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Abstract

This paper discusses some existence results for at least one continuous solution for generalized fractional

quadratic functional integral equations. Some results on nonlinear functional analysis including Schauder

fixed point theorem are applied to establish the existence result for proposed equations. We improve and

extend the literature by incorporated of some well known and commonly cited results as special cases in this

topic. Further, we prove the existence of maximal and minimal solutions for these equations.
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1. Introduction

In the past few years, many author have utilized the fractional calculus as a path of

describing natural phenomena in diverse fields such as mathematics, applied science, and

engineering. Recently, this topic has aroused deep intense interest, and increasing studies

of some researchers, both in mathematics and in applications. As a result of this interest,

many studies have been presented on this topic. In this regard, we refer to the mono-

graphs of leading researchers [1, 2, 3, 4, 5, 6, 7], and the papers [8, 9, 10, 11, 12]. There

are various definitions of fractional derivatives and fractional integrals, the most famous

of which are Riemann-Liouville [4], Caputo [13], Hilfer [2], Hadamard [14], Katugam-

pola [15] and Prabhakar [16]. On the other hand, new, more general, local, and non-local

fractional operators have emerged incorporates several operators dealing with a differ-

ent kernel of integrations, such as Caputo-Hadamard [17], Caputo-Katugampola [18],

Caputo-Fabrizio [19], Atangana-Baleanu-Caputo [20], ψ-Caputo [21], ψ-Hilfer [22] and

some other operators [23, 24, 25]. These operators combine a wide class of fractional

derivatives as the aforementioned ones. It is notable that integral equations (IEs) have

many useful applications in describing various events and problems of the real world. Ad-

ditionally, the theory of IEs is quickly developing utilizing the instruments of fixed point
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theory and nonlinear analysis. Specifically, quadratic integral equations (QIEs) have nu-

merous helpful applications in the real world. For instance, QIEs are regularly pertinent

in the theory of radiative exchange, the theory of neutron transport, the dynamic theory

of gases, traffic theory, and queuing theory. Numerous creators studied the existence of

solutions for sundry classes of nonlinear QIEs (see e.g. [26, 27, 28, 29, 30, 31, 32, 33, 34]

and [35, 36, 37, 38, 39, 40]. Notwithstanding, in a large portion of the above literature,

the main results were investigated with the assistance of the method associated with the

measure of noncompactness and the classical fractional operators. Rather than utilizing

the method of measure of noncompactness, we use Schauder fixed point theorem. More-

over, our results will be more generalized of the above literature due to the kernel of

integration depends on another function ψ, thus our obtained results will cover a large

number of results for different functions of ψ.
In this regard, we discuss the existence of at least one continuous solution of the

nonlinear fractional quadratic functional integral equation

ω(t) = h(t) + g(t,ω(ϕ(t))

∫t

0

[ψ(t) −ψ(ρ)]α−1

Γ(α)
ψ′(ρ)f(ρ,ω(φ(ρ))dρ, t ∈ ∆ = [0, 1],

(1.1)

The equation (1.1) we can express it as

ω(t) = h(t) + g(t,ω(ϕ(t))I
α,ψ
0+ f(t,ω(φ(t)), t ∈ ∆ = [0, 1], (1.2)

where α > 0, ψ : ∆ → R that is an increasing differentiable function such that ψ′(t) 6= 0
for all t ∈ ∆, I

α,ψ
0+ is generalized fractional operator in Reimann-Liouville sense, and

h,g,ϕ, f,φ are given functions satisfying some suppositions that will be specified in the

next section. Moreover, the existence of maximal and minima solutions of (1.1) will be

proved. For some recent results involving ψ-fractional derivatives, one can refer to [41,

42, 43, 44, 45].

