24 Budi, D. S., dkk.: Analisis Pemilihan Penerapan Proyek Metodologi Pengembangan...

Analisis Pemilihan Penerapan Proyek
Metodologi Pengembangan Rekayasa Perangkat
Lunak

Darmawan Setiya Budi
Magister Teknik Informatika
STIMIK Amikom
darmawan.setiyabudi @ gmail.com

Abstrak - Metodologi merupakan kerangka pijakan utama
dalam perancangan dan pengembangan perangkat lunak
profesional untuk menghasilkan sebuah sistem informasi yang
sesuai dengan kebutuhan Dbisnis sebuah organisasi.
Keberhasilan pengembangan perangkat lunak bergantung
pada pengelolaan proyek perangkat lunak secara keseluruhan.
Tidak ada metodologi yang benar-benar sesuai dengan semua
jenis organsasi, sehingga dibutuhkan pendekatan lebih lanjut
untuk memilih metodologi mana yang paling sesuai untuk
dapat diterapkan pada organisasi tertentu. Paper ini
menjelaskan dan menganalisa metodologi pengembangan
perangkat lunak yang meliputi: Lirnear Sequential Model atau
Waterfall, Parallel Model, Iterative Model, Prototyping Model,
RAD (Rapid Application Development) Model, Spiral Model, V-
Shaped Model dan Agile Development untuk membuat
perbandingan yang menunjukan kelebihan dan kelemahan
masing-masing. Hasil paper ini menunjukan pertimbangan
pemilihan metodologi yang didasarkan pada faktor-faktor
kriteria penilaian yang terdiri dari Kkejelasan persyaratan
pengguna, keakraban dengan teknologi, kompleksitas sistem,
sistem keandalan, jadwal waktu singkat dan visibility jadwal
hingga mereferensi beberapa pendapat dari jurnal ilmiah.
Kata Kunci : metodologi pengembangan rekayasa perangkat
lunak, Linear Sequential Model, Waterfall, Parallel Model,
Iterative Model, Prototyping Model, RAD (Rapid Application
Development) Model, Spiral Model, V-Shaped Model, Agile
Development

I. PENDAHULUAN

Keberhasilan pengembangan perangkat lunak
bergantung pada pengelolaan proyek perangkat lunak secara
keseluruhan. Menetapkan sebuah metodologi memiliki
dinamisasi yang tinggi dalam tahap-tahap perancangan
model yang menggambarkan tahap-tahap aktivitas dan daur
hidup suatu sistem.

Metodologi merupakan kerangka pijakan utama dalam
perancangan dan pengembangan perangkat lunak
profesional untuk menghasilkan sebuah sistem informasi
yang sesuai dengan kebutuhan bisnis sebuah organisasi.
Memilih sebuah metodologi bukanlah hal yang mudah
dilakukan karena tidak satupun metodologi yang dapat
dikatakan terbaik. Setiap organisasi biasanya memiliki
standarisasi tertentu. Sehingga hal ini menjadi alasan paper
ini dapat mejawab tuntutan tersebut

Taghfirul Azhima Yoga Siswa
Magister Teknik Informatika
STIMIK Amikom
taghfirul.yoga@yahoo.co.id

Heri Abijono
Magister Teknik Informatika
STIMIK Amikom
ahabijono @ gmail.com

Metodologi Pengembangan Perangkat Lunak dapat
diartikan sebagai proses membuat suatu perangkat lunak
baru untuk menggantikan perangkat lunak lama secara
keseluruhan atau memperbaiki perangkat lunak yang telah
ada. Metodologi pengembangan perangkat lunak ini sangat
diperlukan agar dapat lebih cepat dan tepat dalam
mendeskripsikan solusi dan mengembangkan perangkat
lunak. Dengan metodologi pengembangan ini nantinya juga
dapat membantu untuk menghasilkan perangkat lunak yang
berkualitas.

II. METODOLOGI PENGEMBANGAN PERANGKAT
LUNAK

Menurut Azhar Susanto menyatakan bahwa SDLC
(System Development Life Cycle) adalah salah satu metode
pengembangan sistem informasi yang popular pada saat
sistem informasi pertama kali dibuat [1].

Terdapat empat tahapan dalam membangun atau
mengembangkan sistem informasi dengan menggunakan
SDLC, yaitu: planning, analysis, design, dan
implementation. Adapun dalam implementasi SDLC
terdapat berbagai metodologi yang dapat dipergunakan.
Penggunaan metodologi akan bervariasi tergantung kepada
penekanannya, apakah terhadap bisnis proses ataukah pada
data pendukung bisnis.

lde —p Planning ¥ Analisis B Desain B Implementasi B Sistem

Gambar 1. System Development Life Cycle.

Berdasarkan pengertian tersebut, secara umum dapat
dikatakan bahwa proses pengembangan perangkat lunak
mengikuti tahap-tahap:

1) Menentukan APA yang harus dikerjakan oleh perangkat
lunak dalam satu rentang waktu tertentu.

