TINGKAT BEBAN KERJA PERAJIN GAMELAN BALI

I Ketut Gde Juli Suarabwa¹, Nyoman Adiputra², I Dewa Putu Sutjana³, Ketut Tirtayasa⁴
¹Mahasiswa Program Doktor, Pasca Sarjana, Udayana University
²Staf Pengajar Politeknik Negeri Bali.
²,³,⁴Bagian Faal, Fakultas Kedokteran Universitas Udayana
Email : suarabawal10766@gmail.com

ABSTRAK


Keyword: Perajin gamelan, beban kerja, keluhan otot skeletal, kelelahan secara umum.

WORKLOAD LEVEL OF GAMELAN BALI WORKERS

Abstract

The production process of making gamelan in the village Tihingan, Klungkung, Bali, still using the traditional fireplace with open flames both to the melting process as well as on the process of formation so that crafters fairly heavy workload caused by exposure to radiation heat and dust. This research was conducted observational against 5 people workers (craftsman) gamelan nguwad process. The workload is measured by pulse craftsman work. Microclimate in the workplace were measured wet temperature, dry temperature, humidity, intensity of noise, and light intensity. Musculoskeletal disorder predicted by questioner of Nordic Body Map and general fatigue predicted by the questioner 30 items exhaustion with four Likert scale. The results of the research to get the pulse of gamelan craftsmen working on a furnace repairman 116.25 ± 3.78, the flop workers 115.42 ± 2.47, and 3.29 ± 126.47 of nguwad workers. The cardio vascular load
Jurnal Ergonomi Indonesia
(The Indonesian Journal of Ergonomics)

Vol.2, No.2 : 1 Juli-Desember 2016

obtained 50.13 ± 3.42% so the recommended 75% work and 25% rest. Gamelan making production process also cause a variety of subjective disorders. It was concluded that (a) the level of workload on a craftsman gamelan is the artisan perapen and artisan-flops belonging to the workload being, the artisan nguward workload is quite heavy, (b) based on the value of CVL, workload craftsman gamelan in Bali including the workload being, (c) a significant increase in musculoskeletal disorder and general fatigue. To overcome this condition it is recommended that the working process of making gamelan remedied through the implementing appropriate technology and ergonomics intervention.

Keywords: Craftsman gamelan, workload, musculoskeletal disorder, general fatigue.

I. PENDAHULUAN


Dalam seperangkat gamelan Bali terdapat instrumen penting yaitu trompong. Terompong ini termasuk kelompok instrument pukul yang sering disebut babonangan yang memakai pencon (Bahasa Bali: Moncol). Beberapa instrument pukul dalam gamelan Bali yang memakai pencon lainnya adalah reong, kajar, kempli, kempur, dan gong. Trompong ini berbentuk bulat memiliki bagian kaki yang disebut lambe (Bahasa Bali) yang pada bagian tengah atas atau muka terdapat bagian yang cembung yang berukuran diameter bagian bawah 3,5 cm hingga 7,0 cm. Bagian yang cembung ini disebut dengan pencon yang dapat dipukul dengan tangkai pemukul, dalam Bahasa Bali disebut dengan panggul yang terbuat dari bahan kayu yang dilapis benang untuk menghasilkan nada. Nada yang keluar dari instrumen ini diatur sesuai dengan kebutuhan instrumen gamelan tersebut.

Proses pembuatan instrument gamelan trompong terdiri dari beberapa tahap. Dari tahap tersebut terdapat proses nglebur dan nguward merupakan proses kerja dengan beban kerja yang paling berat dirasakan oleh perajin karena proses ini merupakan proses pembentukan terompong dengan pekerjaan dilakukan di depan suhu panas api prapen, pekerjaan menepit, dan pekerjaan memukul. Nyala api perapen yang terbuka menyebabkan suhu panas radiasi dan debu panas sisa pembakaran secara langsung memapar perajin. Demikian juga cara dan sikap kerja yang belum alamiah menyebabkan lebih cepat meningkatnya keluhan pada ototkeletal dan kelelahan secara umum dari para perajin gamelan. Lingkungan panas dan sikap kerja yang tidak alamiah akan menyebabkan munculnya berbagai keluhan pada pekerja yang akhirnya akan mempengaruhi produktivitas kerjanya (Manuaba, 2005).