In the next analysis, we shall use the following as an abbreviation:

Fractional Quadratic Functional Integral Equation (FQFIE); Fractional Quadratic In-

tegral Equation (FQIE); Fractional Functional Integral Equation (FFIE); Fractional Func-

tional Differential Equation (FFDE); Fractional Functional Differential Equations (FDEs);

Differential Equations (DEs); Reimann-Liouville (RL).

Remark 1.1.

1. If ψ(t) = t, then FQFIE (1.1) reduces to the following equation

ω(t) = h(t) + g(t,ω(ϕ(t))

∫t

0

(t− ρ)α−1

Γ(α)
f(ρ,ω(φ(ρ))dρ, t ∈ ∆, α > 0

which have been studied by EL-Sayed and Hashem in [46].

2. If ψ(t) = ϕ(t) = φ(t) = t then the existence of continuous solutions of

ω(t) = h(t) + g(t,ω(t)

∫t

0

(t− ρ)α−1

Γ(α)
f(ρ,ω(ρ)dρ, t ∈ ∆, α > 0

was proved in [34, 47].
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3. If ψ(t) = φ(t) = t and g(t,ω(ϕ(t)) ≡ 1, then the existence of continuous solutions

of

ω(t) = h(t) +

∫t

0

(t− ρ)α−1

Γ(α)
f(ρ,ω(ρ)dρ, t ∈ ∆, α > 0

was proved in [40].

4. If ψ(t) = φ(t) = t, α = 1, g(t,ω(ϕ(t)) ≡ 1, and h(t) = ω0, then the existence of

continuous solutions of

ω(t) = ω0 +

∫t

0
f(ρ,ω(ρ))dρ, t ∈ ∆,

was proved in [48].

To our knowledge, no contributes to study of the fractional quadratic functional inte-

gral equations exist in the literature, especially for those involving the ψ-fractional deriva-

tives.

This paper is structured as follows: In Section 2, we recall some fundamental defi-

nitions and fact preliminary. Section 3 contains the existence result obtained by using

Schauder fixed point theorem. Applications are given in Section 4. We discuss the maxi-

mal and minimal solutions of (1.1) in Section 5.

2. Preliminaries

Let R be the set of real numbers whereas ∆ = [0, 1] ⊂ R. C(∆) be the Banach space of

all real continuous functions defined on ∆ with the supremum norm ‖·‖∞, and let L1(∆)

be the space of Lebesgue integrable functions on ∆. The existence results will be rely on

the following definitions, lemmas and theorems.

Definition 2.1. [4] The generalized RL fractional integral and derivative of order α > 0
for an integrable function Z : [a,b] → R with respect to another function ψ are defined as

follows

I
α,ψ
a+ Z(t) =

1

Γ(α)

∫t

a

ψ′(ρ)(ψ(t) −ψ(ρ))α−1Z(ρ)dρ, t > a, (2.1)

and
RLD

α,ψ
a+ Z(t) = Dn,ψ I

n−α,ψ
a+ Z(t), t > a, (2.2)

respectively, where ψ : [a,b] → R is an increasing differentiable function such that ψ′(t) 6=

0, for all t ∈ [a,b], Dn,ψ =
(

1
ψ′(t)

d
dt

)n

, n = [α] + 1, and Γ(·) the Euler gamma function is

defined by

Γ(δ) =

∫∞

0
tδ−1e−tdt, δ ∈ C, R(δ) > 0.

Definition 2.2. [21] The generalized Caputo fractional derivative of order α > 0 with

respect to another function ψ can be represented by the expression

CD
α,ψ
a+ Z(t) = I

n−α;ψ
a+ Dn,ψZ(t), (2.3)
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where Z,ψ ∈ Cn[a,b]. Given Z ∈ Cn−1[a,b], we have

CD
α,ψ
a+ Z(t) = RLD

α,ψ
a+



Z(t) −

n−1∑

j=0

Z
[j]
ψ (a)

j!
(ψ(t) −ψ(a))j



 ,

where Z
[j]
ψ (t) =

[

1
ψ′(t)

d
dt

]j

Z(t), and n = [α] + 1 for α /∈ N. Further, if α = n ∈ N, then

CD
α,ψ
a+ Z(t) = Z

[n]
ψ (t).

