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Abstract  

The growing incidence of skin cancers, coupled with low awareness among the population fuels interest 
in developing computer-assisted diagnostics solutions for skin cancer classification. A large number of 
data sets on skin lesions are publicly available and researchers have developed machine learning 
solutions to distinguish malignant from benign skin lesions aimed both to support the doctors and as 
mobile applications useful in self-diagnosis. The Computer Aided Diagnosis (CAD) systems are still in 
the very early stages of clinical application: in this review, we focus on the latest approaches used for 
image-based solutions for skin cancer diagnosis, highlighting the necessary future directions to improve 
these artificial intelligence systems. 
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1. Introduction 
The World Health Organization certifies that more than 
57,000 people have died from melanoma and there are 
more than 320,000 new cases in 2020 (see Figure 1).  

The reported data testify that melanoma affects the 
populations of all geographical areas of the world and in 
particular those of Europe (50.1 \% of total cases) and North 
America (27.7 \% of total cases). Melanoma ranks 5th for 

age-standardized (World) incidence and mortality rates in 
2020, for both males and females, considering all ages [1]. 
Despite the worrying scenario in terms of both new cases 
and deaths, if melanoma is identified by early diagnosis it is 
a treatable type of cancer. However, once disease   
progresses beyond the skin, survival rate is poor: melanoma 
is the deadliest form of skin cancer [2]. 
Specific clinical protocols such as the ABCDE [3] rule and the 
7-PCL [4] are adopted as a guideline for identifying lesions 
from an early stage. The ABCDE rule, which is the most 
commonly adopted, suggests monitoring symmetry, 
irregularity of the edges, colors of the lesion, its extension 
and evolution over time. 
The importance of the early diagnosis of melanoma 
together with the needs of the follow-up of the lesions over 
time, has resulted in automatic solutions for the analysis of 
skin lesions. 
In particular, Computer Aided Diagnosis (CAD) systems were 
born as dedicated frameworks to support skin analyzes. 
These systems include key steps: image acquisition, pre-
processing, segmentation, feature extraction and selection, 
and finally lesion classification (see Figure. 2). 
Each step poses significant challenges for the whole process 
to be effective. Among the most used techniques for image 
acquisition, dermatoscopy imaging, also known as 
epiluminescence microscopy (ELM), appears, which allows 
much more detailed images. In particular, advanced 
acquisition techniques such as dermatoscopy and confocal  
microscopy allow a detailed visualization of lesions and risk 
stratification [5, 6]. The adoption of advanced imaging 
techniques and high-resolution cameras have facilitated the 

Figure 1. Number of melanoma in 2020, all age [1] 
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collection of high-quality data on skin cancer from patients 
around the world [7, 8]. The result is the availability of 
datasets of skin lesions with key expert annotations to create 
automated CAD solutions for diagnosing melanoma and 
other skin cancers. Artificial intelligence solutions for skin 
cancer diagnosis can rely on high-speed, affordable internet, 
computing power and storage security to manage and share 
skin cancer datasets. 
Scalability across multiple devices, platforms and operating 
systems must not be overlooked, which makes the various 
solutions proposed by the scientific community modern and 
flexible medical tools. The purpose of this review is to 
provide the reader with a broad overview of the context of 
melanoma image classification, referring both to some 
recent Machine Learning approaches for Melanoma image 
classification. 

2. Computer Aided Diagnosis Systems 
There are many machine learning solutions proposed to 
allow the understanding of meaningful patterns from digital 
data. Techniques such as feature selection, transfer learning 
and multitasking learning are increasingly used in many 
medical imaging applications [9, 10]. The diffusion of 
medical datasets containing skin lesions images, together 
with the emerging role played by machine learning 
approaches, mean that the diagnosis of melanoma can be 
supported by using the latest generation of automated 
analysis tools such as computer-assisted diagnosis (CAD) 
systems which support non-invasive diagnoses by 
specialists. A specific CAD for automatic skin lesion analysis 
consists of the following basic steps: Image Acquisition, 
Image Pre-Processing, Segmentation, Feature Extraction 
and Selection, and finally Classification. 

