
Strong solution set by neutrosophic logic for weighted multi-objective evolutionary algorithm 

optimization  

Abstract— Weight Based Genetic Algorithms (WBGA) are computationally efficient and simple to implement for multi-

objective optimization. The solutions obtained in the converged region may not necessarily always yield maximum optimization 

for all the objective functions involved. But, the combination of the solutions from different iteration may yield optimized values 

for all the objective functions to a satisfactory level.  The paper attempts to find a method which keeps the simplicity and 

computational efficiency of WBGA intact, but at the same time counters the problem of inferior pareto-optimal solutions. This 

is done by finding such a combinational set of solutions which yields strong values for all the objectives. The paper proposes 

neutrosophic logic (NL) as a postprocessor to the outcome of the WBGA. The NL assigns a percentage of truth, false and 

indeterminant value to the obtained solutions. The proposed postprocessor operation has been demonstrated with hand 

calculations on a test problem, and a complex practical example. The results obtained as compared to WBGA show the 

emergence of a superior solution-set and reaches in close agreement with NSGA-II, while maintaining the computational 

efficiency. 
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i=1,2..N and i is the iteration. 
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1. Introduction 

Consider an interesting practical issue with the WBGA’s, 

which are usually applied to solve the multi-objective 

optimization problems. 

▪ Loss of pareto-optimal solutions, when solution 

space is uniformly dispersed over a non-convex 

trade-off surface 1-2. 

Implying, WBGA’s solution method does not focus on finding 
the best possible solution with respect to all the objective 

functions. More on this can be found in section 2 of this paper. 

Almost all the well-known multi-objective optimization 

algorithms focus on addressing the sub-optimal pareto-

solution problem arising due to WBGA or vector evaluated 

genetic algorithms (VEGA). 

This leaves us with two important questions: 

⚫ Does there exist a way which actually does not 

disturb the computational efficiency and ease of 

implementation of WBGA?  

⚫ And yet, search for the optimal solution set without 

violating the random nature of the GA? 

This can be achieved alternatively by combining the solutions 

obtained from different iterations of the WBGA in the 

convergence region. The solutions used for such 

combinational operation have to be strictly from the 

convergence region. This can be better explained as “fine-

tuning” of the results. This can alternatively be understood as 

a local search. 

This paper applies neutrosophic logic (NL) to “fine-tune” the 
solutions. The NL assumes that each generated solution set 

holds a certain degree of truth (T), indeterminant (I) and false 

(F) degree/percentage, with respect to each objective 

function10. Necessary NL theory to understand NLPP is 

explained in section 3 and 4. 

Probably it is best to understand NLPP via a set of practical 

examples, the audience may refer to section 5. The fig.1 gives 

a macroscopic overview of the operation of NLPP and 

generation of a combination of a strong solution set from 

different optimal iterations generated by a typical WBGA. 

For now, let’s say in the case of an MO, one set of solution can 

exhibit strong candidature of optimum solution in one of the 

objective functions. But, at the same time it can be a relatively 

weak candidate in the case of the other objective function. A 

practical example of such a situation could be operational 

research or a CMOS circuit optimization or supply chain 

management. Where, in the latter case, the set of obtained 

solutions is the transistor width to length ratios, which decide 

the performance characteristics of the designed circuit11. After 

obtaining the width to length ratios, it is the job of the design 

engineer to manually choose the best possible solution. As the 

complexity of the circuit increases, the solution space expands 

manifold11. So does the number of parameters. These 

parameters are directly proportional to the number of 

transistors. And the various trade-off parameters increase the 

number of objective functions.   

Hence, the solution obtained can result into a strong 

maximized or minimized value in one of the objective 

functions, while it might vary for the rest of the objective 

functions and vice versa. Hence, it is safe to assume that there 

exists a degree of truth, false and indeterminance attached to 

each solution set. The essence is, one event might be true in 

one scenario. But, the same event might not be true in another 

scenario. Each solution set obtained is assigned a set of truth, 

false and indeterminant values10. The solution set are divided 

into STRONG, MEDIUM and WEAK sets.  

