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Abstract 
 This paper presents a comprehensive survey of bug triaging approaches in three classes namely machine 

learning based, meta-data based and profile based. All approaches under three categories are critically compared 

and some potential future directions and challenges are reported. Findings from the survey show that there is a lot of 

scope to work in cold-start problem, developer- profiling, load balancing, and reopened bug analysis. 
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1. Introduction 
All the valuable information about software project is stored in the software repositories like: 

Bugzilla for bug tracking system, Jira as task repositories etc. Large number of bugs is introduced during 

the software development are maintenance due to poor design, wrong implementation strategy, 

misunderstood requirements. In a bug repository, bugs can be reported by any user, developer, or a 

technical support team member [1]. Each new bug must be assigned to a relevant developer for fixing. 

For this process, a Triager needs to analyze bugs carefully for validity, duplicity, importance and potential 

fixer. 

To find a relevant developer who has required experience in fixing similar bugs is a difficult task 

for a triager [2]. A number Triaging approaches have been proposed in past few years. These can be 

broadly categorized into three categories: machine learning based, profile based, and Metadata based as 

shown in Table 1. The approaches discussed under these categories still have scope of improvements [3]. 

This paper discusses a comprehensive survey on all different bug fixing approaches, their major 

drawbacks or limitations, and also give some new direction for future research. 

Rest of the paper is organized as follows: section 2 presents the background of bug reports 

terminology, life-cycle of the bug report, bug report summary and ranking process. Section 3 presents a 

survey based on recommendation system, and a comparison on recommendation is described in section 4. 

Sections 5 discuss some research challenges related to recommendation system and section 6 concludes 

the paper. 

 

 

2. Background 

This section explains some basic concepts related to the bug report and bug-life cycle. 

 

2.1. Bug- report Terminology 

2.1.1. Bug Repository 

All the software projects use different forms of repositories like: software control repositories, 

code repositories, bug repositories, and archived communication etc[4,5]. Most of the bug repositories 

(Example: Jira, Bugzilla) are of open source software projects to store the bug report information that can 

be filed by any of the end-users or developers.   

 

2.1.2. Bug 

If an unexpected result is produced by the computer program or a system, then it called software 

EXJ��IDXOW�RU�HUURU��6RPHWLPH��DQ�LVVXH�FDQ�EH�D�EXJ��EXW�LW¶V�QRW�DOZD\V�compulsory. There is a difference 
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between bug and an issue. Issues can be a request of a feature or a task raised by a developer or end-user 

whereas a bug can be an error that produced some unexpected or incorrect result. 

 

2.1.3. Bug ± report 

Details of a software bug are stored in bug reports. Each bug report has unique identification 

number. A bug report contains lots of information related to bug like: bug title, summary of bug, bug 

reported time, time when bug modified, bug version, bug product and component name, name of the 

assignee, who fix up the bug, bug resolution status (i.e. bug is new, unconfirmed or resolved), developers 

comments and bug severity[6]. 

 

2.1.4. Bug- repot Triage 

To resolve a new bug, each bug must be assigned to a relevant developer who has an appropriate 

experience in restoring similar types of bug. Bug assignment process can be done manually, which 

becomes labor intensive, error-prone and time- consuming.  To reduce the time and cost of bug 

assignment process, the first automatic bug triager was proposed by Cubranic and Murphy[7]. Thereafter, 

many automatic bug triage approaches were proposed that are based on machine learning [8-16], meta- 

data [17-23], or developer profile [24-27].  These are shown in Table 1. 

