
SPAST Open Access Research

 Received: 1st January 2021 Accepted: 12th January 2021

Next generation storage: Non-Volatile Memory

Olzhas Kaiyrakhmet1

email: olzhabay.i@gmail.com

Abstract

The next generation memory storage revolution is triggered with the advent of the Non-Volatile

Memory (NVRAM), also known as Persistent Memory (PM). Previous revolution had occurred when flash

memory was introduced. Likewise, NVRAM is going to deliver new possibilities for applications.

However, the new memory can hardly find usage for regular consumers now. Most of the research is

currently focused around the applications pertaining to fast operations on large data, such as

SQL/NoSQL databases, data analytics, and storage systems. Unless the foundations of a good

understanding and practices are not laid down, this technology would not reach its full potential of

applications. In this paper we introduce this new memory technology, the current state of research with

it, and the possible future developments.

Keywords: NVRAM; Memory; Storage, Software Design.

Introduction

For over a decade, there existed a large performance void

between a random-access memory and a solid-state drive in

the storage hierarchy. The performance difference between

them in terms of speed was about 100x-1000x [1-2].

However, the differences do not stop there, as DRAM is

volatile to power cycles, and data stored in it can be easily

lost [2-4]. Consequently, applications that need to persist

their data must be designed to store in non-volatile storage

media. Due to storage, the media are having architecture

limitations- direct data allocation is not possible, and all I/O

instructions must go through the page cache, which reside

in the DRAM. Nevertheless, applications and operating

systems have advanced to allow the user to manipulate

these data operations in an extremely efficient way.

Over the past decade, researchers have been forecasting a

new storage technology arrival to fill this empty

performance gap [4-5]. Listed in Figure 1, the researchers

foresee it to have the properties, such as scalability, byte-

addressability, persistence, and low latency. With this vision,

researchers did not sit idly until such technology to come

and have been proposing new programming models, file

systems, libraries, and software architecture designs. Only

last year, Intel has made the world’s first commercially

available non-volatile memory, Intel Optane DIMM [6],

making all the wait worth it. Now we can directly develop

and test all the applications, showing all the real

performance numbers.

One of the challenges is the development of software for

NVRAM, which is not as straightforward as it seems.

Although, it does provide faster data allocation with

persistence. However, the design of software must be

carefully optimized, else a significant performance loss

would be the undoing of superior memory-storage

technology. This especially holds true when dealing with the

consistency of data operations and the persistence of

allocated data.

Figure.1. Memory-Storage Hierarchy

mailto:olzhabay.i@gmail.com

 SPAST Reviews & Perspectives

Intel Optane DC Persistent Memory

Intel Optane DC Persistent Memory (Optane PM) [6,7] is

becoming a widely available memory product. It is based on

3D XPoint device technology [8]. Compared to other devices

with a similar name, Optane NVMe, which connects to the

PCIe interface and is a block-based storage media. Optane

PM does connect to the memory interface DIMM and has

direct memory-addressability. Compared to DRAM, it has a

much high data density and data persistence. On the current

market, Optane PM is available in 128, 256, and 512 GB

memory stick modules, thus it can scale up to 6TB of

memory per system.

At present, Optane PM is supported only on Intel's new

server-grade Xeon processors, Cascade Lake or newer. It

works on both Linux and Windows operating systems, but

Linux has better device support due to being a popular OS

for servers.

Optane PM uses a new DDR-T interface, which has the same

mechanical and electrical interface as DDR4. Since it is based

on the same cache-line size (64-byte) granularity, but it uses

a different underlying communication protocol. Every

memory instruction is sent to the NVRAM, first arrives at an

internal on-DIMM controller, more precisely XPController,

that organizes all the accesses to the memory. This is used

to internally manage address translation for reducing wear-

leveling, and bad-block management.

As Optane PM is a memory device, it is always compared to

DRAM in terms of sheer performance [4, 5]. From Table 1,

one can see that NVRAM has slower access latency for read

instructions, around 2.65 times, and almost the same latency

for write instruction. In terms of bandwidth performance,

Optane memory is slower 2.4x and 6x times for read and

write operations, respectively. Please note, that these

measurements are from single instruction tests and do not

directly represent the performance of the device under the

real workload. Some reports show that Optane PM can be

underperformed by up to 12x times in mixed read and write

workloads. Moreover, NVRAM poorly scales on

multithreaded workloads as well. Thus, proper software

design must be in place when programming applications for

this new memory, and to achieve it, a new programming

model for persistent memory will be of help.