In particular, if 0 < α < 1, then CD
α,ψ
a+ Z(t) = RLD

α,ψ
a+ [Z(t) −Z(a)] .

Remark 2.3. In Defintions 2.1 and 2.2, if ψ(t) = t, then equations (2.1), (2.2) and (2.3)

reduce to the following equations

Iαa+Z(t) =
1

Γ(α)

∫t

a

(t− ρ))α−1Z(ρ)dρ, t > a,

RLDαa+Z(t) = Dn In−αa+ Z(t), t > a,

and
CDαa+Z(t) = In−αa+ DnZ(t),

respectivaly, where Dn =
(

d
dt

)n
and n = [α] + 1. For more details see [4].

Lemma 2.4. [21] Let α > 0, ψ,Z ∈ Cn−1[a,b] and Z(n) exists a.e. on any bounded interval

of [a,b]. Then

I
α,ψ
a+

CD
α,ψ
a+ Z(t) = Z(t) −

n−1∑

j=0

Z
[j]
ψ (a)

j!
(ψ(t) −ψ(a))j.

In particular, if 0 < α < 1, we have I
α,ψ
a+

CD
α,ψ
a+ Z(t) = Z(t) −Z(a).

Lemma 2.5. [4] Let α > 0 and β > 0. Then, we have

I
α,ψ
a+ I

β,ψ
a+ Z(t) = I

α+β,ψ
a+ Z(t), t ∈ [a,b], and

I
α;ψ
a+ (ψ(t) −ψ(a))β−1 =

Γ(β)

Γ(β+α)
(ψ(t) −ψ(a))β+α−1.

Lemma 2.6. [41, 21] Let α > 0, Z ∈ C[a,b] and ψ ∈ C1[a,b]. Then I
α;ψ
a+ Z ∈ C[a,b] and

I
α;ψ
a+ Z(a) = lim

t→a+
I
α;ψ
a+ Z(t) = 0.

Theorem 2.7. (Schauder Fixed Point Theorem [49]) Let ̟ a Banach space and P be a

nonempty, convex, compact subset of ̟. If N : P → P is a continuous mapping, then N has

at least one fixed point in P.
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3. Existence of Continuous Solutions

Now, FQFIE (1.1) will be investigated under the following hypotheses:

(i) h : ∆→ R is continuous and bound with θ1 = supt∈∆ |h(t)| .

(ii) g : ∆× R → R is continuous and bounded with θ2 = sup(t,ω)∈∆×R
|g(t,ω)| .

(iii) There exist ℓ1, ℓ2 > 0 such that

|g(t,ω) − g(ρ,̟)| 6 ℓ1 |t− ρ|+ ℓ2 |ω−̟| ,

for all t, ρ ∈ ∆ and ω,̟ ∈ R.

(iv) f : ∆× R → R is satisfies Carathéodory conditions, i.e.

f(·,ω) is measurable for each fixedω ∈ R and f(t, ·) continuous for each fixed t ∈ ∆.

(v) There exist constant b and function η ∈ L1(∆) such that |f(t,ω)| 6 η(t) + b |ω| , for

each t ∈ ∆, ω ∈ R, and θ3 = supt∈∆ I
β,ψ
0+ η(t), for any β 6 α.

(vi) ϕ,φ : ∆→ ∆ are continuous.

(vii) The inequality θ2b [ψ(1) −ψ(0)]
α < Γ(α+ 1) is satisfied.

Theorem 3.1. Assume that (i)-(vii) be satisfied. Then FQFIE (1.1) has at least one solution

ω(t) in the space C(∆).