 

 
Table 1. References for all Approaches 

Triaging Category Paper Title 

Machine Learning Based 

Approach 

Assigning change requests to software developers[8] 

Automatic assignment of work item[9] 

Reducing the Effort of Bug Report Triage: Recommenders for Development-

Oriented Decisions[10] 

Highly-accurate Bug Triage using Machine Learning[11] 

Improving bug triage with Bug tossing Graphs[12] 

Automated, highly-accurate, bug assignment using machine learning and tossing 

graphs[13] 

An Approach to Improving Bug Assignment with bug tossing graph and bug 

similarities[14] 

Novel metrics for bug triage[15] 

Automatic Bug Triage using Semi-Supervised Text Classification[16] 

Meta-Data Based Approch COSTRIAGE: A Cost-Aware Triage Algorithm for Bug Reporting[17] 

A time based approach  to Automatic Bug Report Assignment[18] 

Topic- based, time aware bug assignment[19] 

Improving automatic bug assignment using time- meta in term weights[20] 

Effective Bug Triage based on Historical Bug-Fix information[21] 

Automatic Bug Assignment Using Information Extraction Methods[22] 

A Noun based approach to feature location using time aware term- weighting[23] 

Profile Based Approach An Automated Bug Triage Approach: A Concept Profile and Social network Based 

Developer Recommendation[24] 

Bug report assignee Recommendation using Activity Profile[25] 

A Hybrid Bug Triage Algorithm for Develop recommendation[26] 

Efficient Bug Triaging Using Text Mining[27] 

 

 

2.1.5. Bug- report Duplication 

A newly reported bug in issues tracking system can be a duplicate bug that has the same root of a 

master or existing bug. Duplicate bug can either be originated from the same root source as existing bug 

but may have a different failure or have same description of the same failure as an existing bug [28]. 

However in practice, duplicate bugs can be avoided only when the developer knows about all the existing 

bugs, which is practically not possible. An important task of a bug triage is to detect duplicate bugs and 

remove it in order to save the time for developers to fix the bug and reduce triaging cost. 

 

2.1.6. Bug Tracking System 

All bug reports that are either reported by the developers, end user or fixed by the developers are 

stored in a bug tracking system (BTS). BTS is also called issue tracking system. These bugs tracking 

systems (like: Bugzilla, Jira etc) are used by various open source projects (like: Mozilla, Eclipse etc) help 

to manage the bugs.  

 

 



APTIKOM J. CSIT  ISSN: 2528-2417 � 

 

Survey Based Classification of Bug Triage Approaches (Asmita Yadav) 

3 

2.1.7. Bug Report Prioritization 

A difficult and time consuming task for bug repositories is to host the large number of newly 

submitted bug reports. To resolve this problem, developer may assign bug priority (P1, P2, P3, P4 and 

P5) based importance of bugs in a system. Various bug priority recommendation are proposed using SVM 

and Naïve Bayes classification [1,10, 35]. 

 

2.2. The Life-cycle of a Bug Report 

A bug report has various resolution statuses over its lifetime that is depicted in Figure 1. Every 

newly submitted bug in repository has a category Unconfirmed.  After Verification, if bug is not duplicate 

then it status is given as New. After checking that bug is genuine, it is assigned to a relevant developer for 

IL[LQJ�DQG�LWV�VWDWXV�FRQYHUWHG�DV�µ$VVLJQHG¶�� �$VVLJQHG Developer try to resolve bug and when the bug 

has been resolved by the assignee, then it is given the status as resolved. Bug can be Reopened in the 

case, when the end user or tester is not satisfied with the provided solution of the bug and again assigned 

WR�$VVLJQHH�WR�IL[�LW��,I�WKH�WHVWHU�LV�VDWLVILHG�ZLWK�WKH�VROXWLRQ�WKHQ�LWV�VWDWXV�LV�FKDQJHG�WR�µ9HULILHG¶��)LQDO�

status of bug is closed. 

 

 

 
 

Figure 1. Bug ±report Life Cycle 

 

 

2.3. Bug Report Summarization 

All the substantial details of reported bugs are stored in the bug repository that can help to 

understand the entire bug history. Bug summarization techniques helps to summarize entire bug reports, 

in order to decrease time and cost of triager and increase the accuracy of Triager. In paper [29][30], 

author has reported some approaches to reduce the bug data by collecting only meaningful information 

from the bug reports using either feature & instance reduction techniques or bug summarization 

techniques.  