2) Mendefinisikan BAGAIMANA perangkat lunak dibuat,
mencakup arsitektur perangkat lunaknya, antar muka
internal, algoritma, dan lain-lain.

3) Penerapan (penulisan program) dan pengujian unit-unit
program.

4) Integrasi dan pengujian modul-modul program.

TEKNIKA, Volume 5, Nomor 1, November 2016
ISSN: 2549-8037, E-ISSN: 2549-8045

Budi, D. S., dkk.: Analisis Pemilihan Penerapan Proyek Metodologi Pengembangan... 25

5) Validasi perangkat lunak secara keseluruhan (pengujian
sistem).

A. Komponen dan Karakteristik Proyek Metodologi
Pengembangan Perangkat Lunak
Menurut Pressman bahwa komponen metodologi

pengembangan perangkat lunak dapat dibagi ke dalam tiga

unit, yaitu [2]:

1) Metode, yaitu suatu cara atau teknik pendekatan yang
sistematik yang dipergunakan untuk mengembangkan
perangkat lunak. Metode ini mencakup: Perencanaan
proyek dan perkiraan, analisis keperluan sistem dan
perangkat lunak, perancangan struktur data, arsitektur
program, prosedur algoritma, penulisan kode program
(coding), uji coba, dan pemeliharaan.

2) Alat Bantu (7ools), yaitu alat-alat (manual maupun
otomatis) yang mendukung pengembangan perangkat
lunak. Terdapat dua alat bantu yang dapat digunakan
yaitu: alat bantu manual dan alat bantu otomatis.

3) Prosedur, yang dipergunakan untuk mendefinisikan
urut-urutan pekerjaan (daur) dari metode dan alat bantu
tersebut.

Menurut Despa bahwa karakteristik proyek
pengembangan perangkat lunak terdiri dari: sering berubah
spesifikasi, dinamika tinggi teknologi dan standard, tenaga
kerja terampil, dan tim didistribusikan secara global [3]. Hal
ini dapat dilihat pada tabel 1.

Tabel 1. Karakteristik Proyek Pengembangan Perangkat

Lunak.

Karakteristik Dampak Positif Dampak Negatif
Sering berubah Membahayakan tenggat
spesifikasi waktu

Hasil melebihi anggaran

proyek

Menyebabkan stres dan

ketidakpuasan bagi tim

pengembangan
Dinamika tinggi Menghasilkan Perangkat lunak dapat

teknologi dan
standar

peluang baru
dalam dari segi

menjadi usang pada saat
marak di pasaran

desain dan Pengembang software
codding harus menginvestasikan
banyak waktu dalam
meneliti teknologi baru
Tenaga kerja Meningkatkan Biaya tinggi yang
terampil kemungkinan dihasilkan oleh sumber
mencapai hasil ~ daya manusia
yang inovatif
Tim Bekerja dapat Monitoring dan kontrol
didistribusikan dilakukan menjadi lebih sulit
secara global sekitar jam
Keragaman Mengintegrasikan kode
budaya baru yang lebih
memelihara menantang
kreativitas

B. Macam-Macam Metodologi Pengembangan Perangkat

Lunak

Macam-macam klasifikasi metodologi pengembangan
perangkat lunak terdiri dari dua pendapat antara lain:

Pertama, menurut Ian Sommerville bahwa model proses
pengembangan perangkat lunak terbagi menjadi empat,
yaitu: Model Pengembangan Prototyping (Evolusioner),
Model Pengembangan Sistem Formal, Model
Pengembangan Berorientasi Pemakaian Ulang (Reuse-
oriented software engineering), dan Model Pengembangan
Waterfall [4].

Kedua, menurut Pressman yang juga mejadi fokus
pembahasan dalam paper ini — menyebutkan bahwa model
proses pengembangan perangkat lunak terbagi menjadi 5
metode yaitu: Linear Sequential Model atau waterfall,
Incremental Process Model, Evolutionary Process Model,
RAD (Rapid Application Development) Model, dan
Concurrent Model [2].

1) Linear Sequential Model

—
Planning “_‘\: ~
Analysis — ~
S
Design \“‘-\ %
———

Implermentation *\‘

Gambar 2. Linear Sequential Model.

Linear sequential model (“classic life cycle” atau
“waterfall model”) adalah metode pengembangan perangkat
lunak dengan pendekatan sekuensial dengan cakupan
aktivitas:

a) Rekayasa Sistem dan Analisis (System Engineering
and Analysis). Karena perangkat lunak adalah bagian
dari sistem yang lebih besar, pekerjaan dimulai dari
pembentukan kebutuhan-kebutuhan untuk seluruh
elemen sistem dan kemudian memilah mana yang
untuk pengembangan perangkat lunak. Hal ini penting,
ketika perangkat lunak harus berkomunikasi dengan
hardware, orang, dan basis data.

b) Analisis Kebutuhan Perangkat Lunak (Software
Requirements Analysis). Pengumpulan kebutuhan
dengan fokus pada perangkat lunak, yang meliputi:
domain informasi, fungsi yang dibutuhkan, unjuk
kerja/performansi dan antarmuka. Hasilnya harus
didokumentasi dan di-review ke pelanggan.

c) Perancangan (Design). Ada empat atribut untuk
program, yaitu: Struktur Data, Arsitektur perangkat
lunak, Prosedur detil, dan Karakteristik Antarmuka.
Proses desain mengubah kebutuhan-kebutuhan menjadi
bentuk karakteristik yang dimengerti perangkat lunak
sebelum dimulai penulisan program. Desain ini harus
terdokumentasi dengan baik dan menjadi bagian
konfigurasi perangkat lunak.