Proof. Fix a number λ > 0, we consider the ball

Pλ = {ω ∈ C(∆) : |ω(t)| 6 λ for t ∈ ∆} ⊂ C(∆),

with

λ >
θ1 +

θ2θ3
Γ(α−β+1) [ψ(1) −ψ(0)]

α−β

1 − θ2b
Γ(α+1) [ψ(1) −ψ(0)]

α
. (3.1)

Let the operator N : C(∆) → C(∆) defined on Pλ by

(Nω)(t) = h(t) + g(t,ω(ϕ(t))

∫t

0

[ψ(t) −ψ(ρ)]α−1

Γ(α)
ψ′(ρ)f(ρ,ω(φ(ρ))dρ, t ∈ ∆.
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Then, in light of our hypotheses, for t ∈ ∆ and ω ∈ Pλ, we have

|(Nω)(t)| 6 |h(t)|+ |g(t,ω(ϕ(t))|

∫t

0

[ψ(t) −ψ(ρ)]α−1

Γ(α)
ψ′(ρ) |f(ρ,ω(φ(ρ))|dρ

6 θ1 + θ2

∫t

0

[ψ(t) −ψ(ρ)]α−1

Γ(α)
ψ′(ρ) [η(ρ) + b |ω(φ(ρ))|]dρ

= θ1 + θ2I
α−β,ψ
0+

(

I
β,ψ
0+ η(t)

)

+θ2b

∫t

0

[ψ(t) −ψ(ρ)]α−1

Γ(α)
ψ′(ρ) |ω(φ(ρ))|dρ

6 θ1 + θ2θ3

∫t

0

[ψ(t) −ψ(ρ)]α−β−1

Γ(α−β)
ψ′(ρ)dρ

+θ2bλ

∫t

0

[ψ(t) −ψ(ρ)]α−1

Γ(α)
ψ′(ρ)dρ

6 θ1 +
θ2θ3

Γ(α−β+ 1)
[ψ(1) −ψ(0)]α−β +

θ2bλ

Γ(α+ 1)
[ψ(1) −ψ(0)]α .

By assumption (vii) and inequality (3.1) we conclude that N : Pλ → Pλ.

Now, we prove that {Nω : ω ∈ Pλ} is equi-continuous. For t1,t2 ∈ ∆ (t1 < t2), we have

(Nω)(t2) − (Nω)(t1)

= h(t2) − h(t1) + g(t2,ω(ϕ(t2))I
α,ψ
0+ f(t2,ω(φ(t2))

−g(t1,ω(ϕ(t1)) I
α,ψ
0+ f(t1,ω(φ(t1))

+g(t1,ω(ϕ(t1))I
α,ψ
0+ f(t2,ω(φ(t2))

−g(t1,ω(ϕ(t1)) I
α,ψ
0+ f(t2,ω(φ(t2))

= h(t2) − h(t1) +
(

g(t2,ω(ϕ(t2))

−g(t1,ω(ϕ(t1))
)

I
α,ψ
0+ f(t2,ω(φ(t2))

+ (g(t1,ω(ϕ(t1)))
(

I
α,ψ
0+ f(t2,ω(φ(t2)) − I

α,ψ
0+ f(t1,ω(φ(t1)

)

, (3.2)

but

I
α,ψ
0+ f(t2,ω(φ(t2)) − I

α,ψ
0+ f(t1,ω(φ(t1))

=

∫t2

0

[ψ(t2) −ψ(ρ)]
α−1

Γ(α)
ψ′(ρ)f(ρ,ω(φ(ρ))dρ+

∫t2

t1

[ψ(t2) −ψ(ρ)]
α−1

Γ(α)

×ψ′(ρ)f(ρ,ω(φ(ρ))dρ−

∫t1

0

[ψ(t1) −ψ(ρ)]
α−1

Γ(α)
ψ′(ρ)f(ρ,ω(φ(ρ))dρ

6

∫t1

0

[ψ(t1) −ψ(ρ)]
α−1

Γ(α)
ψ′(ρ)f(ρ,ω(φ(ρ))dρ+

∫t2

t1

[ψ(t2) −ψ(ρ)]
α−1

Γ(α)

