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Abstract 
 

Portfolio selection problem is generally a nonlinear programming which has 

been solved by a variety of heuristic and non-heuristic techniques. This paper 

presents a novel heuristic method for solving an extended fuzzy portfolio 

selection model. The significance of this paper is twofold. First, it extends 

fuzzy mean-variance-skewness model to fuzzy mean-variance-skewness-

kurtosis model. Second, a powerful heuristic called Firefly Algorithm (FA) is 

proposed for solving model. No study has ever proposed and solved this 

expanded model. Finally, several numerical examples are provided to illustrate 

the modeling idea and performance and effectiveness of the proposed 

algorithm is compared against the exact approach (LINGO software) in terms 

of fitness value and required computational time. Results show that the 

proposed FA is very promising and achieves quality results for fuzzy portfolio 

selection in a reasonable time. 
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1. Introduction 

3RUWIROLR�VHOHFWLRQ�GHDOV�ZLWK�WKH�SUREOHP�RI�DOORFDWLQJ�RQH¶V�FDSLWDO�WR�D�ODUJH�QXPEHU�RI�VHFXULWLHV�WR�

PHHW�LQYHVWRU¶V�VDWLVIDFWLRQ��7KH�HDUOLHVW�ZRUN�LQ�WKLV�ILHOG�LV�GXH�WR�0DUNRZLW]�[17] who introduced the 

well-known mean-variance model considering trade-off between return and risk. The main idea of this 

model was to characterize the securities of individual returns as random variables with normal probability 

distribution. Lots of efforts have been performed by researchers in order to expand and solve Markowitzÿ

s model. These attempts, regarding the higher moments such as skewness and kurtosis, have tried to make 

his model more practical [1,5,9,11,20,26].  

According to Konno and Suzuki [9], maximizing the skewness in a portfolio would result in better 

return and Samuelson [20] has indicated that most of the investors would prefer a portfolio with larger 

skewness where mean and variance are the same and the higher moments such as skewness can be 

neglected only where there are reasons to trust that the returns are symmetrically distributed (e.g. normal) 

RU� WKH� KLJKHU�PRPHQWV� DUH� LUUHOHYDQW� WR� WKH� LQYHVWRUV¶� GHFLVLRQV� Furthermore, many researchers have 

showed the importance of kurtosis in financial markets which is a measure of whether the data are peaked 

or flat relative to a normal distribution. Tang and Shum [22] and Gondzio and Grothey [7] have indicated 
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that returns of individual securities in most cases do not have normal distributions and are characterized 

by significant kurtosis.  

In the field of models solving, some heuristic methods based on Genetic Algorithm [21], Tabu Search 

[19], Particle Swarm Optimization [6], Simulated Annealing [4], Ant Colony Optimization [15] and 

Memetic Algorithm [16], Artificial bee colony algorithm [3,10,13], bacteria foraging optimization [18] 

have been reported in the literatures for the portfolio selection problem. In addition to, [2] proposed three 

heuristics based on GA, TS, and SA to solve the problem and compared the results. Almost more the 

above literatures assume that the security returns are random variables. However, when there is not the 

enough historical data or the new assets are listed in the market, probability distribution is not reasonable 

to explain the variables while the fuzzy theory appropriately handles the case. Li et al in [12] were the 

first who proposed an extended portfolio selection model in fuzzy environment. Their model includes the 

skewness and lacks the kurtosis moment. In addition to, they employed GA for solving their model.  

After review the literature, the main contribution of this paper is twofold. First we extend Li et al. 

[12] model into mean-variance-skewness-kurtosis model in fuzzy environment. Second we will propose 

a heuristic named as Firefly Algorithm (FA) in order to solve our model.  

To achieve to this purpose the remainder of this paper is organized as follows. Section 2 defines the 

moments for fuzzy variables. Section 3 presents the fuzzy mean-variance-skewness-kurtosis model and 

its variations. A Firefly Algorithm (FA) for solving the models is developed in Section 4. Section 5 

provides numerical examples to illustrate the effectiveness of proposed algorithm and the paper ends up 

with conclusions and summarizes the research in Section 6. 

1. Preliminaries 

The possibility theory is a branch of mathematics that studies the behavior of fuzzy phenomena which has 

been introduced by Zadeh [24] via membership function. To measure a fuzzy event, Zadeh [25] has also 

proposed the concept of possibility measure. Although the possibility measure is widely used in portfolio 

selection problems, it has some limitations. One of its important limitations is that the measure does not 

have self-duality property. Using the measure which is not self-dial may result in the same possibility 

value for two fuzzy events with different occurring chances. In addition, if the possibility value of a 

portfolio return being greater than a target value is less than one, the possibility value of the opposite 

event, i.e. the portfolio return being less than or equal to the target value, has the maximum value of one. 

Similarly, if the possibility value of a portfolio return being less than or equal to a target value is less than 

one, the possibility value of the opposite event, i.e. the portfolio return being greater than the target value, 

has the maximum value of one, as well. These results are quite awkward and confuse the decision maker 

[8]. 

 In order to define a self-dual measure, [25] have introduced the concept of credibility measure which 

is more appropriate than the possibility measure in portfolio selection problems. Let [  be a fuzzy variable 

with membership function �, and u and r are real numbers. The credibility of a fuzzy event characterized 

by r[ t , is then defined as in Eq. (1). 

