
APTIKOM Journal on Computer Science and Information Technologies

Vol. 3, No. 1, 2018, pp. 13~20

ISSN: 2528-2417

DOI: 10.11591/APTIKOM.J.CSIT.81  13

Received December 11, 2017; Revised February 10, 2018; Accepted February 21, 2018

Development of an efficient mechanism for rapid protocols

using NS-2 simulator

Sarah N. Abdulwahid
Scholarships and Cultural Relationship Directorate Ministry of Higher Education and Scientific Research,

Baghdad, Iraq

Abstract
The delivered effort in this manuscript is grounded on NS-2 (The Network Simulator 2) to implement the

congestion control process of classic TCP (Transmission Control Protocol), with new congestion control mechanism.

In this paper, a novel congestion control algorithm is offered, which contains of slow-start and congestion avoidance

mechanisms. The proposed slow-start algorithm assumes a duplicating and an interpolating approach to the congestion

window (cwnd) for each increment instead of the exponential increment used by other TCP source variants such as

Reno, Vega, Tahoe, Newreno, Fack, and Sack. Furthermore, the enhanced congestion avoidance algorithm is built by

using an improved Additive Increase Multiplicative Decrease (AIMD) algorithm with multi TCP flow facility, to provide

an enhanced congestion control algorithm with some valuable properties to improve TCP routine for high speed

protocols. The improvement strategy based on merging of slow start, congestion avoidance mechanism that are used

in TCP congestion control, to create a new AIMD algorithm with a new relationship between the pair parameters a

and b. This paper is also involved in the creation of rapid agent in NS-2 models designed to identify the modified TCP

and to configure the NS-2 platform. A fast TCP also includes an innovative scheme to slow the rapid start to help TCP

to start faster through the high speed networks and also to postpone the congestion state as much as possible.

Keywords: congestion control, NS-2, TCP

Copyright © 2018 APTIKOM - All rights reserved.

1. Introduction

Essentially creating a new TCP agent in NS-2 [1] needs to improve new congestion control tool or

toincrease the stage of a slow start or a stage of congestion avoidance, by adjusting the parameters to adjust

the behaviour of congestion window such as the slow start threshold (ssthresh). The networks include the

present generations and future generation, high-speed connections and are mostly with low-propagation delay,

as it is required to run over a new set of protocols thatcan provide equitable act on these speedy links. Then,

the techniques used in the classic source TCPs cannot be relied upon to perform well across wired and high-

speed wireless networks, also, the standard algorithm (exponential such as slow start) should be speedier. This

forces the designers to propose new mechanisms with high performance, which will be reliable for the

completion of the transition process in the shortest time and with a little packet loss or queuing. Despite ofa

significant impact on congestion control is strengthened due to improved phases of slow start or congestion

avoidance, but there are a lot of versions of TCP arebased on enhancingcongestion control with a new

modification in two parts. This methodology can provide a robust and strict mechanism for adjusting the

cwnddue to the slow start and congestion avoidance practically work gathering and intervention in process

including control of the congestion window. Therefore, extensive modification and promoting technical

cooperation program proposed for these key algorithms that are used to achieve high-speed protocol and

covered dominated congestion control. The technical interpolation scheme is used to push the window to

grow faster; with approximating cwnd size via quadratic and polynomial interpolation to reach the ssthresh of

the network connection. In addition, in congestion avoidance phase, the enhanced TCP includes a novel

strategy to enhance the TCP performance over high speed environments. The proposed mechanism also

includes a facility to send multiple flows over same connection with a novel technique to dynamically estimate

the number of available flows.

TCP-Tahoe supports slow start procedure, which is the first step in themechanism of congestion

control [2]. The needing to create a transmission network with TCP to gently investigate the network for

regulating network bandwidth can be reached to avoid network congestion with a great burst of packets. This

  ISSN: 2528-2417

APTIKOM J. CSIT Vol. 3, No. 1, 2018 : 13 – 20

14

problem is solved by pushing multiple packets in a slow start at the beginning of the transfer procedure, or

when transmission of data is characterized by loss of synchronization relay. Through a slow start, the new

TCP increases cwnd received withmostly maximum clip size (MSS) bytes per packet an acknowledgment

(ACK), which recognizes them, and the phase completes a slow start, when ssthresh exceeds the level or when

acongestion is noticed. So, the contribution and the motivation of this research deals with a development a

new TCP with new specifications to fulfil the requirements of high speed networks and the new cellular

systems by enhancing the slow-start mechanism to send more packets before the congestion state and also by

avoiding the congestion situation via improving the AIMD algorithm with multi TCP flow facility instead of

providing one flow. The structure of this paper will be as follow: Section II explainsthe formation of the new

slow-start mechanism of TCP, Section III discusses the formation of congestion avoidance technique, Section

IV, presentsmerging and combining the improved slow-start and congestion avoidance mechanisms to deliver

the final congestion control technique, Section Villustrates the required modification in network simulator 2

to implement the new congestion control algorithm and finally the discussion and conclusion of the obtained

algorithm will be in Section VI.

