara atau teknik pendekatan yang

sistematik yang dipergunakan untuk mengembangkan

perangkat lunak. Metode ini mencakup: Perencanaan

proyek dan perkiraan, analisis keperluan sistem dan

perangkat lunak, perancangan struktur data, arsitektur

program, prosedur algoritma, penulisan kode program

(coding), uji coba, dan pemeliharaan.

2) Alat Bantu (Tools), yaitu alat-alat (manual maupun

otomatis) yang mendukung pengembangan perangkat

lunak. Terdapat dua alat bantu yang dapat digunakan

yaitu: alat bantu manual dan alat bantu otomatis.

3) Prosedur, yang dipergunakan untuk mendefinisikan

urut-urutan pekerjaan (daur) dari metode dan alat bantu

tersebut.

Menurut Despa bahwa karakteristik proyek

pengembangan perangkat lunak terdiri dari: sering berubah

spesifikasi, dinamika tinggi teknologi dan standard, tenaga

kerja terampil, dan tim didistribusikan secara global [3]. Hal

ini dapat dilihat pada tabel 1.

Tabel 1. Karakteristik Proyek Pengembangan Perangkat

Lunak.

Karakteristik Dampak Positif Dampak Negatif

Sering berubah

spesifikasi

Membahayakan tenggat

waktu

Hasil melebihi anggaran

proyek

Menyebabkan stres dan

ketidakpuasan bagi tim

pengembangan

Dinamika tinggi

teknologi dan

standar

Menghasilkan

peluang baru

dalam dari segi

desain dan

codding

Perangkat lunak dapat

menjadi usang pada saat

marak di pasaran

Pengembang software

harus menginvestasikan

banyak waktu dalam

meneliti teknologi baru

Tenaga kerja

terampil

Meningkatkan

kemungkinan

mencapai hasil

yang inovatif

Biaya tinggi yang

dihasilkan oleh sumber

daya manusia

Tim

didistribusikan

secara global

Bekerja dapat

dilakukan

sekitar jam

Monitoring dan kontrol

menjadi lebih sulit

Keragaman

budaya

memelihara

kreativitas

Mengintegrasikan kode

baru yang lebih

menantang

B. Macam-Macam Metodologi Pengembangan Perangkat

Lunak

Macam-macam klasifikasi metodologi pengembangan

perangkat lunak terdiri dari dua pendapat antara lain:

Pertama, menurut Ian Sommerville bahwa model proses

pengembangan perangkat lunak terbagi menjadi empat,

yaitu: Model Pengembangan Prototyping (Evolusioner),

Model Pengembangan Sistem Formal, Model

Pengembangan Berorientasi Pemakaian Ulang (Reuse-

oriented software engineering), dan Model Pengembangan

Waterfall [4].

Kedua, menurut Pressman yang juga mejadi fokus

pembahasan dalam paper ini ± menyebutkan bahwa model

proses pengembangan perangkat lunak terbagi menjadi 5

metode yaitu: Linear Sequential Model atau waterfall,

Incremental Process Model, Evolutionary Process Model,

RAD (Rapid Application Development) Model, dan

Concurrent Model [2].

1) Linear Sequential Model

Gambar 2. Linear Sequential Model.

Linear sequential model (³classic life cycle´� DWDX�

³waterfall model´��DGDODK�PHWRGH�SHQJHPEDQJDQ�SHUDQJNDW�

lunak dengan pendekatan sekuensial dengan cakupan

aktivitas:

a) Rekayasa Sistem dan Analisis (System Engineering

and Analysis). Karena perangkat lunak adalah bagian

dari sistem yang lebih besar, pekerjaan dimulai dari

pembentukan kebutuhan-kebutuhan untuk seluruh

elemen sistem dan kemudian memilah mana yang

untuk pengembangan perangkat lunak. Hal ini penting,

ketika perangkat lunak harus berkomunikasi dengan

hardware, orang, dan basis data.

b) Analisis Kebutuhan Perangkat Lunak (Software

Requirements Analysis). Pengumpulan kebutuhan

dengan fokus pada perangkat lunak, yang meliputi:

domain informasi, fungsi yang dibutuhkan, unjuk

kerja/performansi dan antarmuka. Hasilnya harus

didokumentasi dan di-review ke pelanggan.

c) Perancangan (Design). Ada empat atribut untuk

program, yaitu: Struktur Data, Arsitektur perangkat

lunak, Prosedur detil, dan Karakteristik Antarmuka.