TEKNIKA, Volume 5, Nomor 1, November 2016
ISSN: 2549-8037, E-ISSN: 2549-8045

26 Budi, D. S., dkk.: Analisis Pemilihan Penerapan Proyek Metodologi Pengembangan...

d) Pembuatan Kode (Coding). Penterjemahan
perancangan ke bentuk yang dapat dimengerti oleh
mesin, dengan menggunakan bahasa pemrograman.

e) Pengujian (Testing). Setelah kode program selesai
testing dapat dilakukan. Testing memfokuskan pada
logika internal dari perangkat lunak, fungsi eksternal
dan mencari segala kemungkinan kesalahan dan
memriksa apakah sesuai dengan hasil yang diinginkan.

f) Pemeliharaan (Maintenance). Merupakan bagian
paling akhir dari siklus pengembangan dan dilakukan
setelah perangkat lunak dipergunakan, meliputi
kegiatan-kegiatan:

i) Corrective Maintenance: Mengoreksi kesalahan
pada perangkat lunak, yang baru terdeteksi pada
saat perangkat lunak dipergunakan.

i) Adaptive Maintenance: Penyesuaian dengan
lingkungan baru, misalnya sistem operasi atau
sebagai tuntutan atas perkembangan sistem
komputer, misalnya penambahan printer driver.

i)y Perfektive Maintenance: Bila perangkat lunak
sukses dipergunakan oleh pemakai. Pemeliharaan
ditujukan untuk menambah kemampuannya seperti
memberikan fungsi-fungsi tambahan, peningkatan
kinerja dan sebagainya.

2) Parallel Model

Menurut Dennis, Parallel Model merupakan metodologi
yang mencoba untuk mengatasi interval waktu yang lama
antara tahap analisis dan pengiriman sistem [5]. Metodologi
ini mencoba untuk memperbaiki kelemahan dari metodologi
waterfall, melakukan desain umum dan implementasi secara
berurutan untuk seluruh sistem dan kemudian proyek ini
dibagi menjadi serangkaian subproyek yang berbeda yang
dapat dirancang dan dilaksanakan secara paralel. Setelah
semua subproyek sempurna, maka dilakukan integrasi akhir
sehingga dilakukan delivery pada sistem.

s
Planning \
Analysis = . 4
\ : ‘/——\
Design '\
v
Design -\’

t Implementation
e,
Design —\

Implamentation

.
Dosign -\

Implemantation

Subproject 1

Implementation

Subproject 3

Gambar 3. Metodologi Parallel.

3) Iterative Model

Metologi ini berkembang didasari oleh masalah pada
model waterfall yang menciptakan permintaan untuk metode
baru dari sistem yang berkembang agar dapat memberikan
hasil yang lebih cepat, membutuhkan lebih sedikit informasi
yang mutakhir, dan menawarkan fleksibilitas yang lebih
besar.

Menurut Larman, [ferative Model merupakan
metodologi yang mengandalkan pembangunan aplikasi
perangkat lunak satu langkah pada satu waktu dalam bentuk
memperluas model [6]. Metodologi ini didasarkan pada
spesifikasi awal model dasar dari aplikasi yang dibangun.
Setelah model diuji dan umpan balik diterima dari
spesifikasi proyek, maka selanjutnya disesuaikan dengan
model yang akan dikembangkan. Proses ini diulang sampai
model menjadi aplikasi yang berfungsi penuh untuk
memenuhi semua kebutuhan pemilik proyek.

Planning r\ / Analysis \
Analysis Desion
g
Analysis ‘\
—

€)
Gambar 4. Metodologi Iferative.

Model ini diimplementasi dengan cara perulangan,
sehingga proyek pada model ini dibagi menjadi bagian-
bagian kecil. Hal ini memungkinkan tim pengembangan
untuk menunjukkan hasil sebelumnya dapat di proses dan
mendapatkan umpan balik yang berharga dari pengguna
sistem.

Seringkali, setiap perulangan sebenarnya adalah sebuah
proses mini-Waterfall dengan umpan balik dari satu fase
yang menyediakan informasi penting untuk desain tahap
berikutnya. Dalam variasi model ini, produk-produk
perangkat lunak, yang diproduksi pada akhir setiap langkah
(atau serangkaian langkah-langkah), dapat masuk ke
produksi langsung sebagai temuan tambahan.

4) Prototyping Model

~
~

Planning ~
\\
\

*

Analysis.

— Implementation

Design

Implementation

Gambar 5. Prototyping Model.