2. Formation of TCP Slow-Start Algorithm

The new algorithm provides primary concept of a slow start algorithm cwnd where TCP sender

cannot send packets more than the data size that the cwnd is recognized in the pipe of network. By adjusting

cwnd, TCP is tuning transmission rate in the way of communications. The slow start phase includes two

objectives: the first, when a new connection is established, does not determine the value of cwnd and uses an

algorithm initially slow start to identify [3]. In addition, the TCP protocol is to cut auto-synchronized, where

is the use of supported packages and around the clock to select the signal to the next link in the packages [2].

When there is no packet on the pipeline, which is a new situation for the link or after the deadline there is no

confirmation message service access flashes [4]. Then it will use a slow start to gradually increase the number

of packets to be sent in the beginning. In the suggested slow start, the process is separated into two separated

phases. The first stage is used to rapidly rise the cwnd on window, while the other customs the stage to

approach ssthresh with steps of a small increasing [5]. In (1) we provide an algorithm of slow start with full

principle, in which the complete algorithm as a set of plans to increase in both phases, including the use of a

doubling of growth if cwnd is less than ssthresh/2, while the furtherincreasing in the use of Lagrange

polynomial interpolation, and when the situation becomes effective [6].

cwnd(t+ τ) = (1)

The suggested process grounded on the innovative algorithm and the exponential algorithm of

typical slow start but is divided into two phases as described above. The main stage begins cwnd when the

increase in value and initial increase while it less than ssthresh/2. When more refined, but cwnd reaches the

ssthresh that begins to control the second phase to reduce by the use of the linear formula. In this technique,

which is always increasing cwnd per ACK received, but the value of increasing becomes smaller when it

reaches ssthresh of cwnd. The increasing is stopped at the time when these two phases is reached the

ssthresh, then the congestion control moves to the stage of congestion avoidance. The routine of the

proposed algorithm can be written as in the following steps:

Step 1: Initialization: Set: cwnd=1, initial ssthresh = ssthresh (initial value),

Step 2: Send packets using the window size cwnd.

Step 3: for each new received ACK, Go to step 4;

Step 4: if (cwnd ≤ ssthresh/2), then cwnd=2 x cwnd then Go to step 2;

Step 5: if (ssthresh/2 <cwnd&&cwnd<ssthresh), then cwnd=2 x cwnd-(cwnd)2 /ssthresh then Go to step 2;

Step 6: if retransmission timeout occurs or receive three DUBACKs, then cwnd=ssthresh and Go to step 2;

Step 7: if (cwnd>ssthresh), then enter the congestion avoidance phase

)(2 tcwnd if cwnd(t) <ssthresh/2

ssthresh

tcwndtcwndssthresh)()(2 2

if (ssthresh/2 >= cwnd(t) <ssthresh)

APTIKOM J. CSIT ISSN: 2528-2417 

Development of an efficient mechanism for rapid protocols using NS-2 simulator (Sarah N. Abdulwahid)

15

3. Formation of TCP Congestion Avoidance

The TCP congestion control algorithm contains a congestion avoidance process too, which

comprises ofthree phases, the first phase of public AIMD to adjust the mounting losses and toreduce the

congestion windows every RTT [7]. The relationship between merged parameteris enhanced by deriving a

and b parameters to improve the association that can offer additional essential paths on the equivalent TCP

connection. The new association gives a wide series of requiredvalues of a and b thatallowing to the number

of virtual routesto be supposed by the user, which denotes the next stage to improve the algorithm to avoid

congestion. Consequently, AIMD (a, b) customs a new association among a and b, grounded on the quantity

of virtual flows of TCP, nevertheless must set these flows by the user withthe ability to adjust it

dynamically. Thus, the concentration of the third phase of the strategy and employing a new procedure to

appraisethe number of available streams through the network pipe, to get the concentrated data transmission

from the source to the destination by TCP streams (k). At that time, the amount of flows growsdepending

on network situations and when these conditions are allowed to use 2.3, 4, or more of the technical

cooperation program, if we use multiple TCP connections on the same link. The final arrangement

algorithm to avoid congestion, before the implementation of AIMD, it is essential to optimal number of

virtual TCP estimate flows according to the size of the previous and current congestion window size [8].
















