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 Article info: Abstract 

Airport situations have much attention in recent years. Here, we focus on an 
appealing rule introduced by the economists Baker-Thompson called the 
Baker-Thompson rule which provides a fair and easy share for the costs of the 
landings. On the other hand, uncertainty is a daily presence in real life. It affects 
our decision-making and may have influence on cooperation. Recently, various 
economic and Operations Research situations under uncertainty are studied. In 
this paper, we deal with airport situations, where the costs of the pieces of the 
runway are given by grey numbers. In this context, we expand the Baker-
Thompson rule as a solution concept. Some properties regarding an allocation 
problem of an airport situation under uncertainty is considered and grey 
solutions are proposed. We introduce grey Baker-Thompson rule. Further, we 
give the axiomatic characterization of the grey Baker-Thompson rule by using 
the major and the minor axioms where we give the first characterization by 
using 𝒢IES, the second characterization is given by using 𝒢CUR and the third 
characterization is given by using 𝒢CLAST. Finally, we give an example to 
compare the grey solutions and grey Baker-Thompson rule.   
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1. Introduction 

Mathematical models have been used to solve complex problems such as those in social 
sciences, economics, psychology, and politics. Game theory is a branch of applied mathematics 
that uses models to study interaction with formalized incentive structure game. This makes it 
easier to analyses all the game in the mathematical form or structure. By a game we mean not 
only recreational games like chess or poker. We also have in mind more serious games, such 
as contract negotiation between a labor union and a corporation, war negotiation or an election 
campaign. 

Game theory can be defined as a mathematical framework consist of models and techniques 
that use to analyze the iterative decisions behavior of individuals concerned about their own 
benefit. These games are generally divided into two types, cooperative and competitive games. 
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Cooperative games is a game where all players are concerned about the overall benefits and 
they are not very worried about their own personal benefit. Thus, players fully cooperate with 
each other in order to achieve the highest possible overall benefit like football players in a team. 
Competitive games are games where every user is mainly concerned about his personal payoff 
and therefore all its decisions are made competitively and moreover selfishly. Thus, they are 
called non-cooperative games. Most of the two players’ games are good example of this type. 

Cooperative game theory has been enriched in the recent years with several models which 
provide decision making support in collaborative situations under uncertainty. These models 
are generalizations of the classical model regarding the type of coalition values. In classical 
cooperative game theory, the payoffs to coalitions of players are known with certainty, but 
when uncertainty is taken into consideration the characteristic functions are not real-valued as 
in the classical case. In our case, they capture the uncertainty on the outcome of cooperation in 
its different forms such as stochastic uncertainty, fuzzy uncertainty, interval uncertainty, 
ellipsoidal uncertainty. 

To use the theory of grey numbers is reasonable in cases where uncertainty. Because it has 
been shown in the scientific literature that when predictions of zero probability events are 
concerned, no theoretical methods so far have been successful. According to recent 
publications, such a lack of success is mainly due to how information and consequent 
uncertainties are handled. In this study, we show how grey systems compare to other concepts 
of uncertain information [7]. 

In our daily lives uncertainty affects decision making in many situations. The problem airport 
situations under uncertainty is one of the situations that have attracted the attention of 
researchers in this field. 

We consider the aircraft fee problem of the airport with one runway and suppose that the planes 
which are to land are classified into 𝑚 kinds. In the classical airport situations for each 1 ≤𝑗 ≤ 𝑚, we denote the set of landings of planes of kind 𝑗 by 𝑁௝and its carnality by 𝑛௝. Then, 𝑁 =∪௝ୀଵ௠ 𝑁௝ represents the set of all landings. Let 𝑐௝ represent the cost of a runway adequate 
for planes of kind 𝑗. 

We assume that the kinds are ordered such that 0 < 𝑐଴ < 𝑐ଵ <. . . < 𝑐௠. We consider the 
runway divided into 𝑚 consecutive pieces 𝑃௝ , 1 ≤ 𝑗 ≤ 𝑚, where 𝑃ଵ is adequate for landings of 
planes of kind 1; 𝑃ଵ and 𝑃ଶ together for landings of planes of kind 2, and so on. The cost of 
piece 𝑃௝, 1 ≤ 𝑗 ≤ 𝑚, is the marginal cost 𝑐௝ − 𝑐௝ − 1. That is, every landing of planes of kind 𝑗 contributes to the cost of the pieces 𝑃௞, 1 ≤ 𝑘 ≤ 𝑗, equally allocated among its users ∪௥ୀ௞௠ 𝑁௥. 
Accordingly, [3] and [8] submitted the following rule: 𝐵𝑇௜ = ∑௝௞ୀଵ [∑௠௥ୀ௞ 𝑛௥]ିଵ(𝑐௞ − 𝑐௞ିଵ), (1) 

whenever 𝑖 ∈ 𝑁௝ , which is known as Baker-Thompson rule.  This rule provides a fair and direct 
cost for aircraft landing at airport. 