The task for which CAD systems are proposed is to provide 
a support to the diagnosis of the specialist, aimed at an 
easier identification of melanoma from the initial stage: this 
goal is pursued by carrying out an automatic analysis of the 
lesion images by adopting specific features. 
Various medical protocols including the ABCDE [11] rule, the 
seven-point checklist [12], the three-point checklist [13] and 
the Menzies method [14], are a starting point for the 

development of diagnostic frameworks that allow 
increasingly reliable diagnoses and compromise the 
management of data from heterogeneous sources. 
As mentioned, the epiluminescence technique (ELM) is 
enjoying considerable success in the field of dermatoscopic 
imaging techniques. A crucial aspect is linked to the 
optimization of the images to be analyzed, providing both 
the reduction of technical acquisition defects and of various 
artifacts, such as hair, which may be present in dermoscopic 
images [15, 16]. 
The segmentation is of fundamental importance before 
proceeding to the feature extraction phase; the image is 
divided into sub-regions according to criteria of 
homogeneity with regard to properties such as luminance, 
color and texture, or rather geometric. At the end of the 
segmentation phase the lesion comes localized the lesion, 
and it is possible to extract the characteristics of interest of 
interest that will allow to train the classifier to provide the 
result of the automatic investigation. 
Despite the advances in imaging techniques and the 
continuous proposals for artificial intelligence algorithms, 
there are a number of drawbacks such as the extreme 
similarity of melanoma to other skin lesions such as 
dysplastic nevi. 
Several approaches and algorithms have been proposed in 
the last decades, mostly with the main goal related to the 
dichotomous distinction of melanoma from benign lesions. 
Some challenges therefore remain under-addressed such as 
that of the classification of melanoma by dysplastic moles or 
in fact unaddressed such as the classification of dysplastic 
nevi against common ones, important in order to correctly 
evaluate the predisposition to the onset of melanoma in 
subjects affected by Dysplastic Nevi Syndrome (DNS) [17, 
18, 19]. 
Currently the dermatological examination takes place 
through visual inspection of the enlargement of the lesion 
obtained with polarized light instruments. The diagnosis 
conducted by the specialist, however, also takes into 
account the patient's history, his ethnicity, and also the 
behavior related to exposure to the sun. When a suspicious 
skin lesion is found, a histological examination is typically 
recommended to provide a diagnosis, or if the presence of 
juvenile melanoma is suspected, a shorter follow-up of the 
lesion. Spitz nevus, also known as juvenile melanoma, is a 
nevus found mainly in young people (see Figure 3). It has a 
reddish color and is characterized by a rapid growth limited 
in time [20]. It appears to be made up of giant cells with little 
pigment, spindle and/or epithelioid with large nucleus and 
evident nucleoli, extended up to the reticular dermis. 
Observing a suspected pigmented lesion usually involves 
invasive surgical removal treatment as the first option. 
 
On the other hand, however, when the conditions exist, both 
the young patients and their parents first evaluate a 
monitoring in a shorter time, in order to avoid scarring in 
exposed parts of the body. The follow-up procedures usually 

Figure 2. Fundamental Steps of CAD Systems 
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include monitoring of Spitz's nevi every six months, while 

that of atypical nevi every three months. The possibility of 
being able to carry out detailed monitoring avoids 
uncertainties in the diagnosis and allows to better 
identify the surface of the lesion to be removed. 

3. Publicly dermoscopic datasets for skin cancer 
The purpose of the present work is to provide the reader 
with a broad overview of the context of melanoma image 
classification, referring both to the available data sets and to 
some recent approaches through which results of interest 
are being obtained. Recent work shows that the 
performance of machine learning-based frameworks is 
comparable with the dermatologists’ diagnostic 
performance on melanoma detection. 
More and more datasets are being made available to 
researchers. Below is a brief description of the free ones that 
contain images obtained through a dermatoscope. 
A problem that must certainly be addressed in this context 
consists in the choice of the dataset to be used for the 
experimental phases. Often the datasets are created to 
support specific types of analysis as we will describe in detail 
below. Among the free public datasets that contain 
dermatoscopic images we mention: 
 