The need is to find a combination set of solutions, obtained 

from more than one-iteration, in the near-optimal region to 

satisfy all the objective functions.  

 

Fig.1. NLPP Operation principle 
 

As shown in the Fig.2 the weighted multi-objective genetic 

algorithm generates the near optimal solutions in the 

convergence region. Objective function optimizations are 

composed of several parameters. However, in the case of 
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multi-objective optimizations utilizing the GA, the obtained 

values of parameters from iteration (convergence-region) 

might not produce the optimum value for all the objective 

functions. It is commonly observed that the combination of 

parameters obtained in n-th iteration and m-th iteration might 

produce an optimum value for all the objective-functions.  

The proposed NL- based post-processor applied to WBGA 

searches for the existence of such a combinational solution set, 

which produces the maximum optimal point for each objective 

function. By inspection/min-max operation the weak solutions 

are eliminated. In the second run the solution sets, which exist 

in the intersection of MEDIUM and WEAK space, are 

eliminated. Finally only STRONG candidates are left. 

To address the problem with WBGA’s others have proposed 
several methods. Let us briefly review their work. NSGA-II 

was proposed2. Where, the focus was to find the pareto-

optimal sets by non-dominated sorting. SPEA-II was proposed, 

to improve the strength pareto evolutionary algorithm (SPEA)3. 

According to the work presented, NSGA-II- crowding distance 

works in objective space only1. SPEA-II involves 

computationally expensive fitness and density calculation4-6. 

Pareto archived evolution strategy (PAES), is not a population 

based approach and performance is dependent on the cell 

sizing7. Although, rank-density-based multi-objective genetic 

algorithm (RGDA) is robust when dealing with numerous 

objectives, but it is very difficult to implement8. Niched Pareto 

genetic algorithm (NPGA) involves very simple tournament 

selection9. But, it requires an additional parameter to perform 

tournament selection9. Rest of this paper focuses on the NLPP 

implementation. 

 

 

Fig.2. The Multi-objective optimization problem: the search for common strong solution. 

 
 

2. Problem Description 

When multi-objective optimization problem is solved using 

the genetic algorithm, in the convergence region a set of near 

optimal solutions is generated. The solution set and multi-

objective functions can mathematically be expressed as: 
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Where, L and U are upper and lower bounds of the constraints 

for parameters x1 and x2; f1 and f2 are objective functions. The 

solutions generated by GA: 

   (2) 

Where, ‘i’ is the iteration number or generation number. 

While the solution set is (x1, x2) and, is represented as: 

    (3) 

From the solution sets generated in (equation 3), the objective 

functions are evaluated as: 
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 (5) 

The evaluation of objective functions due to strong and weak 

solution sets can be expressed as:  

(6)

 

While, the solution set (x1,1, x2,1) might result in a strong 

value of f1, it need not be so in the case of f2. Likewise, other 

solution sets may result in weak or medium values as 

compared to the desired optimal values of f1 and f2. Hence, 

when weight functions are used in multi-objective GA for 

finding the optimized solution, commonly encountered 

problem is loss of strong solutions. This has been pointed out 

in1. Many authors have suggested improvements in GA e.g. 

fuzzy goal programming12, ant colony optimizations13-14, 

TABU search15, genetic local search for MO combinatorial 

optimization16-31.There, might still be an alternative way to 

find a common strong solution within the WBGA. One 

sensible method of addressing the problem is to manually 

pick the best values from the generated solutions. But, 

picking the best solution from the huge set of near optimal 

solutions can be a taxing effort. Let solution x1,n and solution 

x2,m be the solutions generated out of two different iterations 

i.e. n-th iteration and m-th iteration. There exists a solution 

set such that, which gives a strong value for both f1 and f2. 

This particular strong solution set can exist as a combination 

of generated values from n-th and m-th iteration. 