Pendekatan prototyping model digunakan jika pemakai
hanya mendefenisikan objektif umum dari perangkat lunak
tanpa memerinci kebutuhan input, pemrosesan dan
outputnya, sementara pengembang tidak begitu yakin akan
efesiensi algoritma, adaptasi sistem operasi, atau bentuk

TEKNIKA, Volume 5, Nomor 1, November 2016
ISSN: 2549-8037, E-ISSN: 2549-8045

Budi, D. S., dkk.: Analisis Pemilihan Penerapan Proyek Metodologi Pengembangan... 27

antarmuka manusia-mesin yang harus diambil. Cakupan

aktivitas dari prototyping model terdiri dari:

a) Mendefinisikan objektif secara keseluruhan dan
mengidentifikasi kebutuhan yang sudah diketahui.

b) Melakukan perancangan secara cepat sebagai dasar
untuk membuat prototype.

c¢) Menguji coba dan mengevaluasi prototype dan
kemudian melakukan penambahan dan perbaikan-
perbaikan terhadap prototype yang sudah dibuat.

5) Threwaway Prototyping Model

~
Planning ~_ >
\\
R
-
Analysiss ~>
~
: ~ .=
e smge by

nalysis

Design

| merdation
Impiemen:alu phe
) !
Syste]

Gambar 6. Threwaway Prototyping Model.

Metodologi ini mirip dengan metodologi berdasarkan
prototyping. Perbedaan utama adalah bahwa lembaran
prototipe selesai selama titik yang berbeda dalam SDLC.
Fokus pembangunan adalah untuk menguji fitur yang tidak
dipahami dengan menganalisis, merancang, dan membangun
prototipe desain. Prototipe desain merupakan bagian dari
sistem yang perlu perbaikan tambahan, dan itu hanya cukup
rinci untuk memungkinkan pengguna untuk memahami isu-
isu yang sedang dipertimbangkan. Setelah masalah
diselesaikan, proyek bergerak ke dalam desain dan
implementasi. Pada titik ini, desain prototipe dibuang, yang
merupakan perbedaan penting antara Threwaway
Prototyping dan Prototyping, di mana prototipe berkembang
menjadi sistem final. Pendekatan ini menghasilkan lebih
stabil dan dapat diandalkan sistem.

6) RAD (Rapid Application Development) Model

Building
Prototypes

i !

Testing & Quality Reviewing
Assurance Prototypes

Analysis —>

Planning

Gambar 7. RAD (Rapid Application Development) Model.

Merupakan model proses pengembangan perangkat
lunak secara linear sequential yang menekankan pada siklus
pengembangan yang sangat singkat. Jika kebutuhan
dipahami dengan baik, proses RAD memungkinkan tim
pengembangan menciptakan “sistem fungsional yang utuh”
dalam periode waktu yang sangat pendek (kira-kira 60-90
hari). Cakupan aktivitas dari RAD model ini terdiri dari:

a) Pemodelan Bisnis (Bussiness Modelling). Aliran
informasi diantara fungsi-fungsi bisnis dimodelkan
dengan suatu cara untuk menjawab pertanyaan-
pertanyaan berikut: Informasi apa yang mengendalikan
proses bisnis? Ke mana informasi itu pergi? Siapa yang
memprosesnya?

b) Pemodelan Data (Data Modelling). Aliran informasi
yang didefinisikan sebagai bagian dari fase pemodelan
bisnis disaring ke dalam serangkaian objek data yang
dibutuhkan untuk menopang bisnis tersebut.
Karakteristik/atribut ~ dari masing-masing objek
diidentifikasi dan hubungan antara objek-objek tersebut
didefinisikan.

c) Pemodelan Proses (Process Modelling). Aliran
informasi yang didefinisikan dalam fase pemodelan
data ditransformasikan untuk mencapai aliran informasi
yang perlu bagi implementasi sebuah fungsi bisnis.
Gambaran pemrosesan diciptakan untuk menambah,
memodifikasi, menghapus atau mendapatkan kembali

sebuah objek data.
d) Pembuatan Aplikasi (Application Generation).
Selain menciptakan perangkat Ilunak dengan

menggunakan bahasa pemrograman generasi ketiga
yang konvensional, RAD lebih banyak memproses
kerja untuk memakai lagi komponen program yang
telah ada atau menciptakan komponen yang bias
dipakai lagi. Pada semua kasus, alat-alat bantu otomatis
dipakai untuk memfasilitasi kontruksi perangkat lunak.

e) Pengujian dan Pergantian (Testing and Turnover).
Karena proses RAD menekankan pada pemakaian
kembali, banyak komponen yang telah diuji. Hal ini
mengurangi keseluruhan waktu pengujian. Tapi
komponen baru harus diuji.