Untuk mengetahui sejauhmana paparan suhu panas dan sikap kerja tersebut mempengaruhi beban kerja, maka dilakukan penelitian ini secara observasional. Hasil penelitian ini nantinya akan ditindak lanjuti untuk melakukan perbaikan kondisi dan lingkungan kerja perajin gamelan. Perbaikan yang akan dilakukan nantinya

51
berupa intervensi ergonomi dengan penerapan TTG dan pendekatan SHIP terhadap pekerjaan pembuatan terompong gamelan Bali.

II. MATERI DAN METODE
Penelitian ini dilakukan secara observasional terhadap 5 orang perajin gamelan pada proses nguwad. Beban kerja perajin diukur dari denyut nadi kerja. Mikroklimat di tempat kerja yang

III. HASIL DAN PEMBAHASAN

3.1 Karakteristik perajin
Karakteristik perajin gamelan pada proses nguwad gamelan di Desa

| Tabel 1. Karakteristik Subjek Penelitian |
|-----------------|--------|-------|----------|
| Uraian          | Mean   | SD    | Rentangan |
| Umur (tahun)    | 27,84  | 4,31  | 21,50 - 35,00 |
| Berat badan (kg)| 60,12  | 3,15  | 57,25 - 64,12 |
| Tinggi badan (cm)| 164,31 | 4,12  | 158,23 - 168,16 |
| IMT (kg/cm²)    | 22,07  | 1,22  | 20,01 - 23,30 |
| Pengalaman kerja(tahun) | 3,24 | 0,51 | 1,50 – 4,00 |

Keterangan: SD = Standar deviasi

3.2 Waktu kerja
Perajin gamelan ini bekerja setiap hari, hari sabtu dan minggu teteap bekerja. Hari libur kerja biasanya ketika ada upacara agama atau kegiatan adat. Proses kerja nguwad trompong biasanya dimulai pukul 07.00 wita di pagi hari dan istirahat siang jam 11.00 – 12 wita kemudian pekerjaan nguwad dimulai lagi pukul 12.00 hingga 15.00 wita.

3.3 Kondisi Lingkungan
Kondisi lingkungan yang diukur dalam penelitian inin adalah suhu udara kering, suhu udara basah, suhu bola, WBGT (wet bulb globe temperature), kelembaban relatif, kecepatan angin, intensitas cahaya, dan intensitas suara. Kondisi ini merupakan kondisi mikroklimat di tempat kerja. Pengukuran kondisi lingkungan dilakukan dari pagi hari jam 7.00 wita hingga sore hari jam 16.00 wita.

<p>| Tabel 2. Data Kondisi Lingkungan Kerja Perapen |
|-----------------|--------|-------|----------|</p>
<table>
<thead>
<tr>
<th>Uraian</th>
<th>Nilai</th>
<th>Rentangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suhu udara kering (°C)</td>
<td>32,13</td>
<td>2,14</td>
</tr>
<tr>
<td>Suhu udara basah (°C)</td>
<td>27,02</td>
<td>1,24</td>
</tr>
<tr>
<td>Suhu bola (°C)</td>
<td>29,13</td>
<td>1,04</td>
</tr>
<tr>
<td>WBGT (°C)</td>
<td>28,12</td>
<td>1,42</td>
</tr>
<tr>
<td>Kelembaban relatif (%)</td>
<td>71,32</td>
<td>2,14</td>
</tr>
<tr>
<td>Kecepatan angin (m/dt)</td>
<td>0,313</td>
<td>0,031</td>
</tr>
<tr>
<td>Intensitas cahaya (lux)</td>
<td>337,18</td>
<td>7,24</td>
</tr>
<tr>
<td>Intensitas suara (dB)</td>
<td>71,30</td>
<td>3,34</td>
</tr>
</tbody>
</table>

Keterangan: SD = Standar deviasi

Tihingan yang meliputi umur, berat badan, tinggi badan, indeks massa tubuh (IMT) dan pengalaman kerja, disajikan pada berikut.

Jurnal Ergonomi Indonesia
(The Indonesian Journal of Ergonomic)

Kondisi lingkungan sangat berpengaruh terhadap kenyamanan dan kesehatan perajin gamelan pada proses nguwad yang diakibatkan dari pengaruh kondisi fisik maupun psikologis serta adanya paparan suhu panas dari perapen dan sikap kerja yang belum ergonomis. Bila kondisi lingkungan tidak baik akan meminimalis gangguan kesehatan, ketidakpuasan, menurunnya motivasi dan rendahnya produktivitas kerja (Kroemer dan Grandjean, 2009).