Proses desain mengubah kebutuhan-kebutuhan menjadi

bentuk karakteristik yang dimengerti perangkat lunak

sebelum dimulai penulisan program. Desain ini harus

terdokumentasi dengan baik dan menjadi bagian

konfigurasi perangkat lunak.

26

TEKNIKA, Volume 5, Nomor 1, November 2016

ISSN: 2549-8037, E-ISSN: 2549-8045

%XGL��'��6���GNN���$QDOLVLV�3HPLOLKDQ�3HQHUDSDQ�3UR\HN�0HWRGRORJL�3HQJHPEDQJDQ«

d) Pembuatan Kode (Coding). Penterjemahan

perancangan ke bentuk yang dapat dimengerti oleh

mesin, dengan menggunakan bahasa pemrograman.

e) Pengujian (Testing). Setelah kode program selesai

testing dapat dilakukan. Testing memfokuskan pada

logika internal dari perangkat lunak, fungsi eksternal

dan mencari segala kemungkinan kesalahan dan

memriksa apakah sesuai dengan hasil yang diinginkan.

f) Pemeliharaan (Maintenance). Merupakan bagian

paling akhir dari siklus pengembangan dan dilakukan

setelah perangkat lunak dipergunakan, meliputi

kegiatan-kegiatan:

i) Corrective Maintenance: Mengoreksi kesalahan

pada perangkat lunak, yang baru terdeteksi pada

saat perangkat lunak dipergunakan.

ii) Adaptive Maintenance: Penyesuaian dengan

lingkungan baru, misalnya sistem operasi atau

sebagai tuntutan atas perkembangan sistem

komputer, misalnya penambahan printer driver.

iii) Perfektive Maintenance: Bila perangkat lunak

sukses dipergunakan oleh pemakai. Pemeliharaan

ditujukan untuk menambah kemampuannya seperti

memberikan fungsi-fungsi tambahan, peningkatan

kinerja dan sebagainya.

2) Parallel Model

Menurut Dennis, Parallel Model merupakan metodologi

yang mencoba untuk mengatasi interval waktu yang lama

antara tahap analisis dan pengiriman sistem [5]. Metodologi

ini mencoba untuk memperbaiki kelemahan dari metodologi

waterfall, melakukan desain umum dan implementasi secara

berurutan untuk seluruh sistem dan kemudian proyek ini

dibagi menjadi serangkaian subproyek yang berbeda yang

dapat dirancang dan dilaksanakan secara paralel. Setelah

semua subproyek sempurna, maka dilakukan integrasi akhir

sehingga dilakukan delivery pada sistem.

Gambar 3. Metodologi Parallel.

3) Iterative Model

Metologi ini berkembang didasari oleh masalah pada

model waterfall yang menciptakan permintaan untuk metode

baru dari sistem yang berkembang agar dapat memberikan

hasil yang lebih cepat, membutuhkan lebih sedikit informasi

yang mutakhir, dan menawarkan fleksibilitas yang lebih

besar.

Menurut Larman, Iterative Model merupakan

metodologi yang mengandalkan pembangunan aplikasi

perangkat lunak satu langkah pada satu waktu dalam bentuk

memperluas model [6]. Metodologi ini didasarkan pada

spesifikasi awal model dasar dari aplikasi yang dibangun.

Setelah model diuji dan umpan balik diterima dari

spesifikasi proyek, maka selanjutnya disesuaikan dengan

model yang akan dikembangkan. Proses ini diulang sampai

model menjadi aplikasi yang berfungsi penuh untuk

memenuhi semua kebutuhan pemilik proyek.

Gambar 4. Metodologi Iterative.