 

 

3. Bug Triaging Approaches 

An automated process which can predict a relevant developer to fix new bug by using previous 

DQG�UHVROYHG�EXJV¶�KLVWRU\��EXJV�PHWDGDWD�RU�GHYHORSHU-profile, is called Bug Triaging process Figure 2 

presents an overview of automated bug triaging system.  

Previously resolved bug reports data (that can contain bug metadata, bug description or bug 

comments) and developer details are captured by recommendation engine as an input. A similarity matrix 
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is prepared by using any of the similarity matrix techniques (i.e. td-idf, jaccard index, cosine, overlap 

FRHIILFLHQW�HWF���,W�WKHQ�SURGXFHV�D�GHYHORSHU¶V�UDQNOLVW��DQG�ILQDOO\�SUHGLFWV�D�UHOHYDQW�GHYHORSHU�ZKR�FDQ�

fix the bug. A feedback is send to both bug report history as well as to predicted developer. 

 

 

 
 

Figure 2. Automated Bug Triaging System 

 

 

3.1. Bug Triaging Techniques 

3.1.1. Machine Learning Based Approaches 

Various bug triaging approaches are based on machine learning techniques for assigning a bug 

report to an experienced developer who has enough knowledge to fix the bug. In these techniques, 

previously resolved bug reposts are used as an input to train a classifier, and then this trained classifier 

classify and assign new bug report to relevant developer. According to survey, first Machine learning 

approach is presented by Cubranic and Murphy [31] which is based on bug reports. Machine learning 

techniques can be categorized into three types namely supervised learning, unsupervised learning and 

reinforcement learning. In our survey, we only focused on supervised learning approaches that contain 

various potential algorithms like: Naïve-bayes, support vector machine, tossing graph, vector space model 

etc.  

In 2009, the bug tossing concepts was defined and described by Jeong [12]. According to 

DXWKRU¶V� VXUYH\�� LQ�0R]LOOD� DQG�(FOLSVH�� DURXQG� ���-44% of bug reports are tossed again that can be 

reduced up to 72% and improve 23%  automatic prediction accuracy by using Jeong tossing model. This 

is a first work on tossing graph that explained use of a basic classifier without considering the inter-

feedback process and developer activity. Furthermore, Pamela[13] extended their work to remove some 

of these limitation by using a fine-grained, multi ±features tossing graph (Product, Component and 

activity days are extra attributes to an edge) with intra update, which is able to improve accuracy upto 

86.09% and reduce the tossing path lengths by up to 83.28% in Eclipse and 86.67% in Mozilla. This 

approach is not applicable on small projects due to their limited numbers of bug features on the node of 

multi tossing graphs i.e. product, component and activity. This approach is not be able to handle the 

developer load balancing problem. To remove Jeong[12] limitations, Liguo [14] also proposed an 

approach by using both  graph tossing and vector space model. To measure the path between the assignee 

and developer, they used weight based breadth first algorithm. Up to 84% bug tossing length can be 

reduced by using this approach. Although, they only evaluate their approach on two open source projects 

(Eclipse & Mozilla) by considering very few bug report features for similarity measure.  Success of this 

approach in closed source project needs to be improved. V.Akila[15] has proposed an approach based on 

bug tossing graph by using metric to reduced hop path and route a bug to the correct developer in the best 

(optimal) route. In this respect, Levenshtein similarity achieved best correlation coefficient value (.9714 

for 30% data set and .9671 for 20% data set) with respect to precision. But this approach has no indicators 
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for measuring the strength of the retrieved paths, if the extracted paths of more than one developer have 

same distance to the original path. 

Jifeng [16] presented another mechanism of machine learning techniques to combine the naïve 

bayes classifier and expectation- maximization (EM) that utilized both labeled and unlabeled bug reports. 