×ψ′(ρ)f(ρ,ω(φ(ρ))dρ−

∫t1

0

[ψ(t1) −ψ(ρ)]
α−1

Γ(α)
ψ′(ρ)f(ρ,ω(φ(ρ))dρ

=

∫t2

t1

[ψ(t2) −ψ(ρ)]
α−1

Γ(α)
ψ′(ρ)f(ρ,ω(φ(ρ))dρ = I

α,ψ
t+1
f(t2,ω(φ(t2)).
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Then
∣

∣

∣
I
α,ψ
0+ f(t2,ω(φ(t2)) − I

α,ψ
0+ f(t1,ω(φ(t1))

∣

∣

∣

6 I
α,ψ
t+1

|f(t2,ω(φ(t2))| 6 I
α,ψ
t+1
η(t2) + bI

α,ψ
t+1

|ω(φ(t2)|

6 I
α−β,ψ
t+1

I
β,ψ
t1
η(t2) + bI

α,ψ
t+1

|ω(φ(t2)|

6 θ3
[ψ(t2) −ψ(t1)]

α−β

Γ(α−β+ 1)
+ bλ

[ψ(t2) −ψ(t1)]
α

Γ(α+ 1)
.

Hence, the inequality (3.2) becomes

|(Nω)(t2) − (Nω)(t1)|

6 |h(t2) − h(t1)|+
(

ℓ1 |t2 − t1|+ ℓ2 |ω(ϕ(t2) −ω(ϕ(t1)|
)

I
α,ψ
0+ |f(t2,ω(φ(t2))|

+(g(t1,ω(ϕ(t1)))
(

θ3
[ψ(t2) −ψ(t1)]

α−β

Γ(α−β+ 1)
+ bλ

[ψ(t2) −ψ(t1)]
α

Γ(α+ 1)

)

6 |h(t2) − h(t1)|+
(

ℓ1 |t2 − t1|+ ℓ2 |ω(t2) −ω(t1)|
)

I
α,ψ
0+

(

η(t2) + b |ω(φ(t2)|
)

+θ2θ3
[ψ(t2) −ψ(t1)]

α−β

Γ(α−β+ 1)
+ θ2bλ

[ψ(t2) −ψ(t1)]
α

Γ(α+ 1)

6 |h(t2) − h(t1)|+ θ3
[ψ(t2) −ψ(0)]

α−β

Γ(α−β+ 1)

(

ℓ1 |t2 − t1|+ ℓ2 |ω(t2) −ω(t1)|
)

+bλ
[ψ(t2) −ψ(0)]

α

Γ(α+ 1)

(

ℓ1 |t2 − t1|+ ℓ2 |ω(t2) −ω(t1)|
)

+θ2θ3
[ψ(t2) −ψ(t1)]

α−β

Γ(α−β+ 1)
+ θ2bλ

[ψ(t2) −ψ(t1)]
α

Γ(α+ 1)

→ 0 as t2 → t1.

This shows that {Nω : ω ∈ Pλ} is equi-continuous on ∆. Therefore by the Arzela-Ascoli

theorem [48] NPλ is compact . Clearly, Pλ is nonempty, bounded, convex, and closed

subset of C(∆). Hypotheses (ii) and (iv) lead to N : Pλ → C(∆) is a continuous operator

in ω.

Since all assumptions of Theorem 2.7 hold, then N has a fixed point in Pλ.

3.1. Special Cases

In this part, we give some special cases that are also investigated according to our

previous results.