Programming Model

Before the real hardware, Intel Optane DC Persistent

Memory came out, researchers and engineers already have

been foreseeing a programming model for NVRAM. SNIA

NVM Programming Technical Work Group (TWG) [9, 10] has

started model specification, which consists of members from

Intel, NetApp, Samsung, Microsoft, Cisco, Dell, VMWare, and

many others, back in 2012. The aim was to have a well-

sophisticated programming standard when the real

hardware will come up.

From the start, the vision was to be able to have consistent

access to persisted data on NVRAM. It might not seem easy

to directly access the same region of memory after the

power cycle, and thus standard method with filesystems was

admitted to being most efficient with some additional

updates. For it to work efficiently on non-volatile memory,

filesystems needed to have DAX [1] support. DAX is the

mechanism that allows making operations on data stored in

persistent memory arrays without the need for a page cache.

That will allow avoiding double operations on memory.

Additionally, the programming model had implicitly

described calling CPU instructions from user space, such as

CLFLUSH or CLWB, to flush the CPU cache line to ensure the

persistence of the data written to NVRAM [9]. However, as

the cache line granularity is 64-byte, there must be proper

consideration of operations order in software to ensure a

flawless transaction state. On top of that, to provide atomic

operations accessing the same data in a multithreaded

environment does pose quite a challenge. Thus, all these

aforementioned factors add up to the complexity of the

development of the software for non-volatile memories.

Now, with the guidance of the SNIA NVM Programming

Model, there is a collection of libraries directly supported by

Intel, the Persistent Memory Development Kit (PMDK) [2]. As

it is followed by the programming model, the PMDK is

vendor-neutral, and thus will be able to work with other

upcoming non-volatile memory devices. It has a collection

library for C and C++ programming languages to work with

NVRAM, as well as tools to create, check, and sanitize

memory pools.

Even there are libraries for writing applications to work

directly with non-volatile memory, Intel's new memory has

a mode, which does not require any software modification.

It is called Memory Mode, Figure 2A, and in this case, Intel's

new memory works as an extension to DRAM. A software

does not recognize where data goes, NVRAM or DRAM, as

TABLE 1

LATENCY AND BANDWIDTH PERFORMANCE COMPARISON OF DRAM AND NVRAM

(OPTANE PM) PER ONE DEVICE

 Read

Latency

Write

Latency

Read

Bandwidth

Write

Bandwidth

DRAM ~90ns ~71ns ~18.7GB/s ~8.9GB/s

NVRAM ~237ns ~76ns ~8.0GB/s ~1.5GB/s

 SPAST Reviews & Perspectives

it is all controlled internally by the host memory controller.

Essentially, this is a cache layer system, where data accesses

go first to DRAM, and if missed, it goes to Optane Memory.

Also, even the data will be stored in NVRAM, it is not

recognized as persistent data. This mode gives a large

volatile memory pool for a much cheaper price, and almost

no performance degradation.

In order to distinctively access and write data to DRAM and

NVRAM separately, the system needs to be in App Direct

mode as noted in Figure 2B. In this mode, as expected, data

written to NVRAM stays persistent in power cycles. With the

use of PMDK [2], or other libraries for NVM, such as go-

pmem [20] for Go language, or pcj [3] for Java, software

development is made easy for the new hardware and take

advantage of fast persistent data access.

Current application developments

In this section, we will discuss some of the current

application developments done for non-volatile memory.

Data Structures

Data structures are the foundations of any software that has

ever been written. They make the organization of data

efficient and easily manageable. Each data structure has its

use case, ofcourse it depends on what kind of access pattern

is needed. Thus, data structures are the first entities to be

researched for the development of a sturdy non-volatile

memory.

PMDK[2] and pcj[3] do have a library with standard data

structure collections, such as array, stack, queue, etc. Simple

data structures are quite easy to port to NVRAM providing

atomicity, consistency, and persistence. However, more

advanced data structures are complicated and thus need a

more careful approach.

One of the areas where an in-depth research is ongoing is

the area of data structures is B-tree, these are used in SQL

databases. It is primarily used as an index structure, which

gives a fast point and range access. One of the recent works

FAST and FAIR B-tree [11] provides fast point access, and B3-

tree [12] does have superiority in fast range queries and

concurrent accesses.