They reported improved classification accuracy up to 6 % only by this classifier. It could not achieve 

sufficient improvements in naïve bayes classifier. So that, obtain experimental results are not up to mark 

for the real-world applications.  This may be due to use of inappropriate bug reports, wrong assumption of 

EM model for real- world data, and selection of irrelevant developer as a bug fixer.  

Jonas[9] proposed a semi- automatic assignment model approach that is based on unified- model 

and presents a relevant artifact by using the history of bug reports and association between work item 

(newly reported bug) and developer. At a certain time, a snap-shot of the project is captured to assign all 

the work items that finally have a fixed state. Two classifiers: SVM (support vector machine) and Naïve 

bayes both gives better results for certain project state(state-based: snap shot of a project at a certain 

time). For datasets UNICASE, DOLLI and King Tale, SVM classifier produced 38%, 28.9%, 37.4% 

accuracy and for the same database, naïve bayes achieved 39.1%, 29.7%, 37.8% accuracy respectively. 

Although, that model based approach is only applicable on those work items that are linked to the 

functional requirement of the work item and is therefore not directly applicable in scenarios where links 

do not exist. 

Although, various techniques are proposed for concept- location which is based on the search of 

abstract system dependence graphs, like: static as well as dynamic based techniques, IR- based techniques 

etc. but no work has applied concept location techniques to the problem of expert developer 

recommendation. In 2011, concept location approach has been proposed by Huzefa [8]. Here, author 

presents an approach to recommend a ranked list of expert developers with relevant source code. This 

source-code corpus is created from extracted comments and identifiers from the source-code and is 

indexed by Latent Semantic Indexing (LSI). xFinder and xFactor is used for expert developer 

recommendation to prepare the rank-list of the relevant developers. Three open source system, namely 

KOffice, Eclipse and ArgoUML are used for evaluation and accuracy of 95%, 82% and 80% respectively 

is recorded by this recommendation system. xFinder is used to increase the rank effectiveness and in 50% 

of cases, the first relevant developer is found in the first position of the rank-list. This rank-list is prepared 

at the four granularity level i.e. file, package, system and overall. In few cases, location based tools does 

not return exactly relevant source-code or class file for bug fixing. 88.89% request-level of accuracy is 

DFKLHYHG�� 'HYHORSHU¶V� H[SHUWLVH�� NQRZOHGJH� DQG� H[SHULHQFH� DUH� RQO\� H[WUDFWHG� IURP� KLV�� KHU� SUHYLRXV�

contribution for bug fixing; still this is not a sufficient condition to correctly assign developer to resolve 

the bug because in some cases, a developer resolved more than bugs , then he have numbers of 

FRPPLWWHU¶� ,GV�� 7KHUH� LV� D� FKDOOHQJH� WR� VHOHFW� RQO\� RQH� FRPPLWWHU¶� ,G� IRU� GHYHORSHU� LGHQWLILFDWLRQ� E\�

xFinder. 

 

3.1.2. Meta- Data Based 

Bug metadata is used by many researchers to propose methods for automatic bug assignments. 

Metadata has all types of bug related details like: bug time stamp (means when bug is filed, when it 

tossed between the developers for fixing and final bug fixing time), bug history, bug comments, 

developers sparseness etc. 

Term weighting technique is mostly used by the researchers to determine the term frequency. 

This textual information is used to prepare rank-list of relevant developers for bug fixing. Although, the 

term frequency- inverse document frequency (tf-idf) is common technique for bug assignment that is 

explained by calvalcanti [32]. But, Tf-Idf does not consider time- stamp, i.e. the time of using a term. 