Corollary 3.2. Under the hypotheses of Theorem 3.1 with ϕ(t) = φ(t) = t, then the FQIE

ω(t) = h(t) + g(t,ω(t))

∫t

0

[ψ(t) −ψ(ρ)]α−1

Γ(α)
ψ′(ρ)f(ρ,ω(ρ))dρ,

has at least one solution ω ∈ C(∆).
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Corollary 3.3. Under the hypotheses of Theorem 3.1 with g(t,ω(ϕ(t))) ≡ 1, then the FFIE

ω(t) = h(t) +

∫t

0

[ψ(t) −ψ(ρ)]α−1

Γ(α)
ψ′(ρ)f(ρ,ω(φ(ρ)))dρ,

has at least one solution ω ∈ C(∆).

Remark 3.4. If b = 0 and ψ(t) = φ(t) = t in Corollary 3.3, we get the same result proven

in [40].

Now putting α,β→ 1, we get the following corollary:

Corollary 3.5. Under the hypotheses of Theorem 3.1 with g(t,ω(ϕ(t))) ≡ 1, h(t) = ω0 and

α = β = 1, then the following IE

ω(t) = ω0 +

∫t

0
ψ′(ρ)f(ρ,ω(φ(ρ)))dρ

has at least one solution ω ∈ C(∆) which is equivalent to the problem

ω′

ψ(t) = f(t,ω(φ(t)), ω(0) = ω0,

where ω′

ψ(t) =
ω′(t)

ψ′(t)
.

Remark 3.6. In Corollary 3.5, if ψ(t) = φ(t) = t, and b = 0 in the condition (v), then the

following IE

ω(t) = ω0 +

∫t

0
f(ρ,ω(ρ)))dρ

has at least one solution ω ∈ C(∆) is equivalent to the problem

ω′(t) = f(t,ω(φ(t)), ω(0) = ω0,

which was proved in [48].

4. Applications

In this part, we apply the results of Section 3 to some FDEs. In view of these appli-

cations, we consider nonlinear Caputo FFDE, Reimann-Liouville FFDE and classical DE of

the forms: {
RLD

α,ψ
0+ ω(t) = f(t,ω(φ(t)), t ∈ ∆ = [0, 1], α ∈ (0, 1),

I
1−α,ψ
0+ ω(0) = ω0,

(4.1)

{
CD

α,ψ
0+ ω(t) = f(t,ω(φ(t)), t ∈ ∆ = [0, 1], α ∈ (0, 1),
ω(0) = ω0,

(4.2)

and {
ω′(t) = f(t,ω(φ(t)), t ∈ ∆ = [0, 1],

ω(0) = ω0
(4.3)

where RD
α,ψ
0+ and CD

α,ψ
0+ are the fractional derivatives in the sense of RL and Caputo of

order α, respectively.
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Theorem 4.1. Under the hypotheses of Theorem 3.1 with

h(t) ≡
ω0

Γ(α)
[ψ(t) −ψ(0)]α−1 and g(t,ω(ϕ(t))) ≡ 1,

then the RL problem (4.1) has at least one solution ω ∈ C(∆).

Proof. Operating with I
α,ψ
0+ on (4.1), we obtain ([4, 21])

ω(t) = c1 [ψ(t) −ψ(0)]
α−1

+ I
α,ψ
0+ f(t,ω(φ(t)),

for c1 ∈ R. By means of the condition I
1−α,ψ
0+ ω(0) = ω0, we get c1 = ω0

Γ(α)
. Hence

ω(t) =
ω0

Γ(α)
[ψ(t) −ψ(0)]α−1

+

∫t

0

[ψ(t) −ψ(ρ)]α−1

Γ(α)
ψ′(ρ)f(ρ,ω(φ(ρ)))dρ, t ∈ ∆.

(4.4)

Operating with RLD
α,ψ
0+ on FFIE (4.4) we obtain the RL problem (4.1). Moreover,

the condition I
1−α,ψ
0+ ω(0) = ω0 is satisfied. Consequently, the equivalence between the

problem (4.1) and the FFIE (4.4) is proved and then the results follow from Theorem

3.1.