Dalam proses kerja nguwad, terdapat debu dari prapen tempat pemasanan bahan trompong. Debu ini juga mempengaruhi kualitas udara. Apabila debu ini tidak ditangani dengan baik, maka akan berpengaruh pada kesehatan perajin gamelan.

**Tabel 2. Data Kondisi Kualitas Udara**

<table>
<thead>
<tr>
<th>komponen</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO₂ (µg/m³)</td>
<td>8,02</td>
<td>0,31</td>
</tr>
<tr>
<td>SO₂ (µg/m³)</td>
<td>3,52</td>
<td>0,12</td>
</tr>
<tr>
<td>CO (µg/m³)</td>
<td>126,71</td>
<td>2,29</td>
</tr>
<tr>
<td>Ox (µg/m³)</td>
<td>60,21</td>
<td>2,68</td>
</tr>
<tr>
<td>debu total (µg/m³)</td>
<td>21,7</td>
<td>1,35</td>
</tr>
</tbody>
</table>

Keterangan : SD = Standar deviasi,

**3.4 Beban Kerja**


**Tabel 3. Data Denyut Nadi Perajin**

<table>
<thead>
<tr>
<th>Perajin</th>
<th>Denyut nadi istirahat</th>
<th>Denyut nadi kerja</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rerata</td>
<td>SD</td>
<td>Rerata</td>
<td>SD</td>
</tr>
</tbody>
</table>


Tungkang nguwad mempunyai beban kerja lebih berat daripada tungkang jepit dan prapen karena harus melakukan pemukulan bahan terompong secara berulang-ulang dengan sikap kerja berdiri membungkuk. Sikap kerja ini tidak fisiologis, terlalu lagi dilakukan dalam waktu yang lama sehingga meminimalis banyak keluhan. Terlebih lagi paparan suhu panas dari tungkang prapen akan menambah beratnya benda kerja perajin gamelan.

Penelitian ini seiring dengan penelitian Hendra (2003) yang menyatakan hasil pengukuran suhu tubuh dan denyut nadi antara sebelum bekerja dan setelah bekerja di area yang terpajian panas, ditemukan 17,6% responden mengalami peningkatan suhu tubuh dan 41,2% mengalami peningkatan denyut nadi dan sebanyak 63,6% responden merasa terganggu oleh pajan panas di tempat kerja. Nidya (2013) juga menyatakan hasil penelitinya terdapat 19,6% pekerja melakukan beban kerja berat dari pengukuran denyut nadi kerjanya.
3.5 Cardio Vascular Load

Beban Kardiovaskuler (cardiovascular load = %CVL) adalah perbandingan antara peningkatan denyut nadi kerja dengan denyut nadi maksimum. Dimana untuk menentukan %CVL diketahui bahwa denyut nadi maksimum adalah 220/umur (-umur) untuk laki-laki dan 200-umur/umenit untuk wanita. Dari hasil perhitungan %CVL pada perajin gamelan diperoleh hasil 50,13 ± 3,42 %. Menurut Intaranont dan Vanwonderghem (1993) nilai %CVL tersebut termasuk beban kerja sedang dan perlu perbaikan (attention level, improvement measurement advised). Dari nilai %CVL tersebut dapat direkomendasikan waktu kerja sebagaimana grafik Gambar 1 berikut.

Gambar 1. Grafik waktu kerja dan istirahat berdasarkan ISBB dan % CVL

Dari grafik Gambar 1 tersebut, berdasar nilai %CVL dan WBGT yang diperoleh, seharusnya perajin gamelan mereka bekerja dengan pembagian 75% kerja dan 25% istirahat. Agar mereka bisa bekerja secara terus menerus 8 jam kerja maka perlu ada perbaikan pada lingkungan atau sistem kerjanya sehingga bisa menurunkan nilai %CVL dan nilai WBGT.


3.6 Keluhan Otot Skeletal

Keluhan musculoskeletal diprediksi dari kuesioner Nordic body map dengan 4 skala likert. Kuesioner keluhan otot skeletal di berikan kepada perajin sebelum kerja dan setelah kerja. Hasil analisis keluhan otot skeletal ditampilkan pada Tabel 4 berikut.

<table>
<thead>
<tr>
<th>variabel</th>
<th>Sebelum Kerja</th>
<th>Setelah Kerja</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keluhan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td>28,61</td>
<td>3,47</td>
<td>62,14</td>
</tr>
</tbody>
</table>

Keterangan: SD = Standar deviasi, \( p = \) nilai signifikansi.