Ramin & Anvik [18] presented an approach ABA-Time-tf-idf (Automatic Bug Assignment using the 

Time±tf-idf) term weighting technique. They considered time when the terms were used by developers to 

assign weights to terms during triaging process. All the important information like: time difference 

EHWZHHQ�WKH�ODVW�DFWLYLW\�RI�WKH�GHYHORSHU�DQG�WKH�QHZ�EXJ¶�UHSRUWLQJ�GDWH��WLPH�VSHQW�IRU�IL[LQJ�SUHYLRXV�

bug is extracted from the time- metadata to decide the developer ranking. The results of ABA-Time-tf-idf 

approach had indicated an improvement between 26-37.2%, 3.4-14.4%, 5.6-17.2% and 12.6-19.8% in 

comparison to the average accuracies of SVM, NB, VSM, SUM approaches respectively on five random 

data-sets of Eclipse projects. This methodology assumes that the developer who committed the changes to 

UHSRVLWRU\�LV�WKH�DFWXDO�IL[HU�RI�WKH�EXJ�UHSRUW��,Q�VRPH�RI�WKH�SURMHFWV��IHZ�RI�WKH�GHYHORSHUV¶�ZRUNV�DV�D�

gate keepers who have only the permission to commit to the source code, that means developer who 

changes the source code and who committed the change(s) in the software repository, can be different.  
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$QRWKHU� LPSURYHG� YHUVLRQ� LQ� WLPH� VWDPS� LV� SUHVHQWHG� E\� 5DPLQ� 	� $QYLN� >��@� GHYHORSHU¶�

UHFRPPHQGDWLRQ�V\VWHP�EDVHG�RQ�WKH�VLPLODULW\��ZHLJKW��EHWZHHQ�WKH�QHZ�EXJ¶� WHUP�DQG�SUHYLRXV�EXJ- 

report information (corpus). They considered important details from a bug like: the term creation, 

modification time and who changed it. This information is used for calculation of the developer activity at 

YDULRXV�SHULRGV�RI�SURMHFW¶V�OLIH��,I�D�GHYHORSHU�$�XVHG�D�WHUP�µVZLWFK¶�IRU�EXJ�IL[LQJ��WZR�\HDUV�DJR�DQG�

developer B, used it 8 month ago on another bug, containing the same term. Then developer B is more 

appropriate to fix the new bug that coQWDLQV�WKH�VDPH�WHUP�µVZLWFK¶��The TNBA (time ±aware noun- based 

bug assignment) approach outperformed the TNBA (no-time), tf-idf and VSM (time) approaches by as 

much as 14, 12 and 48% on Eclipse, Netbeans and ArgoUML projects respectively. This approach only 

worked on the exact matching in text processing and cannot handled approximation matching by using 

ontology to handles the synonyms of the bug text.  

All the information like: developer identifier, time-stamp and commit comments are stored in the 

metadata. Only Sisman & kak [33] used the time-metadata for feature location approach. Sima, Sai & 

Ramin [23] has proposed an approach that included weighting and ranking the source- code locations 

based on both the textual similarity with a change request and the use of the time-metadata. It used only 

the noun terms for weighting to reduce the dataset volume. This approach gives much better results as 

compared to the tf-idf techniques by up to 15%, 10% and 14 % in terms of accuracy, effectiveness and 

performance respectively. 

Another approach for automatic bug assignment is given by Ramin [22] by using information 

extraction from bug metadata. In this, they calculated the similarities between bug reports and commits 

and then found the similar phrases that are used to link a bug report to a specific commit and finally 

determine the exact location of new bug with relevant developer to fix a new bug. For experiential work 

three open sources are considered namely Eclipse, Mozilla and Gnome, and they received 62%, 43% and 

41% recall levels respectively.  

Mamdouh [27] proposed an bug triaging approach based on text mining concepts by using five 

term selection methods ( Log odds ratio, Chi-square, Term frequency relevance frequency, Mutual 

information and Distinguishing feature selector) to predict an experienced developer to resolve bug. 

According to this approach, X2 gives better results as compare to other selection methods in terms of F-

score. It improved the F-score by 6.2%, 38.2% 26.5% and 12.1% for all open source system Eclipse-

SWT, Eclipse-UI, Netbeans, and Maemo respectively. 