In this paper the problem is addressed by applying a NL post 

processor to automate the process of identifying the existence 

of near optimal strong valued solution sets x1,n and x2,m. The 

neutrosophic logic attaches a truth, indeterminacy and false 

value to each generated solution. This allows the user to 

handle the solutions with imprecision in a more superior way. 

Zadeh, had proposed fuzzy logic to handle imprecision22. 

However, fuzzy logic cannot answer paradoxes. On the other 

hand with the help of neutrosophic logic it is possible to 

successfully answer the paradox10. 

3. Neutrosophic Logic  

In 2002, Neutrosophic logic (NL) was proposed by Florentin 

Samarandache. Later in 2003 it was explained in details and 

its application to intuitionistic fuzzy logic. A collection of the 

theories related to NL has been accumulated in10. A brief 

overview of the NL is provided in this section, relevant to the 

proposed NL post-processor. Definition of Neutrosophic 

components: T (True), I (indeterminant), F (false) be the 

standard or non-standard real subsets of a non-standard 

interval]-0,1+[. For more details on non-standard intervals 

refer to 10. With supremum (sup) of T, I, F be the Tsup, Isup, 

Fsup. With: nsup=Tsup+Isup+Fsup and ninf=Tinf+Iinf+Finf. And inf 

is inferior set. It is noteworthy that T, I and F can exist as 

subsets. Also, for every case of an event, the T, I, F values 

are expressed as percentages. 

Thus a statement, or an event or a set of events or phenomena 

or equations which might be true in this world or present 

situation might be true in this case. But they might have a 

percentage of truth, indeterminacy, falsehood attached to 

them in another world, or events or a set of events or 

phenomena or equations in another situation10. 

4. Proposed NL Post-Processor 

The neutrosophic logic post-processor (NLPP) identifies the 

near optimal solution candidates which offer the “common -

strong” values in all the objective functions under question. 
The existence of such a solution can also be concluded from 

the Lemma 1 and 2.  

Lemma.1. There exists atleast one set of solutions generated 

at two different iterations of an evolutionary algorithm in the 

near optimal zone namely, n-th and m-th iteration such that, 

the objective functions f1 and f2 attain a strong value.    

  (7) 

Proof: The fig.3 shows the plot of the two objective functions 

f1, f2 whose design variables are (x1, x2). Have their strong 

optimal levels at iterations n and m respectively.  

 

Lemma.2. There exists, atleast one combination set of 

solutions  

 (8) 

Proof: From fig.3, consider the m-th iteration. The value of 

objective function f2 is “strong”, the corresponding value for 
f1 is not “weak”, instead it can be classified as near “strong”, 
or “medium”. Likewise, a similar analogy can be applied to 
the values at n-th iteration. Where, the f1 attains a “strong” 
value while f2 can be classified as near “strong” or medium, 
but not weak.  
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Fig.3. Plot of objective functions, f1 and f2. 

 

This is achieved by applying T, I, F values to the evaluation 

of objective functions obtained from each solution set as 

represented in equation (4) and (5).From the NL theory the 

percentage of T, I, F for objective function f1, is obtained 

from the solution set generated by the first iteration of the 

converged region and is , expressed as: 

 

 

           (9) 

 

 

Similarly, for objective-function, f2: 

 

            (10)

 
Let the set of T, I, F values be represented as {t},{i},{f}. The 

matrix NL, represents the solution space and it’s T, I, F 

values corresponding to its objective functions. 

 

  
    (11) 

The details of the matrix NL are shown in tabular format in 

the table 1. 

 

 

Table 1. NL Matrix 
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4.1. Determination of Truth, Indeterminant 

and False values 

The first step towards the NLPP is determination of T, I, 

F values. There are a number of ways of determining the 

T, I, F values. One way is to determine T, I, F through the 

objective function itself with respect to the target value. 