tt

t

cwndcwnd

cwnd
k

2

1

 (2)

The value of k, should be estimated to form this relationship afterspotting congestion situation or

accurately after every packet losses happening. Then it will formulate estimation according to the algorithm

as in the following steps:

Initialization, k=1 and f=0;

Step 1: When packet loss occurs, enter k estimation routine, Go to Step 2.

Step 2: k=0.5 (f/(f-cwnd)) ;

Step 3: keep the last value of cwnd, f=cwnd ;

Step 4: Stop k estimation routine and Go to congestion avoidance (Subroutine c);

where k is the number of virtual flows and f represents a temporary variable to store the last window size

after last packet lost.

k
b

31

2




 (3)

Applying AIMD (a,b) is based on the increase in the cwnd estimate ofthe default flows, the

association between the pair parameters a and b, so when = k, increases the cwnd by k/cwnd in RTT whole

size of cwnd become:

 cwndkcwndcwnd / (4)

In the event of a loss, the cwndis adjusted by the parameter b, wherever b is considered from the

improved relations between a and b, as well as restricted by the amount of virtual k flows, wherever the

ending formulation of increasing in the event of packet loss becomes as follows:

cwnd
k

cwndcwnd 










13

2

 (5)

Conforming to the previous two formulations, needs k to be estimated with every packet loss to

adjust the cwnd size and if there is any loss, theincreasing in cwnd will still grow by k/cwnd every RTT.

The construction of the congestion avoidance algorithm includes the following procedures:

Step 1: For each RTT, cwnd = cwnd+ (k/cwnd); Go to step 2;

Step 2: If loss occur, cwnd = cwnd – (2/(3k+1)) cwnd; Go to Step 3;

Step 3: Estimate new value of k; Go to step 1;

It is significant to be annotated that the approximation of k must be done afterward the loss occurs, to avoid

banned values, and there is no risk if k become negative or does not matter if k is not an integer value.

  ISSN: 2528-2417

APTIKOM J. CSIT Vol. 3, No. 1, 2018 : 13 – 20

16

4. Combined Congestion Control Mechanism

The merging of slow start, congestion avoidance algorithm, and estimating the optimum number

of flows represents a virtual control congestionsystem, which proposes a novel control onthe congestion

for cwnd TCP window. In details, the suggested TCP application and algorithm of congestion control on

TCP Reno to getthe benefit from the rapid recovery algorithms and rapid re-transmissions, which are

previouslyconvoluted in congestion control of Reno TCP as presented in the graph of state transition

diagramin Figure 1.

Figure 1. State transition diagram of proposed congestion control mechanism

TCP- Reno requests immediate ACK afterreceiving a segment from the destination. The reason

behind that, when the source accepts ACK (DUPACK), then this DUPACK may have established, if

successful segment in the slice predictable sequence has been delayed in the network pipeline and

theaccessed segments are out of order or in the situation of lossoccurrence in the packets. Also, when the

source receives a number of DUPACK, this means that it is the right time to be approved and even if there

was a segment has taken the extended path, then itmust be obtained by the destination now. In high speed

wireless network, there is a high chance that the packet loss happened, then TCP-Reno algorithm suggests

quickretransmission and when the sender accepts three DUPACK, this means that the slide-borne

interrupted, then you must resend the missing part without waiting till the deadline. Another reason for

choosing TCP- Reno is that after the loss of part flow, Reno does not reduce the cwnd to one part because

it will make an empty networkpipeline.

5. Required Modifications in NS-2

The acceptance of afast TCP as a new protocol inNS-2 simulator, requires performing

modifications on the source files to generate (or edit) the TCP agent called RTCP and for making new TCP

ready for the integration with a new algorithm to control congestion. Inappropriately, the processes of

adding RTCP in NS-2areprecise and complicated, becausethere is no expert documents for these actions

and other threats. For instance, NS-2 does not contain the complete help in the procedures which are written

in assembly (all necessary changes are done using C++), and when developers face fault, they should review

all of the steps that have been made. Files that have been modified in question here aregrounded on the

version 2.3X, then the suggested TCP described the rapid supposed to be tried more than NS-2.3Xseries.