Model ini diimplementasi dengan cara perulangan,

sehingga proyek pada model ini dibagi menjadi bagian-

bagian kecil. Hal ini memungkinkan tim pengembangan

untuk menunjukkan hasil sebelumnya dapat di proses dan

mendapatkan umpan balik yang berharga dari pengguna

sistem.

Seringkali, setiap perulangan sebenarnya adalah sebuah

proses mini-Waterfall dengan umpan balik dari satu fase

yang menyediakan informasi penting untuk desain tahap

berikutnya. Dalam variasi model ini, produk-produk

perangkat lunak, yang diproduksi pada akhir setiap langkah

(atau serangkaian langkah-langkah), dapat masuk ke

produksi langsung sebagai temuan tambahan.

4) Prototyping Model

Gambar 5. Prototyping Model.

Pendekatan prototyping model digunakan jika pemakai

hanya mendefenisikan objektif umum dari perangkat lunak

tanpa memerinci kebutuhan input, pemrosesan dan

outputnya, sementara pengembang tidak begitu yakin akan

efesiensi algoritma, adaptasi sistem operasi, atau bentuk

27

TEKNIKA, Volume 5, Nomor 1, November 2016

ISSN: 2549-8037, E-ISSN: 2549-8045

Budi, D. S., dkk.: Analisis Pemilihan PeneraSDQ�3UR\HN�0HWRGRORJL�3HQJHPEDQJDQ«

antarmuka manusia-mesin yang harus diambil. Cakupan

aktivitas dari prototyping model terdiri dari:

a) Mendefinisikan objektif secara keseluruhan dan

mengidentifikasi kebutuhan yang sudah diketahui.

b) Melakukan perancangan secara cepat sebagai dasar

untuk membuat prototype.

c) Menguji coba dan mengevaluasi prototype dan

kemudian melakukan penambahan dan perbaikan-

perbaikan terhadap prototype yang sudah dibuat.

5) Threwaway Prototyping Model

Gambar 6. Threwaway Prototyping Model.

Metodologi ini mirip dengan metodologi berdasarkan

prototyping. Perbedaan utama adalah bahwa lembaran

prototipe selesai selama titik yang berbeda dalam SDLC.

Fokus pembangunan adalah untuk menguji fitur yang tidak

dipahami dengan menganalisis, merancang, dan membangun

prototipe desain. Prototipe desain merupakan bagian dari

sistem yang perlu perbaikan tambahan, dan itu hanya cukup

rinci untuk memungkinkan pengguna untuk memahami isu-

isu yang sedang dipertimbangkan. Setelah masalah

diselesaikan, proyek bergerak ke dalam desain dan

implementasi. Pada titik ini, desain prototipe dibuang, yang

merupakan perbedaan penting antara Threwaway

Prototyping dan Prototyping, di mana prototipe berkembang

menjadi sistem final. Pendekatan ini menghasilkan lebih

stabil dan dapat diandalkan sistem.

6) RAD (Rapid Application Development) Model

Gambar 7. RAD (Rapid Application Development) Model.

Merupakan model proses pengembangan perangkat

lunak secara linear sequential yang menekankan pada siklus

pengembangan yang sangat singkat. Jika kebutuhan

dipahami dengan baik, proses RAD memungkinkan tim

SHQJHPEDQJDQ�PHQFLSWDNDQ� ³VLVWHP� IXQJVLRQDO� \DQJ� XWXK´�

dalam periode waktu yang sangat pendek (kira-kira 60-90

hari). Cakupan aktivitas dari RAD model ini terdiri dari:

a) Pemodelan Bisnis (Bussiness Modelling). Aliran

informasi diantara fungsi-fungsi bisnis dimodelkan

dengan suatu cara untuk menjawab pertanyaan-

pertanyaan berikut: Informasi apa yang mengendalikan

proses bisnis? Ke mana informasi itu pergi? Siapa yang

memprosesnya?

b) Pemodelan Data (Data Modelling). Aliran informasi

yang didefinisikan sebagai bagian dari fase pemodelan

bisnis disaring ke dalam serangkaian objek data yang

dibutuhkan untuk menopang bisnis tersebut.