7) Spiral Model

A
Dele)imlnmeu:jves, — Evaluate alternatives,
° :;:Z.,ainin — T identify resolve risks
- Risk "
~ — ——___ analysis ~~
e — Rk ~
e —~ 154 T~ P
yd - [S ~ N
/ / — Risk "‘-\\ _ \\ o .
/ 4 i analysis N \ pera- ",
4 4 // N TwPrototype 3 gional |
f / - ~ “~_Prototype 2 ', protoype
/ / / yd R(;k]P N WPE2 N
/ { / analysis | Proto- "\ \ \ \
| | [f REVIEW \ \ \ |
: } } ' __lope ' ! !
\ \ Requirements plan T/ Simulations, models, benchmarks |
A \ Life-cycle plan Conceptai J —_ / |
A N Operation _“spy Vi
N\ ~ - .equ.,e.nenl,// Product /e
. . ~—— L design / Detailed /
. \‘\\ Development Requirement -~ 4 d“"g"//
. ~— plan “'al'daﬂ‘,",/ - Code
~ " Dusign " Unit test
S~ Integration B -
Plan next hase‘r-‘-‘*-h and test plan V&V__/_V__/ Integration
P e —— " Acceptance m"_t -
Service test - - Develop, verify
— next-level product

Gambar 8. Spiral Model.

Merupakan model proses perangkat lunak yang
memadukan wujud pengulangan dari model prototyping
dengan aspek pengendalian dan sistematika dari linear
sequential model, dengan penambahan elemen baru yaitu
analisis resiko.

Model ini memiliki empat aktivitas penting, yaitu:

TEKNIKA, Volume 5, Nomor 1, November 2016
ISSN: 2549-8037, E-ISSN: 2549-8045

28 Budi, D. S., dkk.: Analisis Pemilihan Penerapan Proyek Metodologi Pengembangan...

a) Perencanaan (Planning). penentuan tujuan, alternatif,
dan batasan.

b) Analisis resiko (Risk Analysis). analisis alternatif dan
identifikasi/pemecahan resiko.

c¢) Rekayasa (Engineering).
berikutnya dari produk.

d) Evaluasi Pemakai (Customer Evaluation). penilaian
terhadap hasil rekayasa Bentuk spiral memberikan
gambaran bahwa semakin besar iterasinya, maka
menunjukkan makin lengkap versi dari perangkat
lunak yang dibuat. Selama awal sirkuit, objektif,
alternatif dan batasan didefinisikan serta resiko
diidentifikasikan dan dianalisa.

Jika resiko menunjukkan ada ketidakpastian terhadap
kebutuhan, maka prototyping harus dibuat pada kuadran
rekayasa. Simulasi dan pemodelan lain dapat digunakan
untuk mendefinisikan masalah dan memperbaiki kebutuhan.
Pelanggan mengevaluasi hasil rekayasa (kuadran evaluasi
pelanggan) dan membuat usulan untuk perbaikan.
Berdasarkan masukan dari pelanggan, fase berikutnya
adalah perencanaan dan analisis resiko. Setelah analisis
resiko selalu diperiksa apakah proyek diteruskan atau tidak,
jika resiko terlalu besar, maka proyek dapat dihentikan.
Model spiral ini adalah pendekatan yang paling realistic
untuk sistem sekala besar.

pengembangan level

8) V-Shaped Model

System system

Kequirements Iniegranon
software aceeplance
requirements \ / test
preliminary software

Level of abstraction

requirements integration

leal

\ / and
i Tegri

detailed camponénl integration

design test

N al

code and urit
debug

analys
and
design

lest

time

Gambar 9. V-Shaped Model.

Sama seperti model air terjun, V- yang siklus hidup
berbentuk jalan berurutan dari pelaksanaan proses. Setiap
fase harus diselesaikan sebelum tahap berikutnya dimulai.
Pengujian ditekankan dalam model ini lebih dari model air
terjun. Prosedur pengujian yang dikembangkan di awal

siklus hidup sebelum coding dilakukan, masing-masing
selama fase sebelumnya implementasi. Persyaratan mulai
model siklus hidup seperti model air terjun. Sebelum
pembangunan dimulai, rencana uji sistem dibuat. Rencana

uji sistem berfokus pada pemenuhan fungsi yang ditetapkan
dalam persyaratan pengumpulan.

Tahap desain tingkat tinggi berfokus pada arsitektur
sistem dan desain. Sebuah rencana uji integrasi dibuat dalam
fase ini dalam rangka untuk menguji potongan kemampuan
sistem perangkat lunak untuk bekerja sama. Namun, tahap
desain tingkat rendah terletak di mana komponen perangkat
lunak yang sebenarnya dirancang, dan tes unit yang dibuat
dalam fase ini juga.

9) Agile Development [

Kategori ini berfokus pada perampingan SDLC dengan
menghilangkan banyak pemodelan dan dokumentasi
overhead dan waktu yang dihabiskan untuk tugas-tugas.
Proyek menekankan sederhana, pengembangan aplikasi
berulang. Kategori ini menggunakan pemrograman ekstrim
(XP), yang dijelaskan sebagai berikut:

Prinsip-prinsip Kunci XP meliputi pengujian terus
menerus, coding sederhana dan interaksi yang dekat dengan
pengguna akhir untuk membangun sistem yang sangat cepat.
Setelah proses perencanaan yang dangkal, tim proyek
melakukan analisis, desain, dan fase implementasi iterative.