1. The first modification applied on ns-compact.tcl file in the location /ns-allinone-2.3x/ns-2.3x/tcl/lib/

by adding the single line as shown below:

APTIKOM J. CSIT ISSN: 2528-2417 

Development of an efficient mechanism for rapid protocols using NS-2 simulator (Sarah N. Abdulwahid)

17

Then, adding the statements below in the correct place in same file:

In addition, it is necessary to add the couple of statements shown below:

2. Then, the file Makefile.in that located in: /ns-allinone-2.3x/ns-2.3x/Makefile.in needs to add a single

statement in the same groups of other TCP variants as expressed below:

3. Other single line should be added to the file ns_tcl.cc located in: /ns-allinone-2.3x/ns-

2.3x/gen/ns_tcl.cc as following:

4. Two short statements should be added to the file FILES in the main NS folder ns-2.3x as stated below:

Additionally, in the same file, the next four lines must be added as shown below:

5. In the location:/ns-allinone-2.3x/ns-2.3x/tcp the file tcp-fs.h requires to involve the identification

routine of TCP Rapid as expressed below:

$self map_ns_defaultsns_rapidtcp

Agent/TCP/Rapid
 TclObject set varMap_(rampdown) rampdown_
 TclObject set varMap_(ss-div4) ss-div4_

set classMap_(tcp-rapid) Agent/TCP/Rapid
 set classMap_(rapidtcp) Agent/TCP/Rapid

tcp/tcp-rapid.o

$self map_ns_defaultsns_rapidtcp\n\

tcp/tcp-rapid.cc
tcp/tcp-rapid.h

tcl/test/test-output-tcpVariants/fourdrops_rapid.gz
tcl/test/test-output-tcpVariants/onedrop_rapid.gz
tcl/test/test-output-tcpVariants/threedrops_rapid.gz
tcl/test/test-output-tcpVariants/twodrops_rapid.gz

  ISSN: 2528-2417

APTIKOM J. CSIT Vol. 3, No. 1, 2018 : 13 – 20

18

6. The last stage is to develop a copy of tcp-Reno.cc files and TCP- Reno.h and rename these files to

become tcp-Rapid.cc and tip-Rapid.h respectively. TCP files, tcp-Rapid.h distinguishes the header

file where they will be fixing agent guidance and the necessary timing functions that perform rapid

TCP protocol. In contrast, the file tcp-Rapid.cc in this file really is performed every timing, TCL

hooks, agent guidance.

After theconfiguration and the ratification of NS-2 simulator to be able to identify different

protocols. Actually, the representation of new TCP based on the standard ofTCP- Reno and carries the same

architecture and the same control mechanism in the congestion state. But that TCP will bearranged to edit

control in the traditional congestion based on AIMD (1, ½), which was established with proposed slow start

at the beginning of an algorithm and it is installed in tcp.cc file instead of exponential algorithm slow start.

And byusing many of the commands to set up and manipulate TCP flows rapidly in the simulation, which

could soon explain the configuration parameters and how to assign Fast TCP connection:

/* TCP-FS with Rapid */

class RapidTcpFsAgent : public RapidTcpAgent, public
TcpFsAgent {
public:
RapidTcpFsAgent() : RapidTcpAgent(), TcpFsAgent() {}

 /* helper functions */

virtual void output_helper(Packet* pkt)
{TcpFsAgent::output_helper(pkt);}
virtual void recv_helper(Packet* pkt)
{TcpFsAgent::recv_helper(pkt);}
virtual void send_helper(intmaxburst)
{TcpFsAgent::send_helper(maxburst);}
virtual void send_idle_helper()
{TcpFsAgent::send_idle_helper();}
virtual void recv_newack_helper(Packet* pkt)
{TcpFsAgent::recv_newack_helper(pkt);}

virtual void set_rtx_timer()
{TcpFsAgent::set_rtx_timer();}
virtual void cancel_rtx_timer()
{TcpFsAgent::cancel_rtx_timer();}
virtual void
cancel_timers(){TcpFsAgent::cancel_timers();}
virtual void timeout_nonrtx(inttno)
{TcpFsAgent::timeout_nonrtx(tno);}
virtual void timeout_nonrtx_helper(inttno);
};

