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Abstract

In this paper, we consider a class of boundary value problems for nonlinear two-term fractional differen-

tial equations with integral boundary conditions involving two ψ-Caputo fractional derivative. With the help

of properties Green function, the fixed point theorems of Schauder and Banach, and the method of upper and

lower solutions, we derive the existence and uniqueness of positive solution of proposed problem. Finally, an

example is provided to illustrate the acquired results.
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1. Introduction

Fractional calculus can be thought of as a generalization of calculus with integer or-

der. Recently various definitions of derivatives and integrals of an arbitrary order have

appeared. Despite the fact that inside the start, fractional calculus had an advancement as

a simply purely mathematical idea, in current quite a while its utilization had moreover

unfurl into numerous fields such as physics, mechanics, chemistry, biology, engineering,

bioengineering and electrochemistry, e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9] and the references

therein. So in the literature, several studies handled comparable topics to various opera-

tors, as an instance, Riemann-Liouville [10, 11], Caputo [12, 13], Erdelyi–Kober [14, 15],

generalized Caputo [16, 17], Hilfer [2], generalized Hilfer [18], Hadamard [19, 20], gen-

eralized Hadamard [21], Katugampola [22, 23], generalized Katugampola [24], Caputo-

Fabrizio [25], Atangana-Baleanu [26], etc.

In this paper, we concentrate on the positivity of the solutions for the following non-

linear fractional differential equations (FDEs) with integral boundary conditions
{
CD

α,ψ
0 u(t) + f(t,u(t)) = CD

β,ψ
0 g(t,u(t)), 0 < t < 1,

u(0) = 0, u(1) = I
α−β,ψ
0 g(1,u(1)),

(1.1)
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where D
θ,ψ
0 is the generalized Caputo fractional derivative of order θ, θ ∈ {α,β : 1 < α 6

2, 0 < β 6 α− 1}, f,g : [0, 1]×R
+ −→ R

+ are given continuous functions with f(t,u) and

g(t,u) are not required any monotone assumption, g(0,u(0)) = 0, and

I
α−β,ψ
0 g(1,u(1)) =

1

Γ(α−β)

∫ 1

0
ψ′(s)(ψ(1) −ψ(s))α−β−1g(s,u(s))ds.

In the literature, nonlinear one-term FDEs of the form

Dα0 u(t) = f(t, x(t)) and D
α,ψ
0 u(t) = f(t, x(t))

have been considered by many authors (see [27, 28, 29, 30, 31]). More generally, we can

indicate to [32, 33, 34, 35, 36, 37] on the equations of kind

Dα0 u(t) = f(t, x(t),D
α
0 u(t)) and D

α,ψ
0 u(t) = f(t, x(t),Dα,ψ

0 u(t)).

Recently, the authors in [38] investigated the positivity results of the Caputo-type problem

{
CDα0 u(t) = f(t,u(t)) +

CDα−1
0 g(t,u(t)), 0 < t 6 T ,

u(0) = θ1 > 0, u′(0) = θ2 > 0
(1.2)

by using the method of upper and lower solutions and some fixed point theorems.

Very recently, Xu and Han in [39] studied the positivity results of the following non-

linear two-term FDEs





Dα0 u(t) + f(t,u(t)) = D
β
0 g(t,u(t)), 0 < t < 1,

u(0) = 0,

u(1) = 1
Γ(α−β)

∫1
0 ψ

′(s)(ψ(1) −ψ(s))α−β−1g(s,u(s))ds,

in the Riemann–Liouville derivatives sense. Also, the positivity of solutions for the follow-

ing nonlinear Hadamard-type FDEs






Dα1 u(t) + f(t,u(t)) = D
β
1 g(t,u(t)), 1 < t < e,

u(1) = 0,

u(e) = 1
Γ(α−β)

∫e
0 (log e

s
)α−β−1g(s,u(s))ds

s
,

is another great study by Ardjouni in [40].

Over time, due to the operator’s reliance on the integration kernel, many types of new

fractional derivatives and integrals emerge to obtain a distinct kernel and this makes the

range of definitions wide-ranging, due to the evolution of these operators, we refer here

to some recent results that dealt with the existence of solution and positive solution to

various problems of FDEs [41, 42, 43, 44, 45, 46].

To the best of our knowledge, no article has studied the existence of positive solu-

tions for nonlinear FDEs with integral boundary conditions (1.1). This problem has two

nonlinear terms and includes two generalized fractional derivatives. Compared to many

two-term FDEs, the type of problem we considered is more general. To show the exis-

tence and uniqueness of the positive solution, we transform (1.1) into a fractional integral
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equation with the aid of the Green function, and then by the method of upper and lower

solutions and use Schauder and Banach fixed point theorems we obtain our results.