Karakteristik/atribut dari masing-masing objek

diidentifikasi dan hubungan antara objek-objek tersebut

didefinisikan.

c) Pemodelan Proses (Process Modelling). Aliran

informasi yang didefinisikan dalam fase pemodelan

data ditransformasikan untuk mencapai aliran informasi

yang perlu bagi implementasi sebuah fungsi bisnis.

Gambaran pemrosesan diciptakan untuk menambah,

memodifikasi, menghapus atau mendapatkan kembali

sebuah objek data.

d) Pembuatan Aplikasi (Application Generation).

Selain menciptakan perangkat lunak dengan

menggunakan bahasa pemrograman generasi ketiga

yang konvensional, RAD lebih banyak memproses

kerja untuk memakai lagi komponen program yang

telah ada atau menciptakan komponen yang bias

dipakai lagi. Pada semua kasus, alat-alat bantu otomatis

dipakai untuk memfasilitasi kontruksi perangkat lunak.

e) Pengujian dan Pergantian (Testing and Turnover).

Karena proses RAD menekankan pada pemakaian

kembali, banyak komponen yang telah diuji. Hal ini

mengurangi keseluruhan waktu pengujian. Tapi

komponen baru harus diuji.

7) Spiral Model

Gambar 8. Spiral Model.

Merupakan model proses perangkat lunak yang

memadukan wujud pengulangan dari model prototyping

dengan aspek pengendalian dan sistematika dari linear

sequential model, dengan penambahan elemen baru yaitu

analisis resiko.

Model ini memiliki empat aktivitas penting, yaitu:

28

TEKNIKA, Volume 5, Nomor 1, November 2016

ISSN: 2549-8037, E-ISSN: 2549-8045

%XGL��'��6���GNN���$QDOLVLV�3HPLOLKDQ�3HQHUDSDQ�3UR\HN�0HWRGRORJL�3HQJHPEDQJDQ«

a) Perencanaan (Planning). penentuan tujuan, alternatif,

dan batasan.

b) Analisis resiko (Risk Analysis). analisis alternatif dan

identifikasi/pemecahan resiko.

c) Rekayasa (Engineering). pengembangan level

berikutnya dari produk.

d) Evaluasi Pemakai (Customer Evaluation). penilaian

terhadap hasil rekayasa Bentuk spiral memberikan

gambaran bahwa semakin besar iterasinya, maka

menunjukkan makin lengkap versi dari perangkat

lunak yang dibuat. Selama awal sirkuit, objektif,

alternatif dan batasan didefinisikan serta resiko

diidentifikasikan dan dianalisa.

Jika resiko menunjukkan ada ketidakpastian terhadap

kebutuhan, maka prototyping harus dibuat pada kuadran

rekayasa. Simulasi dan pemodelan lain dapat digunakan

untuk mendefinisikan masalah dan memperbaiki kebutuhan.

Pelanggan mengevaluasi hasil rekayasa (kuadran evaluasi

pelanggan) dan membuat usulan untuk perbaikan.

Berdasarkan masukan dari pelanggan, fase berikutnya

adalah perencanaan dan analisis resiko. Setelah analisis

resiko selalu diperiksa apakah proyek diteruskan atau tidak,

jika resiko terlalu besar, maka proyek dapat dihentikan.

Model spiral ini adalah pendekatan yang paling realistic

untuk sistem sekala besar.

8) V-Shaped Model

Gambar 9. V-Shaped Model.

Sama seperti model air terjun, V- yang siklus hidup

berbentuk jalan berurutan dari pelaksanaan proses. Setiap

fase harus diselesaikan sebelum tahap berikutnya dimulai.

Pengujian ditekankan dalam model ini lebih dari model air

terjun. Prosedur pengujian yang dikembangkan di awal

siklus hidup sebelum coding dilakukan, masing-masing

selama fase sebelumnya implementasi. Persyaratan mulai

model siklus hidup seperti model air terjun. Sebelum

pembangunan dimulai, rencana uji sistem dibuat. Rencana

uji sistem berfokus pada pemenuhan fungsi yang ditetapkan

dalam persyaratan pengumpulan.