Assume that the planes which are to land are classified into 𝑚 types. For each 1 ≤ 𝑗 ≤ 𝑚, 
denote the set of landings of planes of type 𝑗 by 𝑁௝ and its cardinality by 𝑛௝. Then 𝑁 =∪௝ୀଵ௠ 𝑁௝ 
represents the set of all landings. Consider the runway is divided into 𝑚 consecutive pieces 𝑃௝ , 
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1 ≤ 𝑗 ≤ 𝑚, where 𝑃ଵ is sufficient for landings of planes of type 1; 𝑃ଵ and 𝑃ଶ together for 
landings of planes of type 2, and so on. 

In the sequel, we introduce the grey 𝑤௝′  with nonnegative finite bounds represent the grey cost 
of piece 𝑃௝, 1 ≤ 𝑗 ≤ 𝑚. For a given airport grey situation (𝑁, (𝑤௞′ )௞ୀଵ,...,௠) the Baker-
Thompson allocation for each player 𝑖 ∈ 𝑁௝ is given by: 

ℬ௜ = ∑௝௞ୀଵ (∑௠௥ୀ௞ 𝑛௥)ିଵ𝑤௞ ∈ ቂ∑௝௞ୀଵ (∑௠௥ୀ௞ 𝑛௥)ିଵ𝑤௞, ∑௝௞ୀଵ (∑௠௥ୀ௞ 𝑛௥)ିଵ𝑤௞ቃ. (2) 

Now, we recall some properties regarding an allocation problem of an interval airport situation. 
Formally, an allocation rule for an allocation problem is a map 𝐹 associating each allocation 
problem(𝑁, (𝑤௞)௞ୀଵ,...,௠, a unique point 𝐹(𝑁, (𝑤௞)௞ୀଵ,...,௠) ∈ IRே with ∑௜∈ே 𝐹௜(𝑁, (𝑤௞)௞ୀଵ,...,௠) = [∑௝௞ୀଵ 𝑤௞, ∑௝௞ୀଵ 𝑤௞]. 
An allocation rule F satisfies individual equal sharing (IIES) property if for every situation (𝑁, (𝑤௞)௞ୀଵ,...,௠), 𝐹௜(𝑁, (𝑤௞)௞ୀଵ,...,௠) = ቈ∑ೕೖసభ ௪ೖ∑೘ೝసೖ ௡ೝ , ∑ೕೖసభ ௪ೖ∑೘ೝసೖ ௡ೝ ቉ ≥ ቈ∑ೕೖసభ ௪ೖ௡ , ∑ೕೖసభ ௪ೖ௡ ቉ for each 𝑖 ∈ 𝑁௥  

and 𝑟 = 1, . . . , 𝑚. 

An allocation rule 𝐹 satisfies collective usage right (ICUR) property if for every situation (𝑁, (𝑤௞)௞ୀଵ,...,௠),  

𝐹௜(𝑁, (𝑤௞)௞ୀଵ,...,௠) ≤ ቂ∑௝௞ୀଵ 𝑤௞(∑௟ୀଵ,...,௥ 𝑛௟)ିଵ, ∑௝௞ୀଵ 𝑤௞(∑௟ୀଵ,...,௥ 𝑛௟)ିଵቃ, 
for each 𝑖 ∈ 𝑁௥ and 𝑟 = 1, . . . , 𝑚. 

An allocation rule 𝐹 satisfies consistency on last group (ICLAST) property if for every situation (𝑁, (𝑤௞)௞ୀଵ,...,௠) and for each ℎ ∈ 𝑁௠ 𝐹௜(𝑁, (𝑤௞)௞ୀଵ,...,௠) = 𝐹௜(𝑁෡, (𝑤ෝ௞)௞ୀଵ,...,௠), 𝑖 ∈ 𝑁\{ℎ} , (3) 

where 𝑁෡௟ = 𝑁௟, 𝑙 = 1, . . . , 𝑚 − 1, 𝑁෡௠ = 𝑁௠\{ℎ} and 𝑤ෝ௟ = 𝑤௟ − 𝐹௛(𝑁, (𝑤௞)௞ୀଵ,...,௠), 𝑙 =1, . . . , 𝑚. 