The organization of this paper as follows: the representation of the problem with

a brief survey for literature is presented in the introduction. In Section 2, we give the

preliminary facts and some useful lemmas that will be used throughout the paper. In

Section 3, we prove the existence and uniqueness of positive solutions to problem (1.1)

via some fixed point theorems. An illustrative example is reported to justify our findings

is presented in Section 4. Finally, the conclusions close the paper.

2. Preliminaries

Let Ω = [0, 1] be a compact interval subset R. By X = C (Ω, R) we indicate the Banach

space of all continuous functions from Ω into R with the norm ‖u‖ = maxt∈Ω |u(t)|.

Define the following space

ε = {u ∈ X : u(t) > 0, ∀t ∈ Ω} ⊂ X.

By a positive solution u ∈ X, we mean a function u(t) > 0, for t ∈ Ω.

Definition 2.1. Let a,b ∈ R
+ such that b > a. For any u ∈ [a,b], we define respectively

the upper and lower contral functions as follows:

U(t,u) = sup
a6v6u

f(t, v), and L(t,u) = inf
u6v6b

f(t, v)

U∗(t,u) = sup
a6v6u

g(t, v), and L∗(t,u) = inf
u6v6b

g(t, v)

Certainly, the functions U(t,u), L(t,u), U∗(t,u)and L∗(t,u) are monotonous nondecreas-

ing with respect to u. Moreover, we have

L(t,u) 6 f(t,u) 6 U(t,u),

L∗(t,u) 6 g(t,u) 6 U∗(t,u).

We state some needful definitions and lemmas that will be used throughout this paper.

Definition 2.2. ([10]) Let α ∈ R
+, ψ ∈ Cn[a,b] an increasing function such that ψ′(t) 6=

0, for all t ∈ [a,b], and h : [a,b] −→ R an integrable function. The left-sided ψ-Riemann-

Liouville fractional integral and derivative of h of order α are given by

I
α,ψ
a+ h(t) =

1

Γ(α)

∫t

a

ψ′(s)(ψ(t) −ψ(s))α−1h(s)ds,

and

D
α,ψ
a+ h(t) = Dn,ψ I

n−α,ψ
a+ h(t),

respectively, where Dn,ψ =
(

1
ψ′(t)

d
dt

)n

, n = [α] + 1, and Γ(·) is a gamma funcion.
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Definition 2.3. [47]. Let α > 0, h,ψ ∈ Cn[a,b] two functions such that ψ is increasing

function such that ψ′(t) 6= 0, for all t ∈ [a,b]. The left-sided ψ-Caputo fractional derivative

of h of order α is defined by

CD
α,ψ
a+ h(t) = I

n−α,ψ
a+ Dn,ψh(t),

where n = [α] + 1 for α /∈ N, and n = α for α ∈ N.

Lemma 2.4. [47]. Let α > 0. Then the following properties hold:

1. If h ∈ C1[a,b], then
CD

α,ψ
a+ I

α,ψ
a+ h(t) = h(t).

2. If ψ,h ∈ Cn[a,b], then

I
α,ψ
a+

CD
α,ψ
a+ h(t) = h(t) −

n−1∑

k=0

h
[k]
ψ (a)

k!
(ψ(t) −ψ(a))k.

where h
[k]
ψ (t) =

[

1
ψ′(t)

d
dt

]k

h(t) and n = [α] + 1 for α /∈ N.

In particular, if 1 < α < 2, then

I
α,ψ
a+

CD
α,ψ
a+ h(t) = h(t) − h(a) − h

′

ψ(a)(ψ(t) −ψ(a)),

where h′ψ(t) =
h′(t)
ψ′(t)

.

Lemma 2.5. [41]. Let α > 0, h ∈ C[a,b] and let ψ ∈ C1[a,b]. Then for all t ∈ [a,b]

(i) I
α,ψ
a+ (·) is bounded from C[a,b] to C[a,b].

(ii) I
α,ψ
a+ h(a) = lim

t→a+
I
α,ψ
a+ h(t) = 0.

Lemma 2.6. [16],[10]. Let α,β > 0 and h : [a,b] −→ R. Then

1. I
α,ψ
a+ I

β,ψ
a+ h(t) = I

α+β,ψ
a+ h(t).

2. I
α,ψ
a+ [ψ(t) −ψ(a)]β−1

=
Γ(β)
Γ(α+β)

[ψ(t) −ψ(a)]α+β−1 .

3. CD
α,ψ
a+ [ψ(t) −ψ(a)]k = 0, ∀k ∈ {0, 1, ...,n− 1}, n ∈ N.

Now, we state some fixed point theorems that enable us to demonstrate the existence

and uniqueness of a positive solution of (1.1).

Definition 2.7. Let U be Banach space and φ : U −→ U. The operator φ is a contraction

operator if there is an λ ∈ (0, 1) such that u, v ∈ U imply

‖φu−φv‖ 6 λ ‖u− v‖ (2.1)

Theorem 2.8. Let K be a nonempty closed convex subset of a Banach spaceU andφ : K −→ K

be a contraction operator. Then there is a unique u ∈ K with φu = u.