1)  MED-NODE Dataset [21]: It consists of 70 melanoma 
images and 100 nevus images from the digital image archive 
of the Department of Dermatology of the University Medical 
Center of Groningen (UMCG). This dataset is available free 
for download for research. This dataset contains only 
melanomas and superficial spreading nevi. The images of 
the pigmented skin lesions are from patients of Caucasian 
origin. For each image, the diagnosis available was verified 
by the medical correspondence of the Department of 
Dermatology. Rare clinical variants, previously treated and / 
or secondarily infected skin diseases are not included in the 
dataset. A region of interest which contains healthy skin and 
a lesion is manually selected from each image. Hair was 
manually removed using Dullrazor software [22]. The 
authors have made the anonymous and pre-processed 
images publicly available at 
http://www.cs.rug.nl/~imaging/databases/melanoma_naevi 
 

2)  PH2 Dataset [23]: The PH2 dataset contains 200 
dermoscopic images divided into 40 cases of melanoma 80 
of atypical moles and 80 cases of common moles). You can 
download it for free after filling out an online registration 
form. Dermoscopic images come from the dermatology 
service of Pedro Hispano Hospital (Matosinhos, Portugal) 
and are obteined via the Tuebinger Mole Analyzer system 
using a 20x magnification. They are 8-bit RGB color images 
with a resolution of 768x560 pixels.  
The PH² database includes medical annotation of all images, 
i.e. medical segmentation of the lesion, clinical and 
histological diagnosis and evaluation of different 
dermoscopic criteria. 
The images can be found in a specific section of the site 
https://www.fc.up.pt/addi/ph2%20database.html. We used 
this dataset to verify the classification performance of MIL 
approaches, obtaining the other excellent results [24, 25, 26]. 
 
3)  Derm7pt [27]: This dataset contains 1011 dermoscopic 
images (252 cases of melanoma and 759 nevi), with 7-point 
checklist criteria. In [27], the authors propose a multi-task 
deep convolutional neural network, trained on multimodal 
data (clinical and dermoscopic images and patient 
metadata), to classify 7-point melanoma checklist criteria 
and diagnose skin lesions. This dataset (images and 
metadata) is publicly available online at http://derm.cs.sfu.ca 
 
4)  ISIC Archive:  the gallery of the ISIC archive collects arises 
from the juxtaposition of different datasets on clinical and 
dermoscopic skin lesions, including the ISIC Challenges [28], 
HAM10000 [29] and BCN20000 [30] datasets. Globally ISIC 
contains over 23,000 images of skin lesions, each labelled 
"benign" or "malignant". The archive can be found here: 
https://www.isic-archive.com/#!/onlyHeaderTop/gallery. 
This dataset was created to allow the testing of applications 
based on neural networks for the automated diagnosis of 
skin lesions, overcoming the problem of the small size and 
lack of diversity of the available data sets of dermatoscopic 
images. Specifically, for this use, the HAM10000 data set 
("Human versus Machine with 10,000 Training Images") was 
prepared, which contains dermatoscopic images from 
different populations from heterogeneous sources. This 
benchmark dataset can be used for machine learning and 
for comparisons with human experts. BCN20000 dataset, 
consists of 19,424 dermoscopic images of skin lesions 
captured in the facilities of the Hospital Clínic in Barcelona. 
BCN20000 arises from the need to support the classification 
studies of dermoscopic images of skin cancer, also including 
lesions in difficult positions (nails and mucosa) and large and 
hypopigmented lesions that cannot be captured by 
dermoscopy. 
 
5) Dermnet NZ [31]: Dermnet NZ was born from the fusion 
of collections of dermoscopic and histological clinical 
images of various skin diseases, particularly suitable for 
academic research purposes. They have additional high-

Figure 3. Spitz nevus: (a) at early and (b) at developed 

stage 
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resolution images for purchase. Home photo-monitoring of 
skin and moles should not replace a visit to the doctor. 
DermNet NZ provides authoritative information on skin 
diseases, conditions and follow-up useful for 
dermatologists, medical students and researchers. It 
currently contains more than 2,300 pages and a library of 
25,000 dermatology images provided and reviewed by 
health professionals and students from New Zealand and 
other countries, including the United States, United 
Kingdom, Canada, Mexico, Indonesia and Sri Lanka. 
On line medical courses for the continuing education of 
dermatologists are also provided on the website. An 
interactive tool, named DermDiag, allows users to sign ever 
more specific levels of information about their skin 
condition, starting from the location of the lesion.  
The diagnoses provided are classified from Common to Rare 
and the user is provided with images of each potential 
diagnosis, along with the clinical characteristics of each 
condition. 
 