Baker-Thompson rule satisfies the properties above and do characterization by using them [6]. 
Then [1] extended these results to the interval setting to show that the Baker-Thompson rule 
satisfies the properties above. Our aim is to extend these results to the grey setting. In this 
paper, we give an axiomatic characterization of the grey Baker-Thompson rule. Our intuition 
is from [1] who study an axiomatic characterization of the interval Baker-Thompson rule. 

The grey cost allocation rule ℬ presented above called the grey Baker-Thompson rule. For the 
piece 𝑃௞ of the runway the users are ∪௥ୀ௞௠ 𝑁௥ meaning that there are ∪௥ୀ௞௠ 𝑛௥ users. So, (∑௠௥ୀ௞ 𝑛௥)ିଵ𝑤௞′  is the equal cost share of each user of the piece 𝑃௞. This means that a player 𝑖 ∈ 𝑁௝ contributes to the cost of the pieces 𝑃ଵ, . . . , 𝑃௝. 
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2. On the Grey Baker-Thompson Rule 

In this section, we introduce the grey Baker-Thompson rule and give a characterization. 

Theorem 2.1 Let (𝑁, (𝑤௞′ )௞ୀଵ,...,௠) be an airport grey situation. Then the grey Baker-Thompson 
rule ℬ for each player 𝑖 ∈ 𝑁௝ is ℬ௜ ∈ [ℬ௜ , ℬ௜].  
Proof. . By (2) we have for all 𝑖 ∈ 𝑁௝ 

ℬ௜ = ∑௝௞ୀଵ (∑௠௥ୀ௞ 𝑛௥)ିଵ𝑤௞′ = ∑௝௞ୀଵ (∑௠௥ୀ௞ 𝑛௥)ିଵ[𝑤௞′ , 𝑤௞′ ]  
∈ ቂ∑௝௞ୀଵ (∑௠௥ୀ௞ 𝑛௥)ିଵ𝑤௞′ , ∑௝௞ୀଵ (∑௠௥ୀ௞ 𝑛௥)ିଵ𝑤௞′ ቃ = [ℬ௜ , ℬ௜] (4) 

Theorem 2.1 shows that one can calculate the lower bound of the grey Baker-Thompson rule 
by using the lower bounds of the grey costs and the upper bound of the grey Baker-Thompson 
rule by using the upper bounds of the grey costs.  

We define an grey allocation rule for a given airport grey situation (𝑁, (𝑤௞′ )௞ୀଵ,...,௠) as a map 𝐹 associating each allocation situation (𝑁, (𝑤௞′ )௞ୀଵ,...,௠) to a unique rule 𝐹(𝑁, (𝑤௞′ )௞ୀଵ,...,௠) =𝐹(𝑁, ([𝑤௞′ , 𝑤௞′ ])௞ୀଵ,...,௠) ∈ 𝒢(ℝ)ே with  

∑௜∈ே 𝐹௜(𝑁, (𝑤௞′ )௞ୀଵ,...,௠) = ∑௠௜ୀଵ [𝑤௜′ , 𝑤௜′] ∈ ቂ∑௠௜ୀଵ 𝑤௜′ , ∑௠௜ୀଵ 𝑤௜′ቃ (5) 

A grey allocation rule 𝐹 satisfies grey individual equal sharing (𝒢IES) property if for every 
grey situation (𝑁, (𝑤௞′ )௞ୀଵ,...,௠), (𝑁, (𝑤௞′ )௞ୀଵ,...,௠) and (𝑁, (𝑤௞′ )௞ୀଵ,...,௠) satisfies IIES for each 𝑖 ∈ 𝑁௥ and 𝑟 = 1, . . . , 𝑚. 

A grey allocation rule 𝐹 satisfies grey collective usage right (𝒢CUR) property if for every grey 
situation (𝑁, (𝑤௞′ )௞ୀଵ,...,௠), (𝑁, (𝑤௞′ )௞ୀଵ,...,௠) and (𝑁, (𝑤௞′ )௞ୀଵ,...,௠) satisfies ICUR for each 𝑖 ∈𝑁௥ and 𝑟 = 1, . . . , 𝑚. 