Theorem 2.9. Let K be a nonempty bounded, closed and convex subset of a Banach space U

and φ : K −→ K be a completely continuous operator. Then φ has a fixed point in K.
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3. Main results

In this section, we prove the existence and uniqueness results of (1.1) under Banach

fixed point theorem and Schaefer fixed point theorem. Before starting the proof we will

give the following fundamental lemma:

Lemma 3.1. Let 1 < α 6 2, u ∈ X, ψ,u′ψ ∈ X1 and f,g : [0, 1]×R
+ −→ R

+ are continuous

functions with g(0,u(0)) = 0. Then u is a solution of the boundary value problem (1.1) if

and only if

u(t) =

∫ 1

0
Gψ(t, s)ψ

′(s)f(s,u(s))ds+
1

Γ(α−β)

∫t

0
ψ′(s)(ψ(t) −ψ(s))α−β−1g(s,u(s))ds.

(3.1)

where

Gψ(t, s) =
Υ(t)

Γ(α)

{
[ψ(1) −ψ(s)]α−1

− 1
Υ(t)

[ψ(t) −ψ(s)]α−1 , 0 6 s 6 t 6 1,

[ψ(1) −ψ(s)]α−1 , 0 6 t 6 s 6 1,
(3.2)

with Υ(t) :=
N(t)
N(1) , N(t) := [ψ(t) −ψ(0)] and u′ψ(t) =

u′(t)
ψ′(t)

.

Proof. From Lemma 2.4, applying ψ-Reimann-Liouville fractional operator I
α,ψ
0 on both

sides of (1.1), it follows that

u(t) − u(0) − u′ψ(0) [ψ(t) −ψ(0)]

= −I
α,ψ
0 f(t,u(t)) + I

α,ψ
0

CD
β,ψ
0 g(t,u(t)))

= −I
α,ψ
0 f(t,u(t)) + I

α−β,ψ
0 (I

β,ψ
0 D

β,ψ
0 g(t,u(t)))

= −I
α,ψ
0 f(t,u(t)) + I

α−β,ψ
0 (g(t,u(t)) − g(0,u(0)))

= −I
α,ψ
0 f(t,u(t)) + I

α−β,ψ
0 g(t,u(t) −

g(0,u(0))

Γ(α−β+ 1)
[ψ(t) −ψ(0)]α−β ,

where u′ψ(0) =
u′(0)
ψ′(0) . Then, by the initial condition u(0) = 0, and fact that g(0,u(0) = 0,

we get

u(t) = u′ψ(0) [ψ(t) −ψ(0)] − I
α,ψ
0 f(t,u(t)) + I

α−β,ψ
0 g(t,u(t). (3.3)

By the boundary conditions u(1) = I
α−β,ψ
0 g(1,u(1)), we obtain

u′ψ(0) =
1

[ψ(1) −ψ(0)]
I
α,ψ
0 f(1,u(1)). (3.4)

Substituting (3.4) into (3.3), we get

u(t) =
Υ(t)

Γ(α)

∫ 1

0
ψ′(s) [ψ(1) −ψ(s)]α−1 f(s,u(s))ds

−
1

Γ(α)

∫t

0
ψ′(s)(ψ(t) −ψ(s))α−1f(s,u(s))ds

+
1

Γ(α−β)

∫t

0
ψ′(s)(ψ(t) −ψ(s))α−β−1g(s,u(s))ds. (3.5)
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By the Green function,

u(t) =

∫ 1

0
Gψ(t, s)ψ

′(s)f(s,u(s))ds+
1

Γ(α−β)

∫t

0
ψ′(s)(ψ(t) −ψ(s))α−β−1g(s,u(s))ds.

For the converse, the equation (3.5) can be written as

u(t) = Υ(t)I
α,ψ
0 f(1,u(1)) − I

α,ψ
0 f(t,u(t)) + I

α−β,ψ
0 g(t,u(t).

Applying ψ-Caputo fractional operator CD
α,ψ
0 (·) on both sides of (3.5), and noting that

CD
α,ψ
0 Υ(t) = CD

α,ψ
0

N(t)

N(1)
=

1

N(1)
CD

α,ψ
0 [ψ(t) −ψ(0)] = 0, for 1 < α 6 2,

we obtain

CD
α,ψ
0 u(t) = − CD

α,ψ
0 I

α,ψ
0 f(t,u(t)) + CD

α,ψ
0 I

α−β,ψ
0 g(t,u(t)

= −f(t,u(t)) + CD
β,ψ
0 g(t,u(t).