Tahap desain tingkat tinggi berfokus pada arsitektur

sistem dan desain. Sebuah rencana uji integrasi dibuat dalam

fase ini dalam rangka untuk menguji potongan kemampuan

sistem perangkat lunak untuk bekerja sama. Namun, tahap

desain tingkat rendah terletak di mana komponen perangkat

lunak yang sebenarnya dirancang, dan tes unit yang dibuat

dalam fase ini juga.

9) Agile Development l

Kategori ini berfokus pada perampingan SDLC dengan

menghilangkan banyak pemodelan dan dokumentasi

overhead dan waktu yang dihabiskan untuk tugas-tugas.

Proyek menekankan sederhana, pengembangan aplikasi

berulang. Kategori ini menggunakan pemrograman ekstrim

(XP), yang dijelaskan sebagai berikut:

Prinsip-prinsip Kunci XP meliputi pengujian terus

menerus, coding sederhana dan interaksi yang dekat dengan

pengguna akhir untuk membangun sistem yang sangat cepat.

Setelah proses perencanaan yang dangkal, tim proyek

melakukan analisis, desain, dan fase implementasi iterative.

Gambar 10. Agile Development.

III. MEMILIH METODOLOGI PENGEMBANGAN

YANG TEPAT

Beberapa pertimbangan pemilihan metodologi

pengembangan perangkat lunak yang tepat menurut Dennis

terdiri dari beberapa keriteria meliputi: kejelasan kebutuhan

pengguna (clarity user requirement), penguasaan teknologi

(familiarity with technology), tingkat kerumitan sistem

(system complexity), tingkat kehandalan sistem (system

realibility), waktu pelaksanaan (short time schedules), dan

visibilitas jadwal pelaksanaan (schedule visibility) [5]. Hal

ini dijelaskan pada tabel 2.

29

TEKNIKA, Volume 5, Nomor 1, November 2016

ISSN: 2549-8037, E-ISSN: 2549-8045

Budi, D. S., dkk.: Analisis Pemilihan PeneraSDQ�3UR\HN�0HWRGRORJL�3HQJHPEDQJDQ«

Tabel 2. Kriteria Pemilihan Metodologi.

Kriteria Pengembangan

Sistem
Waterfall Parallel V-Model Iterative

System

Prototyping

Threwaway

Prototyping

Agile

Development

Kejelasan kebutuhan pengguna Buruk Buruk Buruk Baik Baik Sekali Baik Sekali Baik Sekali

Penguasaan teknologi Buruk Buruk Buruk Baik Buruk Baik Sekali Buruk

Tingkat kerumitan sistem Baik Baik Baik Baik Buruk Baik Sekali Buruk

Tingkat kehandalan sistem Baik Baik Baik Sekali Baik Buruk Baik Sekali Baik

Waktu pelaksanaan Buruk Baik Buruk Baik Sekali Baik Sekali Baik Baik Sekali

Visibilitas jadwal pelaksanaan Buruk Buruk Buruk Baik Sekali Baik Sekali Baik Baik

Tabel 3. Kelebihan dan Kelemahan Metodologi Pengembangan Perangkat Lunak.

No Metodologi Kelebihan Kelemahan

A

Linear

Sequential

Model

1) Mudah dalam pengelolaan karena hampir

seluruh requirements telah diidentifikasikan dan

didokumentasikan, 2) Tahapan yang berurutan

secara linier, identifikasi dan dokumentasi yang

lengkap, menyebabkan proses mudah dipahami

oleh seluruh tim yang terlibat ataupun project

owner.

1) Tahapan yang berurutan secara linier tidak

memungkinkan untuk kembali pada tahapan selanjutnya, 2)

Tidak fleksibel terhadap perubahan kebutuhan yang terjadi

dalam tahap pengembangan sistem, 3) Hampir tidak ada

toleransi kesalahan, terutama pada tahapan planning dan

design.

B
Parallel

Model

Waktu pengembangan sistem yang lebih singkat

dibandingkan waterfall, karena beberapa tahapan

diakselerasikan dengan membagi menjadi

beberapa sub project.