A grey allocation rule 𝐹 satisfies grey individual consistency on last group (𝒢CLAST) property 
if for every grey situation (𝑁, (𝑤௞′ )௞ୀଵ,...,௠), (𝑁, (𝑤௞′ )௞ୀଵ,...,௠) and (𝑁, (𝑤௞′ )௞ୀଵ,...,௠) satisfies 
ICLAST for each 𝑖 ∈ 𝑁௥ and 𝑟 = 1, . . . , 𝑚. 

Next we give some properties of the grey Baker-Thompson rule with the following proposition. 

Proposition 2.1 The grey Baker-Thompson rule ℬ satisfies 𝒢IES, 𝒢CUR, and 𝒢CLAST.  

Proof. The proof can be obtained by following the steps of [6] and [1] for ℬ௜ and ℬ௜ for each 𝑖 ∈ 𝑁௝ and 𝑗 = 1, . . . , 𝑚. Then, by using Theorem 2.1 we are done.  
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Now, we give an axiomatic characterization of the grey Baker-Thompson rule with the 
following theorem.  

Theorem 2.2 The grey Baker-Thompson rule ℬ is the unique rule satisfying 𝒢IES, 𝒢CUR and 𝒢CLAST.  

Proof. From Proposition 2.1 we know that ℬ satisfies the three properties. We only need to 
show the uniqueness. For uniqueness, it is clear by [1] in which ℬ௜ and ℬ௜ for each 𝑖 ∈ 𝑁௝ and 𝑗 = 1, . . . , 𝑚, are the unique allocations satisfying the three properties IIES, ICUR and 
ICLAST. Finally, by Theorem 2.1 we conclude that ℬ௜ ∈ [ℬ௜ , ℬ௜] for each 𝑖 ∈ 𝑁௝ and 𝑗 =1, . . . , 𝑚 is unique. Hence ℬ is the unique grey allocation satisfying 𝒢IES, 𝒢CUR and 𝒢CLAST.   

3. Grey numbers 

The grey system theory initiated in 1982 by [4], is a new methodology that focuses on the study 
of problems involving small samples and incomplete information. As far as information is 
concerned, the systems which lack information, such as structure message, operation 
mechanism and behavior document, are referred to as Grey Systems. The grey system theory 
is one of the new mathematical theories born out of the concept of the grey set. It deals with 
uncertain systems with partially known information through generating, excavating, and 
extracting useful information from what is available. Uncertain systems with small samples 
and incomplete information exist commonly in the natural world. It is an effective method used 
to solve uncertainty problems with discrete data and incomplete information. In theory, random 
variables are regarded as grey numbers, and a stochastic process is referred to as a grey process. 
A grey system is defined as a system containing information presented as grey numbers; and a 
grey decision is defined as a decision made within a grey system. 

Grey systems analysis consists mainly of grey incidence analysis, grey statistics, grey 
clustering, etc. Grey systems modeling is done mainly through generations of grey numbers or 
functions of series operators to find hidden patterns, if any. Then, the modeling is finished 
based on the concept of five-step-modeling. The concept of five-step-modeling consists of 
language model: network model, quantification of model, dynamical quantification of model 
and optimization of model [13]. 

We denote by 𝒢(ℝ) the set of interval grey numbers in ℝ. Let ⊗ଵ,⊗ଶ∈ 𝒢(ℝ) with ⊗ଵ∈[𝑎, 𝑎],⊗ଶ∈ [𝑏, 𝑏], | ⊗ଵ | = 𝑎 − 𝑎 and 𝛼 ∈ ℝା. Then   

1. ⊗ଵ+⊗ଶ∈ [𝑎 + 𝑏, 𝑎 + 𝑏];  
2. 𝛼 ⊗ଵ= [𝛼𝑎, 𝛼𝑎] 

By (1) and (2) we see that 𝒢(ℝ) has a cone structure. 