There are also other advanced data-structures other than B-

tree, that are not simple to port to be implemented on

NVRAM and provide atomicity, consistency, and persistence.

Recipe[13] did convert concurrent data-structures used for

indexing and provide remarkable performance. The

modification list consists of B-tree, radix tree, tries, and

hash-table. Their results showed up to 5.2x outperformance

in comparison to the same PM data structure counterpart.

Databases

Most of the popular databases are based on LSM-tree and

B-tree. There are several approaches when designing these

databases, e.g. NVRAM based only, or hybrid (DRAM,

NVRAM, and/or SSD) based. Many state-of-the-art

databases, such as SQLite, MySql, Redis, RocksDB,

MongoDB, and many others, were ported to use the only

NVRAM as a persistent storage media [5]. As a result, it

showed up to a 20x performance increase compared to SSD

based databases. However, increased performance comes at

a larger cost, as non-volatile memory becomes more

expensive to implement. Therefore, hybrid-based databases

are being deeply researched, as we speak, to give both

lower cost and better performance. MatrixKV[14],

SplitKV[15], NoveLSM[16], and SLM-DB[17] do use different

techniques to challenge storing data in both NVRAM and

SSD.

Figure.2. Memory (A) Memory Mode in Optane DC PM (B) App Direct Mode in Optane DC PM.

 SPAST Reviews & Perspectives

File Systems
Memory only filesystems existed before NVRAM existed on

paper and were designed for DRAM. As such, they were fast

but volatile, which will have data loss after a system crash.

With the early introduction of the persistent programming

model [9] famous filesystems, ext4 and xfs started to be

developed for NVRAM, simulating their behaviour on

DRAM. As result, the DAX [1] mechanism came to be. Also,

file systems can be distributed and multi-node, making

storage larger and faster. Examples of successful ones are

Assise [18] and Orion [19].

Possible future of the technology

This is might seem like mere speculation; however, we

should not exclude the possible development of the

technology. In an essence, that is what scientists do, trying

to predict future possible technologies, visualizing it in their

imagination, and work on it with capable resources. After

many trials and errors, something new might come up.

For now, this technology is capable of working only on

server hardware machines, and thus making NVRAM

applicable only for commercial use applications, as it was

described above. It has to be seen if Intel, or some other

vendor, will be able to develop this novel technology further,

so any machine and device will be able to install it without

hardware restriction. Imagine having smartphones that

launch applications in an instant and doing OS restart in a

few seconds, or IoT devices that have almost zero downtime

due to instant reboot; or personal computers that will be

able to handle photo and video editing of large scales

without any latency. All of this might be possible if we think

deeply about how this new memory technology can

potentially change how the software works.

Conclusions

In conclusion, NVRAM, or PM, is a very promising

technology. Now, it is not broadly used, but only in certain

large-scale applications. Even though, new memory has

revealed a ton of possibilities and many more will come. If

this technology will develop even further, might come one

day that every device might have dense and performant

non-volatile memory. Then thus almost every software will

be able to access any data in an instant and have zero

downtime.

References

1. Direct access for files, kernel.org

https://www.kernel.org/doc/Documentation/filesystems/dax.txt

2. PMDK https://pmem.io/pmdk/

3. Persistent Collections for Java https://github.com/pmem/pcj

4. Yang, Jian, et al. "An empirical guide to the behavior and use of

scalable persistent memory." 18th {USENIX} Conference on File

and Storage Technologies ({FAST} 20). 2020.

https://www.usenix.org/conference/fast20/presentation/yang

5. Izraelevitz, Joseph, et al. "Basic performance measurements of

the intel optane DC persistent memory module." arXiv preprint

arXiv:1903.05714 (2019). https://arxiv.org/abs/1903.05714

6. Intel OptaneTM DC Persistent Memory

https://www.intel.com/content/www/us/en/architecture-and-

technology/optane-dc-persistent-memory.html

7. Intel Persistent Memory Programming. https://pmem. io/pmdk/

8. Intel and Micron’s 3D XPointTM Technology.

https://www.micron.com/about/ our-innovation/3d-xpoint-

technology

9. Rudoff, Andy. "Persistent memory programming." Login: The

Usenix Magazine 42.2 (2017): 34-40.

https://www.usenix.org/system/files/login/articles/login_summe

r17_07_rudoff.pdf/

10. NVM Programming Model

https://www.snia.org/tech_activities/standards/curr_standards/n

pm

11. Kim, Wook-Hee, et al. "FAST and FAIR B+-Tree for Byte-

Addressable Persistent Memory."