Another method is the use of emphatic values as followed 

in the case of inconsistent fuzzy rules in23. The emphatic 

values in this case were determined with respect to the user 

experience data. Similar to the followed method, one can 

determine the percentage of T, I, F values. The method has 

its own advantages and this area needs further exploration 

when applying NL to decision making and optimization 

problems23. In the examples only the former method of 

determining the T, I, F values has been used, i.e. using the 

objective function itself. 

5. Practical Examples 

In the following section two practical examples have been 

considered for demonstrating the algorithm. It is worth 

noting that these examples are for giving the audience an 

insight only. In the real-world the optimal solution space 

generated by the GA is huge and the computer code shall 

do the job of NLPP application. 

5.1. Example I: Test Problem 

The generalized MO optimization problem has two 

objective functions and two design parameters to be 

optimized. The T, I, F values are determined in this 

example using the objective function equations itself. 

Table 2 shows chosen sample near-optimal solutions 

obtained from the GA for demonstration sake for this 

example. It is given that the target values of optimization 

for the objective functions is, f1=22 and f2=13. 

Table 2 Sample optimal solutions considered for the hand 

calculation example as a demonstration. 

X1 19 17 16.9 

X2 6 8 9 

 

1 1 2 1 2

1 2 2 1 2

1

2

 f (X ,X ) A X B X

f2(X ,X ) C X 1/ X D X

 A B C D 1

S. . 20 X 5;

10 X 1;

T

=  + 

=  +   
= = = =
→  

 

   (12) 

5.1.1 Determination of T, I, F values: 

Consider the first set of solutions obtained, {X1, X2} = (19, 

6), the obtained values of f1 and f2 are 21.44 and 7.3765. 

The norm value represented by is given by the ratio 

of obtained value to target value. Norm =𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑓𝑟𝑜𝑚 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑇𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒  

 

The table 3 enlists the solution methodology by hand 

calculations.

The following is obtained for the values obtained from 

the first iteration: 

 

 

Table 3. Hand calculations of the Example I 

Solution Set 
(19,6)  →  

 

 

 

Similarly for  

 

 

 

 

 

 

Similarly the values obtained for all the cases are listed in table 4. 
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2f

5669.02__ 2 == fNormfT

2029.0_2__ 2 =−= NormAveragefNormfI

2302.0__1_ 222 =−−= fIfTfF



Table 4: T, I, F Values for Example I 

Set f1 f2 

(x1,x2) T I F T I F 

19,6 0.9727 0.2029 0.1756 0.5669 0.2029 0.2302 

17,8 0.9 0.067 0.033 0.7646 0.0677 0.167 

16,99 0.9045 0.0219 0.0736 0.8607 0.0219 0.1174 

19,8 0.9918 0.1176 0.1094 0.7566 0.1176 0.1258 

19,9 1 0.1258 0.1258 0.8508 0.1258 0.0234 

17,6 0.8836 0.1151 0.0387 0.5735 0.1551 0.3114 

17,9 0.9091 0.0245 0.0664 0.8602 0.0245 0.1153 

16,96 0.8795 0.1528 0.0323 0.5738 0.1528 0.2734 

16,98 0.8967 0.0658 0.0375 0.7651 0.0658 0.1691 

 

On inspection of table 4 one finds that, although solution 

sets (19,6),(17,8) show strong percentages of truth values, 

for objective function f1,however they have somewhat 

lower percentages of truth values when compared with 

other candidates in the case of objective function f2. 

Solution sets: (19,9), (17,9) lie in the STRONG region. 

Solution sets (16.9,8),(17,8),(16.9,9),(19,8) are MEDIUM 

candidates. While, solution sets (19,6),(17,6),(16.9,6) are 

in the WEAK region in the given problem at hand. It is 

noteworthy that the T+I+F values for f2, f3 and f4 >1. This 

stems from the non-standard analysis concept from where 

the neutrosophic logic has been derived10. Hence, it is safe 

to say that in NL there is no restriction on T, I, F other than 

the condition that  they are subsets of ]-0,1+[: 

 

  

 (13) 

 

5.2. Example II: 3-Stage NMC Operational 

amplifier optimization problem 

Consider fig.4 which shows the 3-stage NMC Op-Amp. 