In general, the difference of ⊗ଵ and ⊗ଶ is defined by ⊗ଵ⊖⊗ଶ=⊗ଵ+ (− ⊗ଶ) ∈ [𝑎 − 𝑏, 𝑎 −𝑏]. 
Different from the above subtraction we use a partial subtraction operator. We define ⊗𝟏⊖⊗𝟐, only if |𝒂 − 𝒂| ≥ |𝒃 − 𝒃|, by ⊗𝟏−⊗𝟐= [𝒂 − 𝒃, 𝒂 − 𝒃] ([2]). 
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4. Grey solutions  

We recall the definition of the grey solutions that is critical during this study ([9] and [12]). 
Now, we introduce some theoretical notions from the theory of cooperative grey games. For 𝑤, 𝑤ଵ, 𝑤ଶ ∈ 𝐼𝐺ே and 𝑤 ′, 𝑤ଵ′ , 𝑤ଶ′ ∈ 𝒢𝐺ே we say that 𝑤ଵ′ ∈ 𝑤ଵ ≤ 𝑤ଶ′ ∈ 𝑤ଶ if 𝑤ଵ′ (𝑆) ≤ 𝑤ଶ(𝑆), 
where 𝑤ଵ′ (𝑆) ∈ 𝑤ଵ(𝑆) and 𝑤ଶ′ (𝑆) ∈ 𝑤ଶ(𝑆), for each 𝑆 ∈ 2ே. For 𝑤ଵ′ , 𝑤ଶ′ ∈ 𝒢𝐺ே and 𝜆 ∈ ℝା 
we define 〈𝑁, 𝑤ଵ′ + 𝑤ଶ′ 〉 and 〈𝑁, 𝜆𝑤 ′〉 by (𝑤ଵ′ + 𝑤ଶ′ )(𝑆) = 𝑤ଵ′ (𝑆) + 𝑤ଶ′ (𝑆) and (𝜆𝑤 ′)(𝑆) =𝜆𝑤 ′(𝑆) for each 𝑆 ∈ 2ே. So, we conclude that 𝒢𝐺ே endowed with "≤" has a cone structure 
with respect to addition and multiplication with non-negative scalars above. For 𝑤ଵ′ , 𝑤ଶ′ ∈ 𝒢𝐺ே 
where 𝑤ଵ′ ∈ 𝑤ଵ, 𝑤ଶ′ ∈ 𝑤ଶ with|𝑤ଵ(𝑆)| ≥ |𝑤ଶ(𝑆)| for each 𝑆 ∈ 2ே , 〈𝑁, 𝑤ଵ′ − 𝑤ଶ′ 〉 is defined by (𝑤ଵ′ − 𝑤ଶ′ )(𝑆) = 𝑤ଵ′ (𝑆) − 𝑤ଶ′ (𝑆) ∈ 𝑤ଵ(𝑆) − 𝑤ଶ(𝑆). 

a. Grey Shapley value  

We call a game 〈𝑁, 𝑤 ′〉 grey size monotonic if 〈𝑁, |𝑤|〉 is monotonic, i.e. |𝑤|(𝑆) ≤ |𝑤|(𝑇) for 
all 𝑆, 𝑇 ∈ 2ே with 𝑆 ⊂ 𝑇. For further use we denote by 𝑆𝑀𝒢𝐺ே the class of grey size monotonic 
games with player set 𝑁. The grey marginal operators and the grey Shapley value are defined 
on 𝑆𝑀𝒢𝐺ே. Denote by ∏ (𝑁) the set of permutations 𝜎: 𝑁 → 𝑁 of 𝑁. The grey marginal 
operator 𝑚ఙ: 𝑆𝑀𝒢𝐺ே → 𝒢(ℝ)ே corresponding to 𝜎, associates with each 𝑤 ′ ∈ 𝑆𝑀𝒢𝐺ே the 
grey marginal vector 𝑚ఈ(𝑤 ′) of 𝑤 ′ with respect to 𝜎 defined by  𝑚௜ఙ(𝑤 ′): = 𝑤 ′(𝑃ఙ(𝑖) ∪ {𝑖}) − 𝑤 ′(𝑃ఙ(𝑖)) ∈ [𝐴௉഑(௜)∪{௜} − 𝐴௉഑(௜), 𝐴௉഑(௜)∪{௜} − 𝐴௉഑(𝑖)],  
for each 𝑖 ∈ 𝑁, where 𝑃ఙ(𝑖) = {𝑟 ∈ 𝑁|𝜎ିଵ(𝑟) < 𝜎ିଵ(𝑖)}, and 𝜎ିଵ(𝑖) denotes the entrance 
number of player 𝑖. For grey size monotonic games 〈𝑁, 𝑤 ′〉, 𝑤 ′(𝑇) − 𝑤 ′(𝑆) ∈ 𝑤(𝑇) − 𝑤(𝑆) is 
defined for all 𝑆, 𝑇 ∈ 2ே with 𝑆 ⊂ 𝑇 since |𝑤(𝑇)| = |𝑤|(𝑇) ≥ |𝑤|(𝑆) = |𝑤(𝑆)|. We notice 
that for each 𝑤 ′ ∈ 𝑆𝑀𝒢𝐺ே the grey marginal vectors 𝑚ఙ(𝑤 ′) are defined for each 𝜎 ∈ ∏ (𝑁), 
because the monotonicity of |𝑤| implies 𝐴ௌ∪{௜} − 𝐴ௌ∪{௜} ≥ 𝐴ௌ − 𝐴ௌ, which can be rewritten as 𝐴ௌ∪{௜} − 𝐴ௌ ≥ 𝐴ௌ∪{௜} − 𝐴ௌ. So, 𝑤 ′(𝑆 ∪ {𝑖}) − 𝑤 ′(𝑆) ∈ 𝑤(𝑆 ∪ {𝑖}) − 𝑤(𝑆) is defined for each 𝑆 ⊂ 𝑁 and 𝑖 ∉ 𝑆. Next, we notice that all the grey marginal vectors of a grey size monotonic 
game are efficient grey payoff vectors. The grey Shapley value Φ′: 𝑆𝑀𝒢𝐺ே → 𝒢(ℝ)ே is 
defined by [9] as follows: 