The historical data extractions information for bugFixer has been used by Hao [21] to construct a 

developer ± component- Bug network (DCB). For this DCB network, they established a relationship 

between the developer and source code component and also found the relation between source code 

component and bugs. It then calculated the similarity among new bug and existing bugs. This approach 

correctly ranked the bugs in Eclipse by up to 42.36% for first recommendation list. This approach 

suffered cold start problem when new bug or developer have no previous and historical information. 

In 2014, Tung [19] worked on a problem to determine amount of time required to fix a bug. Although, 

this problem is also mentioned and discussed by Jin [17] in reference of bug triaging issue. Here, they 

focused only to achieve better accuracy and cost without considering the time- complexity of the 

problem. They evaluated their approach on four different open source project namely, Apache, Eclipse, 

Linux kernel and Mozilla and achieved better accuracy by reducing 30% cost of the triage. However, they 

have no solution to handle bug resolution time. Then Tung [19] proposed a model that is a topic- based, 

log- normal regression model (combination of CosTriage and Regression model) that can predicate the 

resolution time of a given bug , if it is already assigned to a given developer. 

 

3.1.3. Profile Based 

Who can fix the bug? Is an important question for bug recommendation system. To find a 

relevant developer for bug fixing is a major research issue and various approaches are proposed for this 

problem only. Here, we only survey few of such recommendation approaches that are based on automated 

developer profile. In 2012, Tao Zhang [24] has proposed a developer profile concept by using related bug 

reports concepts to prepare a developer social network. An expert developer rank list with bug fixing cost 

is maintained, and in addition it also record active and inactive developers. 

A hybrid bug triage approach is presented by Tao [26] for developer recommendation. In this 

developer ranking is calculated by embedded system i.e. experience and probability model. Here 

experience model has all the details of all fixed bugs by the developer with bug fixing cost, and it also 

added a new feature re-oSHQHG� EXJV� WR� JHW� WKH� GHYHORSHU¶� SUREDELOLW\� RI� IL[LQJ� EXJ�� 7KLV� DSSURDFK�

provides a high F-score for JBoss and Eclipse upto 71%, and 67% respectively, but this approach is not 
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effective on business projects. This approach also suffers from cold start problem, i.e. in case of a new 

type of bug or a new developer none of the historical data is helpful to identify the relevant features.  

To improve the bug triage accuracy, an activity profile has been described by Hoda[25]. In that 

method, developer ranked list is based on the developer expertise in the bug report topic. It has a new way 

to save bug fix time by recommending and adding all new developer who are willing to volunteer and 

have sufficient knowledge for bug resolving. After experiment, this proposed approach has better hit ratio 

i.e. 88% as compare to LDA and SVM-based activity profile techniques. Although, to improve the 

accuracy of the Triager, an ensemble classifier ( like: SVM+LDA) can be a better option as compared to 

use a single classifier. 

 

 

4. Comparative Assessment of Survey Paper 

A comparison between all approaches is shown in Table 2 in terms of features used in triaging 

approaches. These features are: DC-Data collection, PreP-Preprocesing, SM-Similarity measure, SC-

Single classifier, MC-Multi classifiers, DP-Developer Profile, RC-Reduce cycle, RS-Reduce Sparseness , 

LB-Load balancing, DAvgT-Developer Average time, BP- Bug priority, DS- Developer specialization, 

DA-Developer Activity, MD-Metadata. Few of the papers are worked on developer sparseness, developer 

activity and developer specialization, although these are most important parameters for building the 

developer profile. Meta data is also not referred by the authors.  These all issues give challenges for the 

researchers in terms of cold start problem, activity profile, load-balancing etc. 