The optimization problem considered here has six 

objective functions, and twenty-four design parameters, 

represented by W and L. Other details of the assumptions 

of the problems are immaterial as the main purpose is to 

visualize the NLPP operation on any complex MO 

optimization problem. The objective functions are as 

follows listed in equation (14)-(19). 

 

   (14) 

 

     (15) 

 

Fig.4. 3-Stage NMC Operational amplifier optimization problem 
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Where k, Cc, CL, r and r’ is a constant. The target values are listed in table V and the set of obtained parameters from the GA 

are listed in Table VI. 

 

Table 5. Target parameters 

Objective functions Range of Target Values 

f1 100-170 
f2 1.1-1.9 
f3 2.9-4.3 
f4 1.5-1.9 
f5 74-102 
f6 46-80 

 

Table 6 sample optimal solutions from GA 

Parameters Converged 

Iteration1 

Converged 

Iteration2 

Converged 

Iteration3 

(W/L)1 89.23/3.10 87.70/2.78 88.20/7.18 
(W/L)2,3 32.57/1.78 30.32/1.39 31.42/1.09 
(W/L)4,5 51.21/4.23 46.31/3.71 48.31/3.51 
(W/L)6 27.80/0.87 20.21/0.38 23.31/0.28 

(W/L)7,8 39.8/0.47 36.65/0.66 38.65/0.56 
(W/L)9 1.79/1.15 1.66/0.64 1.06/0.45 

(W/L)10 80.15/0.882 83.79/1.2 81.79/1.9 
(W/L)11 10.2/1.07 11.1/1.25 10.1/1.31 

Cm1 70.27 82.049 24.17 
Cm2 35.21 46.83 46.83 
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5.2.1 Solution Approach: 

The fig. 5, depicts the solution approach. In order to simplify 

the problem, the W/L is taken as a ratio in the Table 7. Each 

W/L ratio is represented by ‘M’ with a corresponding index 
number from 1 to 11. It is worth noting that each of the 

objective function listed as equation (14)-(19) is dependent 

on the W/L ratios. The solution approach depicted in fig.4 has 

five important steps in sequence.  

First step: The near-optimal solutions obtained from the GA 

are listed. In this case three independent iterations in the 

converged region of the GA were considered. These 

iterations have been named in this section as iteration 1, 

iteration 2 and iteration 3, for the sake of simplicity of 

representation. Iteration 1,2 and 3 are not the first iterations 

of the GA. They are the three iterations, which were chosen 

from the optimal region of the GA. This has also been 

explained in the **note of fig 5. 

Second step: The ratios M are determined as all the possible 

combinations of different iterations. To clarify this statement 

further, M1 is a ratio of W1 and L1. Hence, if the W1 value 

belongs to iteration 1 and L1 value belongs to iteration 3, then, 

they are represented as (M1)1,3. Thus, the subscript-suffix 

(1,3), represents the index of iteration for (W, L). Same 

follows for other ratios and for (M11)3,1. As a result of second 

step, a new set of solution space emerges, combining the best 

and worst possible solutions of all the converged region 

solutions.  

Third step: involves the evaluation of the six objective 

functions under consideration equation (14) to (19).  

Fourth step: This involves the determination of T, I, F values 

for the combined solutions of different iteration as explained 

in the second step. The fourth step has been explained in 

details in the later part of this paper under the subsection 

“obtaining T, I, F values”, section 5.2.3. Alternatively the T, 

I, F values can also be determined by the approach mentioned 

in the illustrative example I.  

Fifth step: This step is to discard the solutions with strong- 

false, weak-truth, strong or medium-indeterminant values. 

The strong-truth, medium-truth and weak-indeterminant 

values are to be retained.  