1) Integrasi sistem memiliki kesulitan tersendiri. Kegagalan

atau keterlambatan pada salah satu sub project memberikan

dampak pada proses mengintegrasikan seluruh sistem, 2)

Terdapat kemungkinan kesulitan dalam penanganan jika

terjadi permasalah pada sub project secara bersamaan.

C
Iterative

Model

1) Umpan balik terus menerus dari pemilik

proyek, 2) Beberapa revisi pada seluruh aplikasi

dan fungsi spesifik, 3) Pekerjaan disampaikan di

awal proyek.

Setiap perulangan adalah struktur kaku yang menyerupai

project kecil waterfall.

D
Prototyping

Model

1) Requirements identification yang akurat

karena dilakukan evaluasi secara berkala dan

mendapatkan masukan dari project owner

terhadap purwa rupa yang dihasilkan, 2) User

experience yang meningkat, karena secara terus

menerus melakukan uji coba dan evaluasi

terhadap purwa rupa, 3) Kesalahan dan redudansi

dapat diminimalkan karena proses identifikasi

yang baik terhadap purwa rupa.

1) Setiap evaluasi dan masukan terhadap purwa rupa, maka

akan membutuhkan penyesuaian terhadap purwa rupa

tersebut. Dan setiap penyesuaian akan meningkatkan

kompleksitas sistem yang dikembangkan, 2) Memberikan

beban tambahan kepada programmer, 3) Terdapat kebutuhan

biaya tambahan terkait dengan pembuatan purwa rupadan

dapat dilakukan penyesuaian versi purwa rupa sesuai

kebutuhan, hingga purwa rupa dapat disetujui oleh project

owner.

E

RAD (Rapid

Application

Development)

Model

1) Efisiensi waktu pengiriman, 2) Perubahan

kebutuhan dapat ditampung, 3) Waktu siklus

dapat pendek dengan penggunaan alat-alat RAD

yang kuat, 4) Produktivitas dengan lebih sedikit

orang dalam waktu singkat, 5) Penggunaan alat-

alat dan kerangka kerja.

1) Kompleksitas manajemen, 2) Cocok untuk sistem yang

berbasis komponen dan terukur, 3) Membutuhkan

keterlibatan pengguna di seluruh siklus hidup, 4)

Membutuhkan personal yang sangat terampil, 5)

Ketergantungan tinggi pada kemampuan modeling, 6) Tidak

berlaku untuk proyek-proyek yang lebih murah sebagai

biaya pemodelan dan otomatis generasi kode sangat tinggi

untuk proyek-proyek yang dianggarkan lebih murah untuk

pantas.

F

Threwaway

Prototyping

Model

G Spiral Model

1) Jumlah analisis risiko yang tinggi, 2) Baik

untuk proyek-proyek besar dan mission-critical,

3) Software diproduksi di awal siklus hidup

perangkat lunak.

1) Dapat menjadi model mahal untuk digunakan, 2) Analisis

risiko membutuhkan keahlian yang sangat spesifik, 3)

Keberhasilan proyek sangat tergantung pada tahap analisis

risiko, 4) Tidak bekerja dengan baik untuk proyek-proyek

yang lebih kecil.

H
V-Shaped

Model

1) Sederhana dan mudah digunakan, 2) Setiap

fase memiliki delivery tertentu, 3) Kesempatan

keberhasilan yang lebih tinggi atas model

waterfall karena perkembangan awal dari

rencana pengujian selama siklus hidup, 4)

Bekerja dengan baik untuk proyek-proyek kecil

di mana persyaratan yang mudah dipahami.

1) Sangat kaku seperti model waterfall, 2) Sedikit

fleksibilitas dan ruang lingkup menyesuaikan sulit dan

mahal, 3) Software dikembangkan selama tahap

implementasi, sehingga tidak ada prototipe awal dari

perangkat lunak yang dihasilkan, 4) Model ini tidak

memberikan jalan yang jelas untuk masalah yang ditemukan

selama pengujian tahap.

I
Agile

Development

1) Metode ringan sesuai proyek ukuran kecil-

menengah, 2) Menghasilkan kohesi tim yang

baik, 3) Menekankan produk akhir, 4) Berulang,

5) Pendekatan berbasis tes untuk persyaratan dan

jaminan kualitas.