Bug triaging approaches presented in previous section have some advantages as well as 

disadvantages. In Machine learning (ML) approaches, there is a possibility that developer may not have 

complete domain knowledge for bug solving. To achieve better accuracy, a feedback system can be used, 

so that all resolved bugs history is updated, which can be used by the classifier for better 

recommendation. ML approaches have a limitation that it does not consider a new developer as a 

potential bug fixer.  

Another bug fixing technique that considered all the details (including previous bug history) of 

bug reports, named metadata based approach, which we use bug information like: bug basic data, all bug 

related comments and logs that filed by another user, bug long description etc. But still this approach has 

a problem to select a relevant developer, who can fix the new bug that has purely different content from 

the previously fixed bugs.   

Although, Profile based approach is better in the case of developer selection as compared to ML 

and metadata approaches as it can reduce developer sparseness. If a new developer or new type of bug 

report is reported and classifier have not found any previous and historical information for verifying the 

relevancy, then this approach does not consider a new developer as a potential bug fixer for newly 

reported bug. 

 

 

Table 2. Features comparsion between all Traiging approaches 

Paper Name 
Features 

DC Pre.P SM SC MC DP RC RS LB DAvgT BP DS DA MD 

Assigning change 

requests to software 

developers 

Y Y Y Y N Y Y N N N N Y N N 

Automatic 

assignment of work 

item 

Y Y Y N Y N N N N N N N N N 

Reducing the Effort 

of Bug Report 

Triage: 

Recommenders for 

Development-

Oriented Decisions 

Y Y Y N Y N Y N N N Y Y N N 

Highly-accurate 

Bug Triage using 

Machine Learning 

Y Y Y Y N N Y N Y N N Y N N 

Improving bug 

triage with Bug 

tossing Graphs 

Y Y Y Y N N Y N N N N Y N N 

Automated, highly-

accurate, bug 

assignment using 

machine learning 

Y Y Y Y N N Y N Y N N Y Y N 



         �          ISSN: 2528-2417 

APTIKOM J. CSIT  Vol. 1, No. 1,  2016 :  1 ± 11 

8 

and tossing graphs 

An Approach to 

Improving Bug 

Assignment with 

bug tossing graph 

and bug similarities 

Y Y Y Y N N Y N N N N Y N N 

Novel metrics for 

bug triage 

Y Y Y Y N N Y N N N N N N N 

Automatic Bug 

Triage using Semi-

Supervised Text 

Classification 

Y Y Y Y N N N Y N N N Y N N 

COSTRIAGE: A 

Cost-Aware Triage 

Algorithm for Bug 

Reporting 

Y Y Y Y N N N Y N N N Y N Y 

A time based 

approach  to 

Automatic Bug 

Report Assignment 

Y Y Y N Y N Y Y N N N Y N Y 

Topic- based, time 

aware bug 

assignment 

Y Y Y Y N N N Y Y N N N N Y 

Improving 

automatic bug 

assignment using 

time- meta in term 

weights 

Y Y Y N Y N Y N N N N Y N Y 

Effective Bug 

Triage based on 

Historical Bug-Fix 

information 

Y Y Y Y N N Y N N N N Y N Y 

Automatic Bug 

Assignment Using 

Information 

Extraction Methods 

Y Y Y Y N N N N N N N Y N Y 

A Noun based 

approach to feature 

location using time 

aware term- 

weighting 

Y Y Y N Y N Y N N N N Y N Y 

An Automated Bug 

Triage Approach: A 

Concept Profile and 

Social network 

Based Developer 

Recommendation 

Y Y Y Y N Y Y Y N N N Y N N 

Bug report assignee 

Recommendation 

using Activity 

Profile 

Y Y Y Y N Y Y N N N N Y Y N 

A Hybrid Bug 

Triage Algorithm 

for Develop 

recommendation 

Y Y Y Y N Y Y N N N N Y N N 

Efficient Bug 

Triaging Using Text 

Mining 

Y Y Y Y N Y Y N N N N Y N N 

 

Note: - Y-Yes, N- No 

 

 

5. Future Direction for Research 
This section presents several reason and challenges in bug triaging approaches. Which are:- 

 

5.1. Cold-Start Problem 

When a new developer, new bug report or a new system enters into the recommendation system, 

then a problem is accrued called cold start problem. Profile based technique can not recommend a new 

developers, who wants to fix a bug report, without having any stored preference and previous rating 
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history [34]. This type of situation is also faced in the case of new bug report, which has no historical 

information and data for solving and verifying the newly reported bug.  