-

P lanning \

Aralysis

Design

aal=1=] menta!:iL/

Gambar 10. Agile Development.

1. MEMILIH METODOLOGI PENGEMBANGAN
YANG TEPAT

Beberapa pertimbangan pemilihan metodologi
pengembangan perangkat lunak yang tepat menurut Dennis
terdiri dari beberapa keriteria meliputi: kejelasan kebutuhan
pengguna (clarity user requirement), penguasaan teknologi
(familiarity with technology), tingkat kerumitan sistem
(system complexity), tingkat kehandalan sistem (system
realibility), waktu pelaksanaan (short time schedules), dan
visibilitas jadwal pelaksanaan (schedule visibility) [S]. Hal
ini dijelaskan pada tabel 2.

TEKNIKA, Volume 5, Nomor 1, November 2016
ISSN: 2549-8037, E-ISSN: 2549-8045

Budi, D. S., dkk.: Analisis Pemilihan Penerapan Proyek Metodologi Pengembangan...

Tabel 2. Kriteria Pemilihan Metodologi.

Kriteria Pengembangan . System Threwaway Agile
Sistem e Il VR L Prototyping Prototyping Development
Kejelasan kebutuhan pengguna Buruk Buruk Buruk Baik Baik Sekali Baik Sekali Baik Sekali
Penguasaan teknologi Buruk Buruk Buruk Baik Buruk Baik Sekali Buruk
Tingkat kerumitan sistem Baik Baik Baik Baik Buruk Baik Sekali Buruk
Tingkat kehandalan sistem Baik Baik Baik Sekali Baik Buruk Baik Sekali Baik
Waktu pelaksanaan Buruk Baik Buruk Baik Sekali Baik Sekali Baik Baik Sekali
Visibilitas jadwal pelaksanaan Buruk Buruk Buruk Baik Sekali ~ Baik Sekali Baik Baik
Tabel 3. Kelebihan dan Kelemahan Metodologi Pengembangan Perangkat Lunak.
No Metodologi Kelebihan Kelemahan
1) Mudah dalam pengelolaan karena hampir 1) Tahapan yang berurutan secara linier tidak
seluruh requirements telah diidentifikasikan dan memungkinkan untuk kembali pada tahapan selanjutnya, 2)
Linear didokumentasikan, 2) Tahapan yang berurutan Tidak fleksibel terhadap perubahan kebutuhan yang terjadi
A Sequential ~ secara linier, identifikasi dan dokumentqsi yang dalam tahap pengembangan sistem, 3) Hampir tidak ada
Model lengkap, menyebabkan proses mudah dipahami (sleransi kesalahan, terutama pada tahapan planning dan
oleh seluruh tim yang terlibat ataupun project design.
owner.
Waktu pengembangan sistem yang lebih singkat 1) Integrasi sistem memiliki kesulitan tersendiri. Kegagalan
dibandingkan waterfall, karena beberapa tahapan atau keterlambatan pada salah satu sub project memberikan
B Parallel diakselerasikan dengan membagi menjadi dampak pada proses mengintegrasikan seluruh sistem, 2)
Model
beberapa sub project. Terdapat kemungkinan kesulitan dalam penanganan jika
terjadi permasalah pada sub project secara bersamaan.
1) Umpan balik terus menerus dari pemilik Setiap perulangan adalah struktur kaku yang menyerupai
C Iterative proyek, 2) Beberapa revisi pada seluruh aplikasi project kecil waterfall.
Model dan fungsi spesifik, 3) Pekerjaan disampaikan di
awal proyek.
1) Requirements identification yang akurat 1) Setiap evaluasi dan masukan terhadap purwa rupa, maka
karena dilakukan evaluasi secara berkala dan akan membutuhkan penyesuaian terhadap purwa rupa
mendapatkan masukan dari project owner tersebut. Dan setiap penyesuaian akan meningkatkan
Prototyping terhadap purwa rupa yang dihasilkan, 2) User kompleksitas sistem yang dikembangkan, 2) Memberikan
D experience yang meningkat, karena secara terus beban tambahan kepada programmer, 3) Terdapat kebutuhan
Model
menerus melakukan uji coba dan evaluasi biaya tambahan terkait dengan pembuatan purwa rupadan
terhadap purwa rupa, 3) Kesalahan dan redudansi dapat dilakukan penyesuaian versi purwa rupa sesuai
dapat diminimalkan karena proses identifikasi kebutuhan, hingga purwa rupa dapat disetujui oleh project
yang baik terhadap purwa rupa. owner.
RAD (Rapid 1) Efisiensi waktu pengiriman, 2) Perubahan 1) Kompleksitas manajemen, 2) Cocok untuk sistem yang
Application kebutuhan dapat ditampung, 3) Waktu siklus berbasis komponen dan terukur, 3) Membutuhkan
Development) dapat pendek dengan penggunaan alat-alat RAD keterlibatan pengguna di seluruh siklus hidup, 4)
Model yang kuat, 4) Produktivitas dengan lebih sedikit Membutuhkan personal yang sangat terampil, 5)
orang dalam waktu singkat, 5) Penggunaan alat- Ketergantungan tinggi pada kemampuan modeling, 6) Tidak
Threwaway alat dan kerangka kerja. berlaku untuk proyek-proyek yang lebih murah sebagai
F Prototyping biaya pemodelan dan otomatis generasi kode sangat tinggi
Model untuk proyek-proyek yang dianggarkan lebih murah untuk
pantas.
1) Jumlah analisis risiko yang tinggi, 2) Baik 1) Dapat menjadi model mahal untuk digunakan, 2) Analisis
untuk proyek-proyek besar dan mission-critical, risiko membutuhkan keahlian yang sangat spesifik, 3)
G Spiral Model ~ 3) Software diproduksi di awal siklus hidup Keberhasilan proyek sangat tergantung pada tahap analisis
perangkat lunak. risiko, 4) Tidak bekerja dengan baik untuk proyek-proyek
yang lebih kecil.
1) Sederhana dan mudah digunakan, 2) Setiap 1) Sangat kaku seperti model waterfall, 2) Sedikit
fase memiliki delivery tertentu, 3) Kesempatan fleksibilitas dan ruang lingkup menyesuaikan sulit dan
keberhasilan yang lebih tinggi atas model mahal, 3) Software dikembangkan selama tahap
V-Shaped
H Model waterfall karep_a perkembangan avyal dari implementasi, sehingga thldak_ ada prototipe ayv.?ll _darl
rencana pengujian selama siklus hidup, 4) perangkat lunak yang dihasilkan, 4) Model ini tidak
Bekerja dengan baik untuk proyek-proyek kecil ~memberikan jalan yang jelas untuk masalah yang ditemukan
di mana persyaratan yang mudah dipahami. selama pengujian tahap.
1) Metode ringan sesuai proyek ukuran kecil- 1) Tidak cocok untuk menangani dependensi yang
Agile me?nengah, 2) Menghasilkan kqhesi tim yang kf)mpleks, 2). Lebih risiko keberlanjutan, rawataq dz}n
Development baik, 3) Menekankan produk akhir, 4) Berulang, diperpanjang, 3) Sebuah rencana keseluruhan, pemimpin