Taking the limits at t→ 0, and t→ 1 in equation (3.5) it follows that u(0) = 0, and u(1) =
I
α−β,ψ
0 g(1,u(1)). We proved that proplem (1.1) is equivalent to equation (3.1).

Lemma 3.2. The function Gψdefined by (3.2) satisfies

1. Gψ(t, s) > 0 for t, s ∈ (0, 1).

2. Γ(α)max06t61Gψ(t, s) = [ψ(1) −ψ(s)]α−1 , s ∈ (0, 1).

Proof. The proof of part 1 was done, see [48]. To prove the part 2, we have N(t) =

[ψ(t) −ψ(0)] and Υ(t) :=
N(t)
N(1) . For 0 6 s 6 t 6 1, we get

Gψ(t, s) =
Υ(t)

Γ(α)

[

[ψ(1) −ψ(s)]α−1
−

1

Υ(t)
[ψ(t) −ψ(s)]α−1

]

6
Υ(t)

Γ(α)
[ψ(1) −ψ(s)]α−1

6
[ψ(1) −ψ(s)]α−1

Γ(α)
,

and for 0 6 t 6 s 6 1, we get

Gψ(t, s) =
Υ(t)

Γ(α)
[ψ(1) −ψ(s)]α−1

6
Υ(s)

Γ(α)
[ψ(1) −ψ(s)]α−1

6
[ψ(1) −ψ(s)]α−1

Γ(α)
.

Therefore,

max
06t61

Gψ(t, s) =
[ψ(1) −ψ(s)]α−1

Γ(α)
, s ∈ (0, 1).
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Now we are able to prove more results there on existence and uniqueness of positive

solution to the problem (1.1).

To use the fixed point theorem, according to Lemma 3.1, we consider the operator

φ : X −→ X such that φu = u, where

(φu) (t) =

∫ 1

0
Gψ(t, s)ψ

′(s)f(s,u(s))ds+
1

Γ(α−β)

∫t

0
ψ′(s)(ψ(t)−ψ(s))α−β−1g(s,u(s))ds.

(3.6)

We need the following assumptions to establish our reselts.

(H1) Let u,u ∈ ε, such that a 6 u 6 u 6 b and

{
D
α,ψ
0 u(t) +U(t,u(t)) > D

α,ψ
0 U∗(t,u(t)),

D
α,ψ
0 u(t) + L(t,u(t)) 6 D

α,ψ
0 L∗(t,u(t)),

for any t ∈ Ω, where u and u are the upper and lower solutions for (1.1) respectively.

Theorem 3.3. Assum that (H1) is satisfied, then the FDE (1.1) has at least one positive

solution u ∈ X satisfying u 6 u 6 u, t ∈ Ω.

Proof. Let P = {u ∈ X : u(t) 6 u(t) 6 u(t), t ∈ Ω} with the norm ‖u‖ = max06t61 |u(t)| ,
then we have ‖u‖ 6 b. Hence, P is a convex, bounded, and closed subset of the Banach

space X. Moreover, the continuity of g and f implies the continuity of the operator φ

defined by (3.6) on P. Now, if u ∈ P, there exist positive constants pf and pg such that

max {f(t,u(t)) : t ∈ Ω,u(t) 6 b} < pf,

and

max {g(t,u(t)) : t ∈ Ω,u(t) 6 b} < pg.

Then

(φu) (t) 6

∫ 1

0
Gψ(t, s)ψ

′(s)f(s,u(s))ds

+
1

Γ(α−β)

∫t

0
ψ′(s)(ψ(t) −ψ(s))α−β−1g(s,u(s))ds

6

∫ 1

0
max

06t61
Gψ(t, s)ψ

′(s)f(s,u(s))ds+I
α−β,ψ
0 g(t,u(t))

6
pf

Γ(α)

∫ 1

0
[ψ(1) −ψ(s)]α−1ψ′(s)ds+

pg [ψ(t) −ψ(0)]
α−β

Γ(α−β+ 1)

6
pf

Γ(α+ 1)
[ψ(1) −ψ(0)]α +

pg

Γ(α−β+ 1)
[ψ(1) −ψ(0)]α−β .

Thus,

‖φu‖ 6

(

pf

Γ(α+ 1)
+

pg

Γ(α−β+ 1)

)

[ψ(1) −ψ(0)]α .
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Hence, φ(P) is uniformly bounded. Next, we prove the equicontinuity of φ(P). Let u ∈ P,

then for any t1, t2 ∈ Ω with t1 < t2, we have

|(φu) (t2) − (φu) (t1)|

=

∣

∣

∣

∣

∣

∫ 1

0

(

Gψ(t2, s) −Gψ(t1, s)
)

ψ′(s)f(s,u(s))ds

+
1

Γ(α−β)

∫t2

0
ψ′(s)(ψ(t2) −ψ(s))

α−β−1g(s,u(s))ds

−
1

Γ(α−β)

∫t1

0
ψ′(s)(ψ(t1) −ψ(s))

α−β−1g(s,u(s))ds

∣

∣

∣

∣

6

∫ 1

0

∣

∣Gψ(t2, s) −Gψ(t1, s)
∣

∣ψ′(s) |f(s,u(s))|ds

+
1

Γ(α−β)

∫t1

0

(

[ψ(t2) −ψ(s)]
α−β−1

− [ψ(t1) −ψ(s)]
α−β−1

)

ψ′(s) |f(s,u(s))|ds

+
1

Γ(α−β)

∫t2

t1

(

[ψ(t2) −ψ(s)]
α−β−1

)

ψ′(s) |f(s,u(s))|ds.