5.2. Developer-Activity 

The major problem that encountered in the recommendation system is developer sparseness, 

means developers activities is scattered at a widely spaced intervals, examle: If a developer is inactive for 

more than 100 days or he/she has resolved less than 10 bugs. Then, those developers are considered as an 

inactive or retired developers and none of the bug is assigned to them although such developers may be 

interested to fix the bug. So there is a need to design a better heuristics to differentiate active from 

inactive developers to reduce the sparseness of previously fixed bugs.  

 

5.3. Developer Weight Analysis 

$W� WKH� WLPH�RI�GHYHORSHU¶� UDQNLQJ� IRU� WULDJLQJ�� H[LWLQJ� DSSURDFKHV�KDYH�RQO\� FRQVLGHUHG� WKRVH�

developers who have finally fixed the bug. However, it is common that some developers also contribute 

SDUWLDOO\�WR�WKH�ILQDO�SDWFK�LQ�YDULRXV�ZD\V��PDLOLQJ�OLVW��FRPPHQWV�HWF���6XFK�GHYHORSHUV¶�FRQWULEXWLRQV�

need to be incorporated in ranking process. To manage this problem, a developer social network can be 

created that list all the relevant developers who can fix the particular bug report.  

,Q� VRPH� SURMHFW�� IHZ� GHYHORSHUV� ZRUN� DV� µJDWH� NHHSHU¶¶�� ZKR� RQO\� KDYH� WKH� QHFHVVDU\�

permissions to commits to the software repository and these commits can be used by other software 

projects. In some of the cases, people who commit the changes into the source repository are different 

from the people who actually fixed the bug. There is a need to devise a technique to distinguish between 

the committer and the actual fixer. 

 

5.4. Reopened Bug Analysis 

In some cases, reopened bug is considered as a new bug and tossed before assigning to the 

developer. Although the active developer who last resolved this bug might be able to resolve the issues 

related to reopening of the bug. Hence a different triaging approach needs to be adopted for reopened 

bugs.  

 

5.5. Load Balancing 

In many Triagers, a newly reported bug is only assigned to experienced and relevant developers 

(D) without considering their workload. This may slow down the process of bug fixing. In this situation, 

Load balancing reassignment can be beneficial, and bugs might get fixed faster.  

 

 

6. Conclusion 

In our survey paper, we studied various techniques that are based on machine-learning approach, 

Metadata based approach and Profile based approach. We have noticed that none of the approach is up to 

mark in term of accuracy, performance and effectiveness, like: Machine learning approaches worked on 

previously resolved bug reports for assigning a bug to relevant developer. Sometimes an existing 

developer may not have enough knowledge for bug fixing and cannot be consider a new developer as a 

relevant bug fixer.  Although Metadata based approaches considered all type of bug data like: developer 

identifier, time-stamp, commit, and comments etc for fixing the new bug, but still face a problem to select 

a relevant developer for a purely new bug which has different contents from the previously fixed bugs. 

According to developer specialization, a developer rank-list is maintained in profile based approaches and 

this approach is capable to reduce developer sparseness also. We have notice that these approaches are 

not consider any of the developer rank metrics, developer raking process also have an unclear way in bug 

triaging and all the bugs are not equally distributed between the relevant developer i.e. some of the 

developers are heavily loaded. These couple of issues is affected the bug fixing process.  This paper has 

brought in light several important issues related to load balancing, cold- start, developer activity etc.  
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