Φ′(𝑤 ′): = ଵ௡! ∑ఙ∈Π(ே) 𝑚ఙ(𝑤 ′) ∈ ቂ ଵ௡! ∑ఙ∈Π(ே) 𝑚ఙ(𝐴), ଵ௡! ∑ఙ∈Π(ே) 𝑚ఙ(𝐴)ቃ, (6) 

for each 𝑤 ′ ∈ 𝑆𝑀𝒢𝐺ே. 

b. The grey Banzhaf value 

The grey Banzhaf value 𝛽: 𝑆𝑀𝒢𝐺ே → 𝒢(ℝ)ே, ∀𝑤 ′ ∈ 𝑆𝑀𝒢𝐺ே is defined by  𝛽(𝑤 ′) = ଵଶ|ಿ|ିଵ ∑௜∈ௌ [𝑤 ′(𝑆) − 𝑤 ′(𝑆\{𝑖})] (7) 
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c. The 𝓖𝑪𝑰𝑺-value 

The CIS-value [5] assigns to every player its individual worth, and distributes the remainder of 
the worth of the grand coalition N equally among all players [11]. 

The grey CIS-value assigns every player to its individual grey worth, and distributes the 
remainder of the grey worth of the grand coalition 𝑁 equally among all players. The 𝒢𝐶𝐼𝑆-
value 𝒢𝐶𝐼𝑆: 𝑆𝑀𝒢𝐺ே → 𝒢(ℝ)ே is defined by  𝒢𝐶𝐼𝑆௜(𝑤 ′) = 𝑤 ′({𝑖}) + ଵ|ே| ൣ𝑤 ′(𝑁) − ∑௝∈ே 𝑤 ′({𝑗})൧ (8) 

d. The 𝓖𝑬𝑵𝑺𝑪-value 

The grey ENSC-value (𝒢𝐸𝑁𝑆𝐶-value) assigns to every game 𝑤 ′ the 𝒢𝐶𝐼𝑆-value of its dual 
game: 𝒢𝐸𝑁𝑆𝐶௜(𝑤 ′) = 𝒢𝐶𝐼𝑆௜(𝑤 ′∗) = ଵ|ே| ൣ𝑤 ′(𝑁) + ∑௝∈ே 𝑤 ′(𝑁\{𝑗})൧ − 𝑤 ′(𝑁\{𝑖})) (9) 

The 𝒢𝐸𝑁𝑆𝐶-value assigns to every player in a game its grey marginal contribution to the "grand 
coalition" and distributes the remainder equally among the players. 

e. The 𝓖𝑬𝑫-solution 

The grey ED-solution (𝒢𝐸𝐷-solution) 𝒢𝐸𝐷: 𝒢𝐺ே → 𝒢(ℝ)ே is given by 

𝒢𝐸𝐷௜(𝑤 ′) = ௪′(ே)|ே| , for all 𝑖 ∈ 𝑁.                                                                                      (10) 

5. A Numerical Example 

In this section, we calculate the grey solutions given in Section 4 and the Grey Baker-
Thompson rule given in Section 2. We illustrate our results on Table 1. 