We have

∣

∣Gψ(t2, s) −Gψ(t1, s)
∣

∣ =

∣

∣

∣

∣

Υ(t2)

Γ(α)

[

[ψ(1) −ψ(s)]α−1
−

1

Υ(t2)
[ψ(t2) −ψ(s)]

α−1

]

−
Υ(t1)

Γ(α)

[

[ψ(1) −ψ(s)]α−1
−

1

Υ(t1)
[ψ(t1) −ψ(s)]

α−1

]∣

∣

∣

∣

6
Υ(t2) −Υ(t1)

Γ(α)
[ψ(1) −ψ(s)]α−1 .

Hence

|(φu) (t2) − (φu) (t1)| 6 pf
Υ(t2) −Υ(t1)

Γ(α+ 1)
[ψ(1) −ψ(s)]α

+
pg

Γ(α−β+ 1)

(

[ψ(t2) −ψ(0)]
α−β

− [ψ(t1) −ψ(0)]
α−β

)

.

As t1 → t2 the right-hand side of the previous inequality is independent of u and tends to

zero. Therefore, (φu) is equicontinuous. The Arzela-Ascoli theorem shows that φ : X −→
X is compact. To apply Theorem 2.9 it remains to prove that φP ⊆ P. Let u ∈ P. Then by
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assumption (H1) and Definition 2.1, we have

(φu) (t) =

∫ 1

0
Gψ(t, s)ψ

′(s)f(s,u(s))ds

+
1

Γ(α−β)

∫t

0
ψ′(s) [(ψ(t) −ψ(s)]α−β−1 g(s,u(s))ds

6

∫ 1

0
Gψ(t, s)ψ

′(s)U(s,u(s))ds

+
1

Γ(α−β)

∫t

0
ψ′(s) [(ψ(t) −ψ(s)]α−β−1U∗(s,u(s))ds

6

∫ 1

0
Gψ(t, s)ψ

′(s)U(s,u(s))ds

+
1

Γ(α−β)

∫t

0
ψ′(s) [(ψ(t) −ψ(s)]α−β−1U∗(s,u(s))ds

6 u(t),

and

(φu) (t) =

∫ 1

0
Gψ(t, s)ψ

′(s)f(s,u(s))ds

+
1

Γ(α−β)

∫t

0
ψ′(s) [(ψ(t) −ψ(s)]α−β−1 g(s,u(s))ds

>

∫ 1

0
Gψ(t, s)ψ

′(s)L(s,u(s))ds

+
1

Γ(α−β)

∫t

0
ψ′(s) [(ψ(t) −ψ(s)]α−β−1 L∗(s,u(s))ds

>

∫ 1

0
Gψ(t, s)ψ

′(s)L(s,u(s))ds

+
1

Γ(α−β)

∫t

0
ψ′(s) [(ψ(t) −ψ(s)]α−β−1 L∗(s,u(s))ds

> u(t).

Hence, u 6 (φu) (t) 6 u, t ∈ Ω, that is, φ(P) ⊆ P. According to Theorem 2.9, the

operator φ has at least one fixed point u ∈ P. Therefore, the problem (1.1) has at least

one positive solution u ∈ X and u 6 u 6 u, t ∈ Ω.

Next, we give further special cases of the preceding theorem.

Corollary 3.4. Suppose that there exist positive constants k1,k2,k3 and k4 such that

0 < k1 6 f(t,u(t)) 6 k2 <∞, (t,u) ∈ Ω× R
+, (3.7)

and

0 < k3 6 g(t,u(t)) 6 k4 <∞, (t,u) ∈ Ω× R
+, (3.8)
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Then the problem (1.1) has at least one positive solution u ∈ P. Moreover,

u(t) > k1

∫ 1

0
Gψ(t, s)ψ

′(s)ds+
k3

Γ(α−β)

∫t

0
ψ′(s) [(ψ(t) −ψ(s)]α−β−1 ds, (3.9)

u(t) 6 k2

∫ 1

0
Gψ(t, s)ψ

′(s)ds+
k4

Γ(α−β)

∫t

0
ψ′(s) [(ψ(t) −ψ(s)]α−β−1 ds. (3.10)