Pada Tabel 4 dapat dilihat bahwa keluhan otot skeletal perajin gamelan terdapat peningkatan yang signifikan antara sebelum dan etelah kerja, peningkatan ini sebesar 117,2%. Keluhan otot skeletal yang terbesar yaitu merasa sakit di leher, bahu, lengan, pinggang dan kaki. Pekerjaan perajin gamelan pada proses kerja nguvad lebih banyak melibatkan otot statis, sehingga terjadi pembekuan yang berlebih pada otot dengan durasi pembekuan yang panjang dan berulang-ulang sehingga sirkulasi darah ke otot berkurang, suplai oksigen juga menurun, proses metabolisme menjadi terhambat dan terjadi penimbunan asam laktat sehingga menimbulkan nyeri/sakit pada otot skeletal (Kroemern and Grandjean, 2009;
3.7 Kelelahan

Pendataan Kelelahan perajin dilakukan sebelum dan setelah kerja. Kelelahan ini diukur dengan pengisian kuesioner 30 items of rating scale sebelum dan sesudah bekerja. Hasil uji kelelahan secara umum terhadap perajin gamelan seperti Tabel 5 berikut.

<p>| Tabel 5. Data Kelelahan Perajin Gamelan |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|</p>
<table>
<thead>
<tr>
<th>variabel</th>
<th>Sebelum kerja</th>
<th>Setelah kerja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>30,24</td>
<td>59,27</td>
</tr>
<tr>
<td>SD</td>
<td>3,1</td>
<td>4,16</td>
</tr>
<tr>
<td>p</td>
<td>0,00</td>
<td>0</td>
</tr>
</tbody>
</table>

Keterangan: SD = Standar deviasi, p = Signifikansi

Dari Tabel 5 di atas dapat dilihat bahwa nilai p kelelahan sebelum kerja dan setelah kerja lebih kecil dari 0,05, sehingga dapat dinyatakan berbeda signifikan, dilihat dari reratanya terlihat peningkatkan sebesar 96,0%. Peningkatan kelelahan terjadi pada proses kerja nguwend trompong diakibatkan oleh proses kerja berulang-ulang dalam jangka waktu cukup lama dengan aktivitas kerja statis. Pada umumnya kelelahan yang diakibatkan oleh aktivitas kerja statis dipandang mempunyai pengaruh yang lebih besar dibandingkan dengan aktivitas kerja dinamis. Kelelahan ini merupakan keluhan secara subjektif dari perajin. Keluhan subjektif yang muncul umumnya dirasakan oleh seluruh responden adalah merasa haus, lelah diseluruh badan, dan merasa pening di kepala, dan merasa keram pada otot tangan dan kaki. Paparan suhu panas juga akan meningkatkan suhu tubuh, dalam penelitian ini, peningkatan suhu tubuh yang terjadi ternyata tidak melebihi batas suhu tubuh normal yaitu 38°C. Peningkatan suhu tubuh hanya terjadi pada pekerja yang mempunyai beban kerja yang berat.


IV. SIMPULAN DAN SARAN
4.1 Simpulan
Dari uraian di atas dapat disimpulkan bahwa pada proses pengerjaan gamelan:

a. Tingkat beban kerja pada perajin gamelan yaitu pada tukang perapen dan tukang jepit tergolong beban kerja sedang, pada tukang nguwaad beban kerjanya tergolong berat.
b. Berdasarkan nilai CVL, beban kerja perajin gamelan di Bali termasuk beban kerja sedang.
c. Terjadi peningkatan yang signifikan pada Keluhan musculoskeletal dan kelelahan secara umum.

4.2 Saran
Dari hasil dan pembahasan, segera diperlukan solusi untuk mengatasi permasalahan yang ada, untuk itu disarankan perlu adanya ntervensi ergonomi baik pada aspek task, organization, maupun environment, dan penggunaan teknologi tepat guna pada perajin gamelan Bali.

V. DAFTAR PUSTAKA


Kroemer, K.H.E., and Grandjean, E. 2009. Fiting the Task to the


Manuaba, A., 2005, Accelerating OHS-Ergonomics Program By Integrating ‘Built-In” Within The Industry’s Economic Development Scheme Is A Must-With Special Attention To Small And Medium Entreprises (SMEs), Proceedings the 21st Annual Conference of The Asia Pacifc Occupational Safety & Health Organization, Bali, 5-8 September


Rodahl, K. 2005. The Physiology of Work. Tailor & Francis , e-