5) Pendekatan berbasis tes untuk persyaratan dan
jaminan kualitas.

lincah danmanajemen proyek tangkas praktekadalah suatu
keharusan tanpa yang tidak akan bekerja.

TEKNIKA, Volume 5, Nomor 1, November 2016
ISSN: 2549-8037, E-ISSN: 2549-8045

30 Budi, D. S., dkk.: Analisis Pemilihan Penerapan Proyek Metodologi Pengembangan...

IV. PEMBAHASAN

Metodologi pengembangan perangkat lunak yang terdiri
dari Linear Sequential Model atau waterfall, Parallel
Model, Iterative Model, Prototyping Model, RAD (Rapid
Application Development) Model, Spiral Model, V-Shaped
Model dan Agile Development memiliki perbandingan yang
menunjukkan fitur kelebihan dan kelemahan masing-
masing. Pertimbangan pemilihan metodologi yang tepat
sesuai dengan kebutuhan dapat didasarkan pada kriteria
penilaian yang terdiri dari kejelasan persyaratan pengguna,
keakraban dengan teknologi, sistem kompleksitas, sistem
keandalan, jadwal waktu singkat dan visibility jadwal.
Tidak ada metodologi yang benar-benar sesuai dengan
semua jenis organsasi, sehingga diperlukan pendekatan
lebih lanjut untuk memilih metodologi mana yang paling
sesuai untuk dapat diterapkan pada organisasi tertentu.
Beberapa pendapat tentang pemilihan metodologi
pengembangan sistem dari beberapa hasil literatur jurnal
ilmiah antara lain:

A. Menurut Munassar, terdapat banyak model yang
digunakan untuk mengembangkan sistem dengan
ukuran yang berbeda dilihat dari project dan
kebutuhannya [7]. Umumnya menggunakan model
waterfall dan spiral yang dibangun pada tahun 1970 dan
tahun 1999. Setiap model memiliki kelebihan dan
kekurangan, sehingga masing-masing model mencoba
untuk menghilangkan kekurangan dari model
sebelumnya.

B. Menurut Ajah, bahwa pilihan metodologi dipengaruhi
oleh kejelasan kebutuhan pengguna (clarity user
requirement), penguasaan teknologi (familiarity with
technology), tingkat kerumitan sistem (system
complexity), tingkat kehandalan sistem (system
realibility), waktu pelaksanaan (short time schedules),
dan visibilitas jadwal pelaksanaan (schedule visibility)
[8]. Untuk menjadi sukses dalam proyek perangkat
lunak, pemegang saham harus kritis terhadap metode
yang berbeda, sehingga secara efektif dapat
menggabungkan metode yang akan membantu
mencapai tujuan perangkat lunak.