Proof. Consider the following problems
{
CD

α,ψ
0 u(t) + k2 = CD

β,ψ
0 k4, 0 < t < 1,

u(0) = 0, u(1) =
(

I
α−β,ψ
0 k4

)

(1),
(3.11)

{
CD

α,ψ
0 u(t) + k1 = CD

β,ψ
0 k3, 0 < t < 1,

u(0) = 0, u(1) =
(

I
α−β,ψ
0 k3

)

(1),
(3.12)

In view of Lemma 3.1, the problems (3.11) and (3.12) are equivalent to

u(t) = k2

∫ 1

0
Gψ(t, s)ψ

′(s)ds+
k4

Γ(α−β)

∫t

0
ψ′(s) [(ψ(t) −ψ(s)]α−β−1 ds, (3.13)

u(t) = k1

∫ 1

0
Gψ(t, s)ψ

′(s)ds+
k3

Γ(α−β)

∫t

0
ψ′(s) [(ψ(t) −ψ(s)]α−β−1 ds. (3.14)

By the given assumption (3.8) and the definition of control function, we have

k1 6 L(t,y) 6 U(t,y) 6 k2 <∞, (t,y) ∈ Ω× [a,b] ,

k3 6 L∗(t,y) 6 U∗(t,y) 6 k4 <∞, (t,y) ∈ Ω× [a,b] ,

where a,b are the minimum and maximum of y on Ω. It follows that

y(t) 6

∫ 1

0
Gψ(t, s)ψ

′(s)L(s,y)ds+
1

Γ(α−β)

∫t

0
ψ′(s) [(ψ(t) −ψ(s)]α−β−1 L∗(s,y)ds,

z(t) >

∫ 1

0
Gψ(t, s)ψ

′(s)U(s, z)ds+
1

Γ(α−β)

∫t

0
ψ′(s) [(ψ(t) −ψ(s)]α−β−1U∗(s, z)ds.

Obviously, (3.13) and (3.14) are the upper and lower solutions of the problem (1.1). An

application of Theorem 3.3 shows that (1.1) has at least one solution u ∈ P and satisfies

z(t) 6 u(t) 6 y(t).

Corollary 3.5. Suppose that

σf < f(t,u(t)) < γfu(t) + ηf <∞ for t ∈ Ω,

σg < g(t,u(t)) < γgu(t) + ηg <∞ fort ∈ Ω,

where σf,σf, γf,γg,ηf,ηg are positive constants with

Φ :=

(

γf

Γ(α+ 1)
+

γg

Γ(α−β+ 1)

)

[ψ(1) −ψ(0)]α < 1. (3.15)

. Then the problem (1.1) has at least a positive solution u ∈ X.
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Proof. Consider the following problem

{
D
α,ψ
0 u(t) + (γfu(t) + ηf) = D

β,ψ
0 (γgu(t) + ηg) , 0 < t < 1,

u(0) = 0,u(1) = I
α−β,ψ
0 ((γgu(1) + ηg)) .

(3.16)

Problem (3.16) is equivalent to fractional integral equation

u(t) =

∫ 1

0
Gψ(t, s)ψ

′(s) (γfu(s) + ηf)ds

+
1

Γ(α−β)

∫t

0
ψ′(s) [(ψ(t) −ψ(s)]α−β−1

(γgu(s) + ηg)ds.

Let ̟ be a positive real number such that

̟ > (1 −Φ)
−1

(

ηf

Γ(α+ 1)
+

ηg

Γ(α−β+ 1)

)

[ψ(1) −ψ(0)]α . (3.17)

Then, the set B̟ = {u ∈ X : ‖u‖ 6 ̟} is convex, closed, and bounded subset of X. The

operator F : B̟ −→ B̟ defined by

(Fu) (t) =

∫ 1

0
Gψ(t, s)ψ

′(s) (γfu(s) + ηf)ds

+
1

Γ(α−β)

∫t

0
ψ′(s) [(ψ(t) −ψ(s)]α−β−1

(γgu(s) + ηg)ds

is completely continuous in X as in the proof of Theorem 3.3. Moreover,

(Fu) (t) 6

∫ 1

0
max

06t61
Gψ(t, s)ψ

′(s) (γfu(s) + ηf)ds+I
α−β,ψ
0 (γgu(t) + ηg) ,

which gives

|(Fu) (t)| 6
1

Γ(α)

∫ 1

0
[ψ(1) −ψ(0)]α−1ψ′(s) (γf |u(s)|+ ηf)ds

+I
α−β,ψ
0 (γg |u(t)|+ ηg)

6
γf ‖u‖
Γ(α+ 1)