5.2.2 Additional Details: 

The first column in the table 7 represents the ratio of solution 

obtained from each of the three iterations, e.g. consider the 

table 6, where, (W/L)1=89.23/3.10=28.7839, which is listed 

in the second column as [(1,1),M1]. 

Likewise,[(1,2),M1]=89.23/2.78=32.0971, in table 7. One 

has to remember that the value 89.23 is the value, which has 

been obtained from the first iteration solution, and the value 

2.78 is obtained from the second iteration solution from table 

6. In simpler terms, it is nothing but permutations and 

combinations of W and L variables obtained from different 

iterations under consideration.  

Note: The present example considers only three converged 

iteration solutions obtained from the GA. From the obtained 

values of different W/L ratios, the next step is to evaluate the 

six objective functions under question. The value of Vss =-

VDD=0.75 V, since a 0.18-µm process is considered.  
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Fig.5. Solution approach for Illustrative Example II.
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Table 7. Ratio of solutions with respect to target values (refer to section 5.2.2) 
 

 M1 M2 M4 M6 M7 M9 M10 M11 

1,1 28.7839 18.2978 12.106 31.954 84.6809 1.5565 90.8730 9.5327 
1,2 32.0971 23.4317 13.8032 73.1579 60.3030 2.7969 89.0556 8.1600 
1,3 12.4276 29.8807 14.5897 99.2857 71.0714 2.7538 42.1842 7.7863 
2,1 28.2903 17.0337 10.9480 31.9540 84.6809 1.5565 90.8730 9.5327 
2,2 31.5468 21.8129 12.4825 53.1842 55.5303 2.5938 69.8250 8.88 
2,3 12.2145 27.8165 13.1937 72.1786 65.4464 3.6889 44.1000 8.4733 
3,1 28.45516 17.6517 11.4208 26.7931 82.2340 0.9217 92.7324 9.4393 
3,2 31.7266 22.6043 13.0216 61.3421 58.5606 1.6563 68.1583 8.0800 
3,3 12.2841 28.8257 13.7635 83.2500 69.0179 2.3556 43.0474 7.7099 

 

Table 8. Determination of norm values 

 
      

Norm 0.588 0.926 0.9744 0.92 0.875 0.58 

As already demonstrated in table 3 of illustrative example the average norm for all the 6 objective functions are calculated as: 

 

The T,I,F values are determined keeping the constraint T+I+F=]-0,1+[ as follows,

 

 

Table 9. Determination of T,I,F values in  Example II 

   
4f    

T I F T I F T I F T I F T I F T I F 

 

.58 

 

.223 

 

.118 

 

.926 

 

.114 

 

.040 

 

.974 

 

.162 

 

.13 

 

.92 

 

.108 

 

.028 

 

.875 

 

.063 

 

.061 

 

.58 

 

.231 

 

.1885 

 

Note: The table 9 shows the T,I,F values for one case of combination of iterations only, the rest of the cases can be evaluated 

by the audience. .

5.2.3 Obtaining T, I, F values: 

Consider the target range defined in table 5, the method 

for obtaining the T, I, F values for objective function have 

been demonstrated for one case only (listed in table 7 to 

8), and the values for rest of the cases are obtained in the 

same way. By inspection of the target range values from 

f1 is 100-170. The values are obtained in table 9 by 

dividing the resultant by the upper bound of the target 

value (table 5), in this case, 170. After obtaining the 

normalized values as demonstrated in table 3, hand 

calculations of illustrative example I.  The T,I,F values 

have to be determined. 

After obtaining T, I, F values for all the cases, the strongest 

solutions identified have been listed in Table 10. There are 

still other possible ways of determination of T, I, F values. 