Some research [32] has shown promising results obtained 
through machine learning algorithms for the assessment of 
melanoma risk applied to clinical images; however, there is 
still a long way to go before individual citizens can obtain an 
effective automatic risk diagnosis through a smartphone. 
In fact, the British Association of Dermatologists announced 
that apps that aim to detect or diagnose lesions based on 
smartphone photos should be treated with caution [33]. 
Nevertheless, the proposal of mobile applications is always 
growing and is divided into solutions that integrate the use 
of the app in the context of tele-dermatology services that 
involve interaction with other patients and of course 
with experienced doctors [34]. 

4. Recent approaches for Melanoma image classification 
In the classification step, the information extracted in the 
previous phases is used to produce diagnosis on the 
dermoscopic images. The dichotomous distinction between 
the two classes of melanoma and benign nevus and the 
determination of a probability value of an image to belong 
to a specific class of skin lesion, are possible results. 
In recent years, deep learning appears to be among the 
most widely reported artificial intelligence approaches. 
There remain a series of grey areas related to this approach, 
some of which animate research in different directions such 
as Transfer Learning and Multiple Instance Learning. 
In the following two subsections we dwell on the recent 
results obtained with models based on deep learning and 
on multiple instance learning respectively, referring a brief 
discussion to the final paragraph. 
 

4.1 Multiple Instance Learning recent contributions 

This standard MIL problem is formulated according the 
standard MIL assumption: an image (referred as bag) is 
positive if it contains at least a positive sub-image (referred 

as instance) and it is negative if it does not contain any 
positive sub-image [35]. 
The MIL paradigm it is very suitable for image classification: 
in order to classify an image within a particular object, it's 
enough to look only at some sub-regions (instances) of the 
image (bag): with respect to a classical supervised approach 
MIL obtains global information from local detection. The 
MIL paradigm is mostly promising in the field of medical 
image diagnostics where local analysis is relevant.  
In [36], a multi-instance learning framework was inserted to 
face the task of recognizing skin biopsy images’ features. 
Other approaches based on color features have not been 
able to directly recognize the characteristics of skin biopsy 
images due to the color changes present in the images. 
Through the multiple instance learning approach the 
authors used texture features to express each instance as a 
vector expression. Therefore, through the application of 
multi-instance learning algorithms, the proposed method 
showed to be effective and acceptable for medical analysis. 
In [24], the authors present an application to melanoma 
detection of a multiple instance learning (MIL) approach, 
whose objective is to discriminate between positive and 
negative sets of items. Under the MIL assumption, the 
proposed approach fits very well with images classification, 
since an image (bag) is in general classified on the basis of 
some its sub-regions (instances).  
Thought the application of a MIL algorithm on PH2 dataset 
constituted by color dermoscopic images, the authors 
discriminate between melanomas (positive images) and 
common nevi (negative images). In comparison with 
standard classification approaches, such as the well-known 
Support Vector Machine, the proposed method performs 
very well in terms both of accuracy and sensitivity.  
In particular, using leave-one-out validation, they have 
obtained good performance of classification (accuracy = 
92.50\%, sensitivity = 97.50\% and specificity = 87.50\%), 
demonstrating that MIL techniques could be at the basis of 
more sophisticated tools useful for melanoma detection. 
In [25], the authors presented a preliminary analysis of some 
MIL classification techniques, using color and texture 
features on a data set constituted by plain photographies, 
to which no pre-processing technique has been applied. 
Also in this case MIL techniques guarantee better 
classification performances respect to classical supervised 
approaches, opening new horizons regarding the creation 
of self-diagnosis systems for accessible skin lesions, 
emphasized by a huge innovation of cameras, smartphones 
technology and wearable devices.  
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4.2 Deep Learning recent contributions 
Scientific and technological advancement has made systems 
completely designed by humans obsolete, making them 
prefer systems trained by computers over sample data. The 
new evolutionary step consists in the use of features vector 
no longer handcrafted but learned directly from the model. 
Nowadays, automated extraction of relevant features from 
input data is at the heart of many deep learning algorithms. 
Convolutional Neural Networks (CNNs) are currently the 
most successful architecture for image analysis, ever since 
Krizhevsky et al. participated and won, the ImageNet 
challenge with AlexNet [37]. 
An example of a structure is shown in Figure 4 where the 
elements of the output vector (softmax layer) quantify the 
probability of the presence of the disease. To improve the 
accuracy of the performance, the internal parameters of the 
network layers are adapted iteratively during the training 
process. 
CNNs are a class of deep feed-forward artificial neural 
networks, applied to data that can be represented in a grid 
structure such as 2d images. Taking inspiration from 
biological processes [38, 39], CNNs mimic the cerebral 
cortex that receives electro-chemicals impulses generated 
by the cornea. CNNs are shift-invariant or space invariant, 
thus inherently more efficient thanks to their shared-weights 
architectural feature and to be translational invariant [40, 
41]. The key properties underlying the success of CNNs 
concern the translational invariance or the ability to 
recognize the same pattern in different shapes, positions 
and orientations within the image, the multi-scale or the 
ability to learn complex abstract structures in a hierarchical 
way and the locality which means that the activation of a 
neural path is based on the detection of a familiar pattern. 
Among the strategy pursued to obtain results of interest, 
with transfer-learning a model pre-trained on similar 
activities is loaded and used for the new model to be carried 
out. In [42], the author presented a universal skin disease 
classification method by selecting models that have proven 
to perform well in the ILSVRC-2014 competition (i.e., VGG16, 
VGG19 and GoogleNet), then trained on the ImageNet 