1) Tidak cocok untuk menangani dependensi yang

kompleks, 2). Lebih risiko keberlanjutan, rawatan dan

diperpanjang, 3) Sebuah rencana keseluruhan, pemimpin

lincah danmanajemen proyek tangkas praktekadalah suatu

keharusan tanpa yang tidak akan bekerja.

30

TEKNIKA, Volume 5, Nomor 1, November 2016

ISSN: 2549-8037, E-ISSN: 2549-8045

%XGL��'��6���GNN���$QDOLVLV�3HPLOLKDQ�3HQHUDSDQ�3UR\HN�0HWRGRORJL�3HQJHPEDQJDQ«

IV. PEMBAHASAN

Metodologi pengembangan perangkat lunak yang terdiri

dari Linear Sequential Model atau waterfall, Parallel

Model, Iterative Model, Prototyping Model, RAD (Rapid

Application Development) Model, Spiral Model, V-Shaped

Model dan Agile Development memiliki perbandingan yang

menunjukkan fitur kelebihan dan kelemahan masing-

masing. Pertimbangan pemilihan metodologi yang tepat

sesuai dengan kebutuhan dapat didasarkan pada kriteria

penilaian yang terdiri dari kejelasan persyaratan pengguna,

keakraban dengan teknologi, sistem kompleksitas, sistem

keandalan, jadwal waktu singkat dan visibility jadwal.

Tidak ada metodologi yang benar-benar sesuai dengan

semua jenis organsasi, sehingga diperlukan pendekatan

lebih lanjut untuk memilih metodologi mana yang paling

sesuai untuk dapat diterapkan pada organisasi tertentu.

Beberapa pendapat tentang pemilihan metodologi

pengembangan sistem dari beberapa hasil literatur jurnal

ilmiah antara lain:

A. Menurut Munassar, terdapat banyak model yang

digunakan untuk mengembangkan sistem dengan

ukuran yang berbeda dilihat dari project dan

kebutuhannya [7]. Umumnya menggunakan model

waterfall dan spiral yang dibangun pada tahun 1970 dan

tahun 1999. Setiap model memiliki kelebihan dan

kekurangan, sehingga masing-masing model mencoba

untuk menghilangkan kekurangan dari model

sebelumnya.

B. Menurut Ajah, bahwa pilihan metodologi dipengaruhi

oleh kejelasan kebutuhan pengguna (clarity user

requirement), penguasaan teknologi (familiarity with

technology), tingkat kerumitan sistem (system

complexity), tingkat kehandalan sistem (system

realibility), waktu pelaksanaan (short time schedules),

dan visibilitas jadwal pelaksanaan (schedule visibility)

[8]. Untuk menjadi sukses dalam proyek perangkat

lunak, pemegang saham harus kritis terhadap metode

yang berbeda, sehingga secara efektif dapat

menggabungkan metode yang akan membantu

mencapai tujuan perangkat lunak.

C. Menurut Taya, semua model pengembangan perangkat

lunak memiliki kelebihan dan kekurangan [9]. Namun

pengaturan dan pemilihan waktu sangat penting dalam

pengembangan perangkat lunak. Jika penundaan terjadi

dalam tahap pengembangan, pasar dapat diambil alih

oleh pesaing. Jika produk yang dilincurkan lebih cepat

GDUL� SDGD� SHVDLQJ� WHUQ\DWD� EHULVL� ³bug´�� KDO� LQL� GDSDW�

mempengaruhi reputasi perusahaan. Sehingga,

diperlukan komitmen antara waktu pengembangan dan

kualitas produk. Pelanggan tidak mengharapkan produk

JUDWLV� \DQJ� EHULVL� ³bug´� WHWDSL� SURGXk yang user-

friendly yang menghasilkan gairah atau kegembiraan.

D. Menurut Despa, metodologi pengembangan software

mengikuti dua filosofi utama: kelas berat dan kelas

ringan [3]. Metodologi kelas berat cocok untuk proyek-

proyek di mana kebutuhan tidak mungkin diubah dan

kompleksitas software digunakan untuk perencanaan

secara rinci. Dengan metodologi kelas berat manajer

proyek dapat dengan mudah melakukan pelacakan,

evaluasi dan pelaporan. Pemilik proyek jauh terlibat

hanya dalam tahap penelitian dan perencanaan.