[ψ(1) −ψ(0)]α +
ηf

Γ(α+ 1)
[ψ(1) −ψ(0)]α

+
γg ‖u‖

Γ(α−β+ 1)
[ψ(1) −ψ(0)]α−β

+
ηg

Γ(α−β+ 1)
[ψ(1) −ψ(0)]α−β

6

(

γf

Γ(α+ 1)
+

γg

Γ(α−β+ 1)

)

‖u‖ [ψ(1) −ψ(0)]α

+

(

ηf

Γ(α+ 1)
+

ηg

Γ(α−β+ 1)

)

[ψ(1) −ψ(0)]α
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If u ∈ B̟, then it follows from (3.15) and (3.17) that

|(Fu) (t)| 6

(

γf

Γ(α+ 1)
+

γg

Γ(α−β+ 1)

)

[ψ(1) −ψ(0)]α̟

+

(

ηf

Γ(α+ 1)
+

ηg

Γ(α−β+ 1)

)

[ψ(1) −ψ(0)]α

6 Φ̟+ (1 −Φ)̟ = ̟.

This shows that F : B̟ → B̟ is a compact operator. Hence, the Theorem 2.9 ensures

that F has at least one fixed point in B̟, and then problem (3.16) has at least one positive

solution u(t), where 0 < t < 1. Therefore, if t ∈ Ω one can asserts that

u(t) =

∫ 1

0
Gψ(t, s)ψ

′(s) (γfu(s) + ηf)ds

+
1

Γ(α−β)

∫t

0
ψ′(s) [(ψ(t) −ψ(s)]α−β−1

(γgu(s) + ηg)ds

= γf

∫ 1

0
Gψ(t, s)ψ

′(s)u(s)ds+
ηf

Γ(α+ 1)

[

(

ψ(t) −ψ(0)

ψ(1) −ψ(0)

)1−α

− 1

]

[ψ(t) −ψ(0)]α

+
γg

Γ(α−β)

∫t

0
ψ′(s) [(ψ(t) −ψ(s)]α−β−1 u(s)ds

+
ηg

Γ(α−β+ 1)
[ψ(1) −ψ(0)]α−β

By the Definition 2.1, we obtain

u(t) >

∫ 1

0
Gψ(t, s)ψ

′(s)U(s,u(s))ds+
1

Γ(α−β)

∫t

0
ψ′(s) [(ψ(t) −ψ(s)]α−β−1U∗(s,u(s))ds.

Then u is an upper positive solution of the problem (1.1). Similarly,

u(t) =

∫ 1

0
Gψ(t, s)ψ

′(s)σfds+
1

Γ(α−β)

∫t

0
ψ′(s) [(ψ(t) −ψ(s)]α−β−1 σgds

= σf

∫ 1

0
Gψ(t, s)ψ

′(s)ds+
σg

Γ(α−β)

∫t

0
ψ′(s) [(ψ(t) −ψ(s)]α−β−1 ds

=
σf

Γ(α+ 1)

[

(

ψ(t) −ψ(0)

ψ(1) −ψ(0)

)1−α

− 1

]

[ψ(t) −ψ(0)]α

+
σg

Γ(α−β+ 1)
[ψ(1) −ψ(0)]α−β ,

and by the Definition 2.1, we get

u(t) 6

∫ 1

0
Gψ(t, s)ψ

′(s)L(s,u(s))ds+
1

Γ(α−β)

∫t

0
ψ′(s) [(ψ(t) −ψ(s)]α−β−1 L∗(s,u(s))ds.

Thus, u is a lower positive solution of problem (1.1). By Theorem 3.3, the problem

(1.1) has at least one positive solution u ∈ X, where u(t) 6 u(t) 6 u(t).

Our final result discusses the uniqueness of positive solution to (1.1) using Theorem

2.8.
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Theorem 3.6. Suppose that f,g : Ω× R
+ −→ R

+ are continuous functions, and there exist

two constants M1,M2 > 0 such that

{
|f(t,u) − f(t, v)| 6M1 |u− v| ,
|g(t,u) − g(t, v)| 6M2 |u− v| ,

for t ∈ Ω and u, v ∈ R
+. Then, if

R :=

(

M1 [ψ(1) −ψ(0)]
α

Γ(α+ 1)
+
M2 [ψ(1) −ψ(0)]

α−β

Γ(α−β+ 1)

)

< 1. (3.18)

then the problem (1.1) has a unique positive solution u ∈ P.

Proof. In view of Theorem 3.3, the problem (1.1) has at least one positive solution in P.