Perhaps, expert data and machine learning techniques can 

also be utilized to determine T, I, F values as proposed in 
23 

 

6. Results and Discussions: 

In order to evaluate the performance measure of the 

proposed method, the investigation of the proposed 

method was done on Matlab environment. The CPU speed 

was 2.0GHz, Intel i3 processor. The method was 
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compared with regular NSGA-II algorithm for the given 

example II. And, example II demonstrates the validity of 

the NLPP model for complex problems ranging from 

decision making to VLSI circuits. The table 11 shows the 

comparison of WBGA along with its refinement after 

NLPP is applied. Table 12 compares the proposed method 

with the outcome of NSGA-II algorithm, when applied to 

example II. The NLPP when applied as a post-processor 

to WBGA, retains the simplicity of and ease of 

implementation along with its computational efficiency. It 

has been observed that the NLPP application to WBGA, 

eliminates the need to compromise on the pareto-optimal 

fronts. A generalized theory on the NLPP for the GA has 

been proposed and presented. The existence of relative 

percentage of truth, false and indeterminant state in the 

neutrosophic logic has been exploited to find the best 

possible solution candidates. The model has demonstrated 

the evaluation of the common-strong, common-weak and 

common-medium solution sets for a multi-objective 

optimization problem. The validity of the model has been 

demonstrated by the practical examples. They show the 

results to be in agreement with the proposed NLPP

 

Table 10: Solution sets obtained from WBGA 

Parameters Solution1 Solution 2 Solution 3 

(W/L)1 28.7839 28.7839 28.7839 
(W/L)2,3 18.2978 18.2978 18.2978 
(W/L)4,5 12.106 12.106 12.106 
(W/L)6 31.954 31.954 31.954 

(W/L)7,8 84.6809 84.6809 84.6809 
(W/L)9 0.9217 1.5565 1.5565 

(W/L)10 90.8730 42.1842 90.8730 
(W/L)11 9.5327 9.5327 8.16 

Cm1 89.78 74.32 89.245 
Cm2 15.62 26.47 46.83 

  

Table 11. Comparison of results of WBGA and NLPP applied to WBGA.  

 Near Optimal Iteration Results NL-PP Post-processing results 

 Iteration1 Iteration2 Iteration3 Strong Parameters as 
shown in Table 9 WBGA 28.78 30.02 12.28 30.02 

 18.29 21.81 28.825 18.29 

12.106 12.48 13.76 12.106 

31.95 53.18 83.25 31.95 

84.68 55.53 69.01 84.68 

1.55 2.59 0.92 0.92 

90.87 69.82 43.04 90.87 

9.53 8.88 7.7 8.88 

87.98 74.32 89.245 89.245 

 15.62 26.47 46.83 46.83  

 

Table 12. Proposed method compared to NSGA-II 

Parameters NSGA-II WBGA-NLPP 

Solutions 
 

 

(W/L)1 30.89 (W/L)1 30.02 
(W/L)2,3 18.01 (W/L)2,3 18.29 
(W/L)4,5 12.07 (W/L)4,5 12.106 
(W/L)6 31.79 (W/L)6 31.95 

(W/L)7,8 84.25 (W/L)7,8 84.68 
(W/L)9 0.98 (W/L)9 0.92 

(W/L)10 91 (W/L)10 90.87 
(W/L)11 9.3 (W/L)11 8.88 

Cm1 89.10 Cm1 89.245 
Cm2 46.27 Cm2 46.83 

Computational Time 1008 seconds 703 seconds 
Number of Iterations 25 25 

Population 600 600 



 

7. Conclusions 

In this paper we have presented an NL post processor for 

WBGA 

▪ Retains Non-Dominant Solutions: NLPP can be 

an alternative to NSGA-II, it retains strong solution 

sets. 

▪ Computational Efficiency: The performance of 

WBGA-NLPP is very similar to NSGA-II, 

however it maintains the simplicity and 

computational efficiency of WBGA when 

compared to NSGA-II. 

▪ Flexibility: NLPP can be extended to a large 

number of multi-objective optimization problems. 

Namely- decision making, artificial intelligence, 

supply chain management, analog IC design etc.  

▪ Random nature of GA intact: The research also 

shows that the random-operation of principle of 

evolutionary algorithm has not been hampered by 

the application of NLPP. 
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