Metodologi kelas ringan cocok untuk proyek-proyek

dengan spesifikasi tidak jelas atau mungkin berubah

karena faktor internal atau eksternal. Metodologi kelas

ringan didasarkan pada pendekatan bertahap, software

disampaikan dalam beberapa pengulangan berturut-turut

dan semua menjadi versi fungsional dari aplikasi.

Metodologi kelas ringan memberikan fleksibilitas yang

besar dan dapat dengan mudah beradaptasi dengan

perubahan.

VI. KESIMPULAN

Dapat disimpulkan bahwa keberhasilan pengembangan

perangkat lunak bergantung pada pengelolaan proyek

perangkat lunak secara keseluruhan. Komponen metodologi

pengembangan perangkat lunak terdiri dari metode, alat

bantu (Tools), dan prosedur. Tidak ada metodologi yang

benar-benar sesuai dengan semua jenis organsasi, sehingga

dibutuhkan pendekatan lebih lanjut untuk memilih

metodologi mana yang paling sesuai untuk dapat diterapkan

pada organisasi tertentu. Metodologi pengembangan

perangkat lunak yang terdiri dari Linear Sequential Model

atau waterfall, Parallel Model, Iterative Model,

Prototyping Model, RAD (Rapid Application Development)

Model, Spiral Model, V-Shaped Model dan Agile

Development memiliki perbandingan yang menunjukkan

fitur kelebihan dan kelemahan masing-masing.

Pertimbangan pemilihan metodologi yang tepat sesuai

dengan kebutuhan dapat didasarkan pada kriteria penilaian

yang terdiri dari kejelasan persyaratan pengguna, keakraban

dengan teknologi, sistem kompleksitas, sistem keandalan,

jadwal waktu singkat dan visibility jadwal hingga

mereferensi beberapa pendapat dari penelitian atau jurnal

ilmiah. Disarankan untuk menganalisis metodologi yang

lain dengan pendekatan yang berbeda untuk mensimulasi

dan membandingkan karakteristik dalam rangka

mewujudkan keberhasilan untuk memilih sebuah

metodologi yang akan diimplementasikan dalam sebuah

organisasi.

REFERENSI

[1] Susanto, A. (2004). Sistem Informasi Manajemen.

Bandung : Lingga Jaya.

[2] Pressman, R. S. (2005). Software Engineering: a

3UDFWLWLRQHU¶V�$SSURDFK. Seventh Edition.

[3] Despa, M. L. (2014). Comparative Study on Software

Development Methodologies. Database Systems

Journal vol. V, no. 3.

[4] Ian, S. (2004). Software Engineering 7th Edition,

Addison Wesley.

31

TEKNIKA, Volume 5, Nomor 1, November 2016

ISSN: 2549-8037, E-ISSN: 2549-8045

%XGL��'��6���GNN���$QDOLVLV�3HPLOLKDQ�3HQHUDSDQ�3UR\HN�0HWRGRORJL�3HQJHPEDQJDQ«

[5] Dennis. A, Wixom. B, and Roth. R. (2006). System

Analysis and Design. John Wiley and Sons, Inc pp.

171-209.

[6] Larman. C, Basili. V. R, (2003). Iterative and

Incremental Development: A Brief History. Computer,

vol. 36, no. 6, pg. 47-56, doi:10.1109/

MC.2003.1204375.

[7] Munassar, N. M. A. and Govardhan, A. (2010).

Comparison Between Five Models Of Software

Engineering. IJCSI International Journal of Computer

Science Issues, Vol. 7, Issue 5, September.

[8] Ajah, I. A. and Ugah, J. O. (2013). Comparative

Analysis of Software Development Methodologies.

Volume 3, Issue 6, June. www.ijarcsse.com.

[9] Taya, S. and Gupta, S. (2011). A Comparison Between

Five Models Of Software Engineering. IJCST Vol. 2,

Issue 4, Oct.±Dec.