Theorem 4.2. Under the hypotheses of Theorem 3.1 with h(t) ≡ ω0 and g(t,ω(ϕ(t))) ≡ 1,

then the Caputo problem (4.2) has at least one solution ω ∈ C(∆).

Proof. Operating with I
α,ψ
0+ on (4.2) we obtain we obtain ([21])

ω(t) = c0 + I
α,ψ
0+ f(t,ω(φ(t)),

for c0 ∈ R. By means of the condition ω(0) = ω0, we get c1 = ω0. Hence

ω(t) = ω0 +

∫t

0

[ψ(t) −ψ(ρ)]α−1

Γ(α)
ψ′(ρ)f(ρ,ω(φ(ρ)))dρ, t ∈ ∆ (4.5)

which by Theorem 3.1 has the desired solution.

Operating with CD
α,ψ
0+ on (4.5) we obtain the problem (4.2). Therefore the equiva-

lence between the problem (4.2) and the FFIE (4.5) is proved and then the results follow

from Theorem 3.1.

In particular, if α = 1 and ψ(t) = t, then the problem (4.2) reduces to the problem

(4.3). So, the IE

ω(t) = ω0 +

∫t

0
f(ρ,ω(φ(ρ)))dρ, t ∈ ∆

is equivalent to the problem (4.3).
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5. Maximal and Minimal Solutions

Definition 5.1. [50] The function Z(t) is called a maximal solution of (1.1) if every solu-

tion of (1.1) on ∆ satisfies

ω(t) 6 Z(t), t ∈ ∆.

Whereas, the function N(t) is called a minimal solution of (1.1) if every solution of (1.1)

on ∆ satisfies

ω(t) > N(t), t ∈ ∆.

To prove the existence of maximum and minimum solutions for (1.1), we need the follow-

ing lemma:

Lemma 5.2. Assume that f(t,ω) is nondecreasing function in ω. Let g(t,ω), f(t,ω) satisfy

the hypotheses in Theorem 3.1 and let ω(t), ̟(t) be continuous functions on ∆ satisfying

ω(t) 6 h(t) + g(t,ω(ϕ(t))I
α,ψ
0+ f(t,ω(φ(t)), (5.1)

̟(t) > h(t) + g(t,̟(ϕ(t))I
α,ψ
0+ f(t,̟(φ(t)), (5.2)

where either (5.1) or (5.2) is strict. Then

ω(t) < ̟(t). (5.3)

Proof. Assume that the conclusion (5.3) be false. Then there exists t1 such that

ω(t1) = ̟(t1), t1 > 0, (5.4)

and

ω(t) < ̟(t), 0 < t < t1.

Since f,g are monotone functions in ω, it follows that

ω(t1) 6 h(t1) + g(t1,ω(ϕ(t1))I
α,ψ
0+ f(t1,ω(φ(t1))

= h(t1) + g(t1,ω(ϕ(t1))

∫t1

0

[ψ(t1) −ψ(ρ)]
α−1

Γ(α)
ψ′(ρ)f(ρ,ω(φ(ρ)))dρ

< h(t1) + g(t1,̟(ϕ(t1))

∫t1

0

[ψ(t1) −ψ(ρ)]
α−1

Γ(α)
ψ′(ρ)f(ρ,̟(φ(ρ)))dρ

< ̟(t1).

This contradicts with our assumption (5.4). Hence

ω(t) < ̟(t).

Theorem 5.3. Suppose the hypotheses of Theorem 3.1 be fulfilled. In addition, if f(t,ω) is

nondecreasing functions in ω, then there exist maximal and minimal solutions of (1.1).
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Proof. Initially, we will prove the existence of maximal solution of (1.1). Let ε > 0 be

given. Now consider the following FQFIE

ωε(t) = h(t) + gε(t,ωε(ϕ(t))I
α,ψ
0+ fε(t,ωε(φ(t)), (5.5)

where

fε(t,ωε(φ(t)) = f(t,ωε(φ(t)) + ε,

and

gε(t,ωε(ϕ(t)) = g(t,ωε(ϕ(t)) + ε.