Let (𝑁 = {1,2,3}, (𝑤௞′ )௞ୀଵ,ଶ,ଷ) be an airport grey situation with the grey cost 𝑤ଵ′ ∈ [30,36], 𝑤ଶ′ ∈ [40,50] and 𝑤ଷ′ ∈ [100,120]. Then, 𝑤 ′(𝜙) ∈ [0,0], 𝑤 ′(1) ∈ [30,36], 𝑤 ′(2) = 𝑤 ′(1,2) ∈[70,86] and 𝑤 ′(3) = 𝑤 ′(1,3) = 𝑤 ′(2,3) = 𝑤 ′(𝑁) ∈ [170,206]. The following table shows 
the interval marginal vectors of the game, where rows correspond to orderings of players and 
columns correspond to players.  

Table 1: The grey Baker-Thompson rule and the grey solutions 
Grey Solutions Player 1 Player 2 Player 3 

Grey Baker-Thompson rule ∈ [10,12] ∈ [30,37] ∈ [130,157] 
Grey Shapley value ∈ [10,12] ∈ [30,37] ∈ [130,157] 
Grey Banzhaf value ∈ [7.5,9] ∈ [27.5,34] ∈ [127.5,154] 𝒢𝐶𝐼𝑆-value ∈ ൣ−3. 3, −4. 6൧ ∈ ൣ36. 6, 45. 3൧ ∈ ൣ136. 6, 165. 3൧ 𝒢𝐸𝑁𝑆𝐶-value ∈ ൣ23. 3, 28. 6൧ ∈ ൣ23. 3, 28. 6൧ ∈ ൣ123. 3, 148. 6൧ 𝒢𝐸𝐷-value ∈ ൣ56. 6, 68. 6൧ ∈ ൣ56. 6, 68. 6൧ ∈ ൣ56. 6, 68. 6൧ 
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This application shows that Baker-Thompson rule can help us to provide a fair and easy share 
for the costs of the landings. We note that the grey Baker-Thompson rule is interesting at an 
ex-ante stage to inform users about what they can expect to pay for the landings of the runway. 
But, in other situations when all costs are known with certainty, the classical Baker-Thompson 
rule can be applied to pick up effective costs for each. 

6. Conclusion and Outlook 

Game theory, which has studied deeply the interaction between competing or cooperating 
individuals, plays a central role in these new developments. 

Grey systems analysis consists mainly of grey incidence analysis, grey statistics, grey 
clustering, etc. Grey systems modeling is done mainly through generations of grey numbers or 
functions of series operators to find hidden patterns, if any. 

Much of cooperative game theory is built around problem how to distribute the collective 
income in fair and rational manners. In a cooperative game, when the value of a subset of 
players is evaluated via a combinatorial optimization problem, subject to constraints of 
resources controlled by members in the subset, the input size is usually polynomial in the 
number of players. 

To use the theory of grey numbers is reasonable in cases where uncertainty. Because it has 
been shown in the scientific literature that when predictions of zero probability events are 
concerned, no theoretical methods so far have been successful. According to recent 
publications, such a lack of success is mainly due to how information and consequent 
uncertainties are handled. In this study, we show how grey systems compare to other concepts 
of uncertain information. 

In this study, we introduce an axiomatic characterization of the grey Shapley value on an 
additive cone of cooperative grey games. Inspiring was Shapley’s axiomatic characterization 
[10]. We notice that whereas the Shapley value is defined and axiomatically characterized for 
arbitrary cooperative TU games, the grey Shapley value is defined only for a subclass of 
cooperative grey games, called grey size monotonic games, and is axiomatically characterized 
only on the strict subset of grey size monotonic games. The restriction to the class of size 
monotonic games was imposed by the need to establish efficiency of interval marginal vectors, 
and consequently of the grey the Shapley value. 

The problems of airports are best with uncertainties, in like this an informational environment 
is decision-making effects on operations cooperation and economy. We consider the aircraft 
fee problem of an airport with one runway [1]. This paper shows that cooperative grey game 
theory can help us to provide a fair and easy share for the costs of the landings by using Baker-
Thompson rule. 

For future work, the category of cooperative grey games are often applied to different economic 
and research Operational Research (OR) issues like bankruptcy situations, other airport 
situations and sequencing situations etc.  

We note that the obtained results can be used in different application areas such as OR, 
economic and management situations etc. 
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