dataset. These pre-trained models are then applied on the 
DermNet dataset, which contained more than 23,000 
images of skin diseases. In the experimental evaluation, 
performed on the DermNet and OLE datasets, the proposed 
method obtained an accuracy of 73.1 \% Top-1 and 91.0 \% 
Top-5 on the Dermnet dataset and 69.5 \% accuracy Top-5 
on the OLE dataset. 
Similarly, in [43], the authors use a pre-trained model to 
detect skin lesions, achieving reduced training time with 
85.8% accuracy in the 5-class test bench. 
A powerful tool in the case of lack of data, or unbalanced 
datasets, is data augmentation: increase in data can in fact 
mitigate the effects of unbalanced data sets, with different 
class size of skin lesions or coming from heterogeneous data 
sources. Better results are obtained by adding augmented 
samples with different image transformations, such as 
rotation, random clipping, horizontal flipping and vertical, 
translation, cutting, color jitter and color space. The model's 
classification performance is better as demonstrated in [44]. 
The potential of deep learning has actually ignited the 
competition for the diagnostic capabilities of automatic 
solutions against those of specialists.  
In [45], the authors propose a system able to segment skin 
lesions, as well as to analyze the detected area with 
surrounding tissue for melanoma detection. The ensamble 
of deep learning algorithms was tested on the ISIC-2016 
dataset; the performances obtained with this framework 
were compared with 8 dermatologists for the classification 
of 100 skin lesions as benign or malignant. The proposed 
method has shown an accuracy of 76% and a specificity of 
62% against 70.5% and 59% achieved by dermatologists. 
Also in Haenssle et al. [46], the performance of the proposed 
learning method was compared with that of 58 
dermatologists. The test set involves 100 cases (25 cases of 
melanoma and 75 benign lesions): the deep learning 
method achieved a sensitivity of 95% and a specificity 
of63.8%, while dermatologists had an average sensitivity of 
86.6% and a specificity of 71.3%. The goodness of the 
predictive capacity of solutions based on deep learning 
algorithms has also been demonstrated on more numerous 

 
 
 Figure 4: CNNs take input images and transform them using convolutional, pooling, and fully connected layers, into 

flattened vectors. 
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datasets. In [47], the performance of 157 board-certified 
dermatologists at 12 German university hospitals was 
compared with a deep learning method (ResNet50).  A 
convolutional neural network (CNN) received enhanced 
training with over then 12,000 open-source dermoscopic 
images. CNN outperformed 136 of 157 participating 
dermatologists in all hierarchical subgroups of dermoscopic 
melanoma image classification. In fact, the proposed 
method achieved a specificity of 69.2% and a sensitivity of 
84.2%, while dermatologists achieved an overall sensitivity 
of 74.1%, and specificity of 60.0% on the dermoscopic 
dataset. Currently the solutions that adopt deep learning 
have a lot of application potential. In the context of 
dermatoscopy, however, there are still many challenges to 
be faced and overcome before arriving at a robust medical 
validation that allows real application both in terms of 
support tools for specialists and for the implementation of 
mobile apps recognized by health care organizations. 
 