Obviously the functions fε(t,ωε) and gε(t,ωε) satisfy hypotheses (ii), (iv) and

|gε(t,ωε)| 6 η+ ε := η
′,

|fε(t,ωε)| 6 η(t) + ε+ b |ω| := η′(t) + b |ω| .

Consequently, the equation (5.5) has a continuous solution ω(t) due to Theorem 3.1.

Next, let ε1 and ε2 be such that 0 < ε2 < ε1 < ε. Then

ωε1
(t) = h(t) + gε1

(t,ωε1
(ϕ(t))I

α,ψ
0+ fε1

(t,ωε1
(φ(t))

= h(t) + (g(t,ωε1
(ϕ(t)) + ε1) I

α,ψ
0+ (f(t,ωε1

(φ(t)) + ε1)

> h(t) + (g(t,ωε1
(ϕ(t)) + ε2) I

α,ψ
0+ (f(t,ωε1

(φ(t)) + ε2) . (5.6)

Also, we have

ωε2(t) = h(t) + (g(t,ωε2(ϕ(t)) + ε2) I
α,ψ
0+ (f(t,ωε2(φ(t)) + ε2) . (5.7)

Applying Lemma 5.2, it follows from (5.6) and (5.7) that

ωε2(t) < ωε1
(t), t ∈ ∆.

Let the operator Nε : C(∆) → C(∆) defined by

Nεωε(t) = h(t) + gε(t,ωε(ϕ(t))I
α,ψ
0+ fε(t,ωε(φ(t)).

By same reported arguments in proof of Theorem 3.1, the operator Nε is uniformly

bounded and equicontinuous. Hence, the Arzela-Ascoli Theorem shows that there ex-

ists a decreasing sequence εn such that εn → 0 as n → ∞ and the uniform limit

limn→∞ωεn(t) = Z(t) exists on ∆. Since the functions fεn and gεn are continuous in

the second argument, it follows that

Z(t) = lim
n→∞

ωεn(t) = h(t) + g(t,Z(ϕ(t))I
α,ψ
0+ f(t,Z(φ(t)).

This proves that Z(t) is a solution of (1.1).

Finally, we will show that Z(t) is maximal solution of (1.1). Indeed, let ω(t) be any

solution of (1.1). Then we have

ωε(t) = h(t) + gε(t,ωε(ϕ(t))I
α,ψ
0+ fε(t,ωε(φ(t))

> h(t) + g(t,ωε(ϕ(t))I
α,ψ
0+ f(t,ωε(φ(t)),
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and

ω(t) = h(t) + g(t,ω(ϕ(t))I
α,ψ
0+ f(t,ω(φ(t)),

Applying Lemma 5.2, we get

ωε(t) > ω(t), for all t ∈ ∆.

from the uniqueness of the maximal solution (see [50]), it is obvious that the uniform

limit

lim
ε→0

ωε(t) = Z(t)

exists on ∆.
Likewise, we can demonstrate that there exists a minimal solution of (1.1).

6. conclusion

In this article, we have considered the generalized fractional quadratic functional in-

tegral equations involving ψ-fractional operators. Some existence results for at least one

continuous solution for the proposed equations have investigated. Fractional differen-

tial equations with respect to another function ψ were given as an application. We have

applied the Schauder fixed point technique and nonlinear functional analysis to discuss

these results. Further, we have proven the existence of maximal and minimal solutions

for these equations. Many results of equations that contain classical fractional operators

are obtained as special cases of (1.1). The reported results in this paper are recent and

significantly contribute to the existing literature on the subject. For future work, the prob-

lems studied in this paper can be extended to cover other kinds of fractional quadratic

functional integral equations involving ψ-Hilfer fractional operator.
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