http://nvmw.ucsd.edu/nvmw2019-

program/unzip/current/nvmw2019-final51.pdf

12. Cha, Hokeun, et al. "B3-Tree: Byte-Addressable Binary B-Tree for

Persistent Memory." ACM Transactions on Storage (TOS) 16.3

(2020): 1-27. https://dl.acm.org/doi/abs/10.1145/3394025

13. Lee, Se Kwon, et al. "Recipe: converting concurrent DRAM

indexes to persistent-memory indexes." Proceedings of the 27th

ACM Symposium on Operating Systems Principles. 2019.

https://dl.acm.org/doi/pdf/10.1145/3341301.3359635

14. Yao, Ting, et al. "MatrixKV: Reducing Write Stalls and Write

Amplification in LSM-tree Based {KV} Stores with Matrix

Container in {NVM}." 2020 {USENIX} Annual Technical

Conference ({USENIX}{ATC} 20). 2020.

https://www.usenix.org/conference/atc20/presentation/yao

15. Han, Shukai, Dejun Jiang, and Jin Xiong. "SplitKV: Splitting {IO}

Paths for Different Sized Key-Value Items with Advanced

Storage Devices." 12th {USENIX} Workshop on Hot Topics in

Storage and File Systems (HotStorage 20). 2020.

https://www.usenix.org/conference/hotstorage20/presentation/

han

16. Kannan, Sudarsun, et al. "Redesigning LSMs for nonvolatile

memory with NoveLSM." 2018 {USENIX} Annual Technical

Conference ({USENIX}{ATC} 18). 2018.

https://www.usenix.org/conference/atc18/presentation/kannan

17. Kaiyrakhmet, Olzhas, et al. "SLM-DB: single-level key-value store

with persistent memory." 17th {USENIX} Conference on File and

Storage Technologies ({FAST} 19). 2019.

https://www.usenix.org/conference/fast19/presentation/kaiyrak

hmet

18. Anderson, Thomas E., et al. "Assise: Performance and Availability

via Client-local {NVM} in a Distributed File System." 14th

{USENIX} Symposium on Operating Systems Design and

Implementation ({OSDI} 20). 2020.

https://www.usenix.org/conference/osdi20/presentation/anders

on

19. Yang, Jian, Joseph Izraelevitz, and Steven Swanson. "Orion: A

distributed file system for non-volatile main memory and

RDMA-capable networks." 17th {USENIX} Conference on File and

Storage Technologies ({FAST} 19). 2019.

https://www.usenix.org/conference/fast19/presentation/yang

20. George, Jerrin Shaji, et al. "go-pmem: Native support for

programming persistent memory in go." 2020 {USENIX} Annual

Technical Conference ({USENIX}{ATC} 20). 2020.

https://www.usenix.org/conference/atc20/presentation/george

https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://pmem.io/pmdk/
https://github.com/pmem/pcj
https://www.usenix.org/conference/fast20/presentation/yang
https://arxiv.org/abs/1903.05714
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.usenix.org/system/files/login/articles/login_summer17_07_rudoff.pdf/
https://www.usenix.org/system/files/login/articles/login_summer17_07_rudoff.pdf/
https://www.snia.org/tech_activities/standards/curr_standards/npm
https://www.snia.org/tech_activities/standards/curr_standards/npm
http://nvmw.ucsd.edu/nvmw2019-program/unzip/current/nvmw2019-final51.pdf
http://nvmw.ucsd.edu/nvmw2019-program/unzip/current/nvmw2019-final51.pdf
https://dl.acm.org/doi/abs/10.1145/3394025
https://dl.acm.org/doi/pdf/10.1145/3341301.3359635
https://www.usenix.org/conference/atc20/presentation/yao
https://www.usenix.org/conference/hotstorage20/presentation/han
https://www.usenix.org/conference/hotstorage20/presentation/han
https://www.usenix.org/conference/atc18/presentation/kannan
https://www.usenix.org/conference/fast19/presentation/kaiyrakhmet
https://www.usenix.org/conference/fast19/presentation/kaiyrakhmet
https://www.usenix.org/conference/osdi20/presentation/anderson
https://www.usenix.org/conference/osdi20/presentation/anderson
https://www.usenix.org/conference/fast19/presentation/yang
https://www.usenix.org/conference/atc20/presentation/george