C. Menurut Taya, semua model pengembangan perangkat
lunak memiliki kelebihan dan kekurangan [9]. Namun
pengaturan dan pemilihan waktu sangat penting dalam
pengembangan perangkat lunak. Jika penundaan terjadi
dalam tahap pengembangan, pasar dapat diambil alih
oleh pesaing. Jika produk yang dilincurkan lebih cepat
dari pada pesaing ternyata berisi “bug”, hal ini dapat
mempengaruhi reputasi perusahaan. Sehingga,
diperlukan komitmen antara waktu pengembangan dan
kualitas produk. Pelanggan tidak mengharapkan produk
gratis yang berisi “bug” tetapi produk yang user-
friendly yang menghasilkan gairah atau kegembiraan.

D. Menurut Despa, metodologi pengembangan software
mengikuti dua filosofi utama: kelas berat dan kelas
ringan [3]. Metodologi kelas berat cocok untuk proyek-
proyek di mana kebutuhan tidak mungkin diubah dan
kompleksitas software digunakan untuk perencanaan

secara rinci. Dengan metodologi kelas berat manajer
proyek dapat dengan mudah melakukan pelacakan,
evaluasi dan pelaporan. Pemilik proyek jauh terlibat
hanya dalam tahap penelitian dan perencanaan.
Metodologi kelas ringan cocok untuk proyek-proyek
dengan spesifikasi tidak jelas atau mungkin berubah
karena faktor internal atau eksternal. Metodologi kelas
ringan didasarkan pada pendekatan bertahap, software
disampaikan dalam beberapa pengulangan berturut-turut
dan semua menjadi versi fungsional dari aplikasi.
Metodologi kelas ringan memberikan fleksibilitas yang
besar dan dapat dengan mudah beradaptasi dengan
perubahan.

VI. KESIMPULAN

Dapat disimpulkan bahwa keberhasilan pengembangan
perangkat lunak bergantung pada pengelolaan proyek
perangkat lunak secara keseluruhan. Komponen metodologi
pengembangan perangkat lunak terdiri dari metode, alat
bantu (Tools), dan prosedur. Tidak ada metodologi yang
benar-benar sesuai dengan semua jenis organsasi, sehingga
dibutuhkan pendekatan lebih lanjut untuk memilih
metodologi mana yang paling sesuai untuk dapat diterapkan
pada organisasi tertentu. Metodologi pengembangan
perangkat lunak yang terdiri dari Linear Sequential Model
atau waterfall, Parallel Model, Iterative Model,
Prototyping Model, RAD (Rapid Application Development)
Model, Spiral Model, V-Shaped Model dan Agile
Development memiliki perbandingan yang menunjukkan
fitur kelebihan dan kelemahan masing-masing.
Pertimbangan pemilihan metodologi yang tepat sesuai
dengan kebutuhan dapat didasarkan pada kriteria penilaian
yang terdiri dari kejelasan persyaratan pengguna, keakraban
dengan teknologi, sistem kompleksitas, sistem keandalan,
jadwal waktu singkat dan visibility jadwal hingga
mereferensi beberapa pendapat dari penelitian atau jurnal
ilmiah. Disarankan untuk menganalisis metodologi yang
lain dengan pendekatan yang berbeda untuk mensimulasi
dan membandingkan karakteristik dalam rangka
mewujudkan keberhasilan untuk memilih sebuah
metodologi yang akan diimplementasikan dalam sebuah
organisasi.

REFERENSI

[1] Susanto, A. (2004). Sistem Informasi Manajemen.
Bandung : Lingga Jaya.

[2] Pressman, R. S. (2005). Software Engineering: a
Practitioner’s Approach. Seventh Edition.

[3] Despa, M. L. (2014). Comparative Study on Software
Development Methodologies. Database Systems
Journal vol. V, no. 3.

[4] Ian, S. (2004). Software Engineering 7" Edition,
Addison Wesley.

TEKNIKA, Volume 5, Nomor 1, November 2016
ISSN: 2549-8037, E-ISSN: 2549-8045

Budi, D. S., dkk.: Analisis Pemilihan Penerapan Proyek Metodologi Pengembangan... 31

(5]

(6]

(7]

(8]

(9]

Dennis. A, Wixom. B, and Roth. R. (2006). System
Analysis and Design. John Wiley and Sons, Inc pp.
171-2009.

Larman. C, Basili. V. R, (2003). Iterative and
Incremental Development: A Brief History. Computer,
vol. 36, mno. 6, pg 47-56, doi:10.1109/
MC.2003.1204375.

Munassar, N. M. A. and Govardhan, A. (2010).
Comparison Between Five Models Of Software
Engineering. 1JCSI International Journal of Computer
Science Issues, Vol. 7, Issue 5, September.

Ajah, I. A. and Ugah, J. O. (2013). Comparative
Analysis of Software Development Methodologies.
Volume 3, Issue 6, June. www.ijarcsse.com.

Taya, S. and Gupta, S. (2011). A Comparison Between
Five Models Of Software Engineering. IJCST Vol. 2,
Issue 4, Oct.—Dec.

TEKNIKA, Volume 5, Nomor 1, November 2016
ISSN: 2549-8037, E-ISSN: 2549-8045