5. Challenges and Opportunities 

The spread of melanoma, both in terms of diagnosed cases 
and deaths, as well as for the growing availability of 
databases of dermoscopic images has increased the interest 
on tools for automatic classification of skin lesions. To date, 
there are a series of reservations about the applicability of 
machine learning models on dermoscopy even on deep 
learning. The imbalance between the classes of training 
datasets should not be underestimated. The risk consists in 
undermining the classification performance of the models, 
which can manifest over-fitting, thus losing in 
generalization. Once optimized also the issues related to 
image acquisition and pre-processing steps, it is possible to 
obtain different classification results depending on a series 
of factors such as the choice of features vectors which feed 
the classifiers [47-49]. 
Melanoma detection, and more generally, medical image 
processing, can benefit from recent advances in deep-
learning-based methods. The growing interest in DL 
architectures also lies in the fact that the choice of features 
can be made through the model, but this aspect also 
constitutes one of the biggest reservations about DL 
solutions which involves the loss of sensitivity. The DL has an 
intrinsic "bias" that leads it to consider what appears to be 
very frequent in data to be true.  
Despite the various claims of deep learning algorithms   
surpassing clinicians’ performance in the diagnosis of skin 
cancer, there are far more challenges faced by these 
algorithms to become a complete diagnostic system.  
Typically, the experiments are performed in controlled 
settings, while the real-world diagnosis process requires 
taking into account a patient’s ethnicity, skin, hair and eye 
color, occupation, illness, medicines, existing sun damage, 
the number of nevi, lifestyle habits and clinical history, the 
respond to previous treatments, and other information from 

the patient’s medical records [50]. However, current deep 
learning models mainly rely on only patients’ imaging data.  

The performance of dermatologists, regardless of their 
experience, improves by knowing the patient's general 
clinical information: in [51], it is demonstrated that these 
are better than those offered by solutions based on deep 
learning algorithms. Clinical metadata to date are absent in 
the data sets on skin lesions also opening to clustering, or 
outlier detection issues [52, 53]. 

As mentioned, the solutions based on DL, if applied to 
skin lesions different from those on which they have been 
trained, risk leading to a diagnosis, sinning in possible 
different contextualizations of analysis. The complexity of 
recognizing recurrent patterns for skin cancers implies that 
deep learning algorithms work according to logics different 
from medical protocols such as the ABCDE rule. 

As a result, although researchers try to demystify how 
deep learning algorithms work, the medical community 
looks to deep learning solutions as a black box, the reasons 
for which the diagnosis is not understood. In machine 
learning solutions without a deep approach, the model is 
instead instructed with handcrafted features that are 
similar to those of the medical protocols [54, 55]. This 
aspect marks a winning point in favour of frameworks that 
exploit the MIL approach. 

Deep learning algorithms are very sensitive to the 
camera devices used to acquire the data and their 
performance degrades if a different type of camera device 
is used for testing. This places limitations for mobile 
applications whit images acquired from different cameras 
smartphones in different lighting conditions and distances. 
Indeed, patient-supplied skin images are affected by poor 
exposures and are often of low quality [56,57]. 

The delicate challenges that stand in the way of real-
world applicability of automated dermoscopy solutions 
mean that computer vision companies and dermatologists 
must work together to improve the diagnostic accuracy of 
the used methods. Machine Learning has the potential to 
deliver a paradigm shift allows cost-effective, remotely 
accessible, and accurate healthcare solutions [58]. 
Automated tools which support melanoma detection since 
its early-stage, tracking its evolution in time, and which 
could even be remotely used, represents an unprecedented 
opportunity to improve the way to fight this aggressive form 
of skin cancer. The interaction of specialist with frameworks 
for diagnostic support, together with a cultural model 
oriented to greater population proactivity through mobile 
self-diagnostic tools, is an emerging recipe for achieving a 
significant reduction in melanoma’s mortality rate.  
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