Hence, we just prove that the operator defined by (3.6) is a contraction on P. Obviously,

if u ∈ P, then φu ∈ P. Indeed, for any t ∈ Ω and u, v ∈ R
+ we have

‖φu−φv‖ = max
t∈Ω

|(φu) (t) − (φv) (t)|

6 max
t∈Ω

(∫ 1

0
Gψ(t, s)ψ

′(s) |f(s,u(s)) − f(s, v(s))|ds

+
1

Γ(α−β)

∫t

0
ψ′(s)(ψ(t) −ψ(s))α−β−1 |g(s,u(s)) − g(s, v(s))|ds

)

6
1

Γ(α)

∫ 1

0
[ψ(1) −ψ(0)]α−1ψ′(s)M1 ‖u− v‖ds

+
1

Γ(α−β)

∫t

0
ψ′(s)(ψ(t) −ψ(s))α−β−1M2 ‖u− v‖ds

6

(

M1 [ψ(1) −ψ(0)]
α

Γ(α+ 1)
+
M2 [ψ(1) −ψ(0)]

α−β

Γ(α−β+ 1)

)

‖u− v‖

= R ‖u− v‖ .

As R < 1, the operator φ is a contraction mapping due to (3.18). So,Theorem 2.8 shows

that the problem (1.1) has a unique positiv solution u ∈ P.

4. An example

Consider the Boundary fractional differential equation

CD
3
2 ,ψ

0+ u(t) +
1

4 + t

(

4 +
tu(t)

(3 + u(t))

)

= CD
1
4 ,ψ

0+

(

u(t)

5 + u(t)

)

, t ∈ (0, 1), (4.1)

u(0) = 0, u(1) = I
7
4 ,ψ
0

(

u(1)

5 + u(1)

)

, (4.2)

By comparing with problem (1.1), we have: α = 3
2 , β = 1

4 , α−β = 5
4 ,

f(t,u) =
1

4 + t

(

4 +
tu

(3 + u)

)

,
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g(t,u) =
u

5 + u
.

Then, g(0,u(0)) = 0 and for any u, v ∈ R
+ and t ∈ (0, 1), we obtain

|f(t,u) − f(t, v)| =
1

4 + t

∣

∣

∣

∣

tu

3 + u
−

tv

3 + v

∣

∣

∣

∣

6
1

12
|u− v| =M1 |u− v| , and

|g(t,u) − g(t, v)| =

∣

∣

∣

∣

u

5 + u
−

v

5 + v

∣

∣

∣

∣

6
1

5
|u− v| =M2 |u− v| .

Take ψ(t) = e
t
3 , for all t ∈ [0, 1]. Since

R =

[

3
√
e− 1

]
3
2

9
√
π

+

[

3
√
e− 1

]
5
4

5Γ(9
4)

≈ 0.07 < 1.

Thus by Theorem 3.6, the problem (4.1)-(4.2) has a unique positive solution.

Moreover, since f(t,u) and g(t,u) are nondecreasing on u,

lim
u→∞

g(t,u) = 1, lim
u→∞

f(t,u) = 1,

and
4

5
6 f(t,u) 6 1,

1

5
6 g(t,u) 6 1,

for t ∈ [1, 0], and u ∈ R
+. Therefore, Corollary 3.4 holds with k1 = 4

5 , k2 = 1, k3 = 1
5 and

k4 = 1. Hence, the problem (4.1)-(4.2) has a positive solution which verifies u(t) 6 u(t) 6

u(t) where

u(t) =
k2

Γ(α+ 1)

[

(

ψ(t) −ψ(0)

ψ(1) −ψ(0)

)1−α

− 1

]

[ψ(t) −ψ(0)]α

+
k4

Γ(α−β+ 1)
[ψ(t) −ψ(0)]α−β

=
4

3
√
π





√

e
1
3 − 1

e
t
3 − 1

− 1





[

e
t
3 − 1

]
3
2
+

1

Γ(9
4)

[

e
t
3 − 1

]
5
4

and

u(t) =
k1

Γ(α+ 1)

[

(

ψ(t) −ψ(0)

ψ(1) −ψ(0)

)1−α

− 1

]

[ψ(t) −ψ(0)]α

+
k3

Γ(α−β+ 1)
[ψ(t) −ψ(0)]α−β

=
16

15
√
π





√

e
1
3 − 1

e
t
3 − 1

− 1





[

e
t
3 − 1

]
3
2
+

1

5Γ(9
4)

[

e
t
3 − 1

]
5
4

.



H.A. Wahash, S.K. Panchal /Positive solutions for ψ-Caputo of two-term FDEs 61

5. Conclusions

In this paper, we have considered a class of boundary value problems for nonlinear

two-term fractional differential equations with integral boundary conditions involving

two ψ-Caputo fractional derivative. The studied problem has two nonlinear terms and

includes two generalized fractional derivatives. Compared to many two-term FDEs, the

type of problem we considered is more general. With the aid of the properties Green func-

tion, known fixed point theorems, and the method of upper and lower solutions, we have

established the existence and uniqueness of positive solutions for a proposed problem.

Finally, the main results are well illustrated with the help of an example. Many results of

problems that contain classical fractional operators are obtained as special cases of (1.1).

The reported results in this paper are novel and an important contribution to the existing

literature on the topic.
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