APTIKOM J. CSIT ISSN: 2528-2417 

Development of an efficient mechanism for rapid protocols using NS-2 simulator (Sarah N. Abdulwahid)

19

As a result, currently the rapid TCP agent is very similar to TCP Tahoe agent extent, but it includes

a rapid recovery mode where they are inflatable recent cwnd via the sum of DUPACKs that TCP source

expected it before receiving the next ACK. Moreover, the new TCP agent is not due to TCP slow start by

re-setting move fast. Instead, it reduces cwnd sets to half, and its current size sets ssthresh to match

this value. The last stage inconsidering the new TCP in NS-2 is by configuring and validating, to guarantee

that, the new TCP becomes well-matched and identifiable byNS-2 modules and components. This process

performed by three spilt commands: ./configure, make, and ./validate-full (in NS-2.34 it should

be used ./validate instead of validate-full). Figure 2illustrates the screenshot of the finished authentication

procedure.

Figure 2. Validation of NS-2 to ensure the accumulating the new TCP

Also, a simple script is used to test the functionality of the proposed TCP with simple topology, to

demonstrate that TCP is prepared to be investigated and ran over wireless and high speed links model.

Figure 3 shows the typical congestion window of TCP over simple network model.

set tcp [new Agent/TCP/Rapid] ; # create tcp agent
$ns_ attach-agent $node_(s1) $tcp ; # bind src to node
$tcp set fid_ 0 ;# set flow ID field
set ftp [new Application/FTP] ;# create ftp traffic
$ftp attach-agent $tcp ;# bind ftp traffic
 # to tcp agent
set sink [new Agent/TCPSink] ;# create tcpsink agent

$ns_ attach-agent $node_(k1) $sink ;# bind sink to node
$sink set fid_ 0 ;# set flow ID field
$ns_ connect $ftp $sink ;# active connection
 #src to sink
$ns_ at $start-time "$ftp start" ;# start ftp flow

  ISSN: 2528-2417

APTIKOM J. CSIT Vol. 3, No. 1, 2018 : 13 – 20

20

Figure 3. The standard congestion window of TCP Rapid

6. Conclusion
In this article, a new TCP called TCP-Rapid including an innovative control algorithm to avoid

congestion furthermore to a slow start algorithm. Rapid TCP holds the general theories of TCP-Reno, but

it is grounded on new AIMD algorithm with a new relationship between the pair parameters a and b. In

addition, the association between these pairs can provide additional number of virtual flows of Rapid TCP

instead of one flow inReno, which allows rapid to provide a high level of access to productive to k provided

productive times of one flow in Reno. Other large capacity of RAPID is to provide a new algorithm to

control congestion to estimate the number of optimal dynamic flows away from the setup by the user. This

paper is also involved in the creation of rapid agent in NS-2 models designed to identify and rapid TCP and

configure the NS-2 platform. It has a fast TCP thatalso includes an innovative scheme to slow the rapid

start to help TCP to start faster through the high speed networks and also to postpone the congestion state

as much as possible.

References
[1] Simulator, N., ns-2. 1989.

[2] Jacobson, V. Congestion avoidance and control. 1988: ACM.

[3] Ghassan A Abed, Mahamod Ismail, JumariKasmiran. Improvement of TCP Congestion Window over LTE-

Advanced Networks. Faculty of Engineering and Built Environment the National University of Malaysia.

International Journal of Advanced Research in Computer and Communication Engineering. 2012; 1(4): 2012.

[4] Liu, Y, et al. Developing Slow Start over Wireless Networks. 2008: IEEE.

[5] K Saniee. A Simple Expression for Multivariate Lagrange Interpolation. New Providence High School, New

Providence. 2007; NJ 07974.

[6] M Gasca, T Sauer. Polynomial interpolation in several variables. Advances in Computational Mathematics. 2000;

12: 377-410.

[7] Ghassan A Abed, Mahamod Ismail, KasmiranJumari. Modeling and Performance Evaluation of LTE Networks

with Different TCP Variants. Proc. of World Academy of Science, Eng. and Tech, 2011.

[8] A Vizzarri. Analysis of VoLTE end-to-end quality of service using OPNET. Department of Engineering Enterprise

University of Rome Tor Vergata. 8th European modeling Symposium on Mathematical Modelling and Computer

Simulation. 2014.

0

20

40

60

80

100

120

140

0 1.2 2.4 3.6 4.8 6 7.2 8.4 9.6

cw
n

d
,

p
a

ck
e

t

Time, second