^ ` � � � � � �1
Cr sup 1 sup 1

2 u r u r

r u u[ P P
t �

§ ·
t  � �¨ ¸

© ¹  

Now consider a triangular fuzzy variable [  which is fully determined by the triplet � �, ,a b c  of crisp 

numbers with a b c� �  and the membership function given by: 
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The credibility of r[ t  is then defined as follows. 

^ `
� �
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r a
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�° d d
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Liu and Liu [14] have also provided a more general definition of the expected value of a fuzzy variable 

[  based on the credibility measure given in Eq. (4). 

> @ ^ ` ^ ` � �
0

0

4E Cr r dr Cr r[ [ [
�f

�f

 t � d³ ³
 

where at least one of the two integrals is finite.  

According to Liu and Liu [25], if the fuzzy variable [  has a finite expected value, its variance is then 

defined by: 

> @ > @� � � �
2

5V E E[ [ [ª º �
¬ ¼  

Now, let [  be a fuzzy variable with finite expected value. The skewness of [  is defined as follows 

[21]: 

> @ > @� � � �
3

6S E E[ [ [ª º �
¬ ¼  

Moreover, if the fuzzy variable [  has a finite expected value, its kurtosis can be then defined as: 

> @ > @� � � �
4

7K E E[ [ [ª º �
¬ ¼  

Theorem 1: Let [  be a fuzzy variable with finite expected value. For any real numbers a and b, we have: 

> @ > @ � �4 8K a b a K[ [�  
 

Proof: According to [21], we have: 

> @ > @ � �, 9E a b aE b[ [�  �
  

Therefore, we can write: 

> @ > @� �� � > @� � > @� � > @
4 4 44 4 4

K a b E a b aE b E a E a E E a K[ [ [ [ [ [ [ [ª º ª º ª º�  � � �  �  �  « » ¬ ¼ ¬ ¼¬ ¼  

2. The mean-variance-skewness-kurtosis models of portfolio selection 

Let [  be a fuzzy variable representing the return of the i th security and i
x  be the proportion of total 

capital invested in security i . In general, i
[  is given as ( ' ) /

i i i i
p d p p� �  where i

p  is the closing price 

of the i th security at present, '
i

p  is the estimated closing price in the next year, and i
d  is the estimated 

dividends during the coming year. 
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The following notations are used in developing the models: 

E: The operator of expected return 

V: The operator of risk 

S: The operator of skewness 

K: The operator of kurtosis 

:\  Minimal expected return which the investors can accept 

:G Maximal risk which the investors can bear 

:K  Minimal skewness which is desired by the investors 

:M  Maximal kurtosis which the investors can endure 

Now suppose that minimal expected return and kurtosis and maximal risk are given, the investors 

interested�in the use of skewness prefer a portfolio with large skewness. Therefore, we have the following 

mean-variance-skewness-kurtosis model: 

> @
> @
> @
> @

� �

1 1

1 1

1 1

1 1

1
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The second model is as follows: 
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> @
> @
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The purpose of the model presented in (11) is to select a portfolio with maximum return where the 

minimal variance and kurtosis as well as the maximal skewness are given. 

 

The third model is as follows: 

> @
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The purpose of this model is to choose a portfolio with minimum risk where the maximal skewness 

and expected return as well as the minimal kurtosis are given. 

Now if the maximal variance and the minimal expected value and skewness are given, then the 

investors would prefer a portfolio with lower kurtosis. Therefore, the forth model is as follows: 

> @
> @
> @
> @
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Theorem 2: Assume that � �, ,
i i i i

a b c[   be independent triangular fuzzy variables for 1,2,..., .i n  

Therefore, the above models can convert to deterministic programming. For instance, the model � �13 in 

this case is as follows: 
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Proof: This deterministic programming for mean-variance-skewness model has been proved in [12]. 

Herein, only the kurtosis equation is investigated. 

Suppose that > @iE e[  , ,b a c bD E �  � . Based on the mathematical credibility theory we know 

that � �^ ` ^ ` ^ `4 4 4Cr e r Cr e r Cr e r[ [ [� t  � t � � d . Thus, there are three different states regarding 

D  and E  as follows. 

1) Assume thatD E! , then e b� . So we have: 
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As a result, 
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Then we have: 

> @
� � � � � �

� �

� � � � � � � �

� �
� �

� �

5 4 4 2 3

1 1 1 1 1 1 1

1 1

3

1

253 395 17 290

15

10240 10240

70

n n n n n n n

i i i i i i i i i i i i i i

i i i i i i i

n n

i i i i

i i

n

i i i

i

b a c b b a c b b a c b b a

K

b a b a

c b b

[        

  

 

§ · § ·§ · § · § · § · § ·
� � � � � � � � �¨ ¸ ¨ ¸¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸

© ¹ © ¹© ¹ © ¹ © ¹ © ¹ © ¹ �
§ · § ·

� �¨ ¸ ¨ ¸
© ¹ © ¹

§ ·
�¨ ¸

© ¹�

¦ ¦ ¦ ¦ ¦ ¦ ¦

¦ ¦

¦ � � � �

� �

2 5

1 1

1

10240

n n

i i i

i i

n

i i

i

a c b

b a

  

 

§ · § ·
� � �¨ ¸ ¨ ¸

© ¹ © ¹
§ ·

�¨ ¸
© ¹

¦ ¦

¦

 

2) Assume that E D! , then e b� . Similar to state (1), it can be proved that the kurtosis value is 

equal with: 
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3) Now suppose that the security returns are symmetric, i.e. D E . Then we have: 
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With simple mathematical operations, the kurtosis value is obtained as: 
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Remark: Herein, state (2) is applied in portfolio selection since the investors choose the risky assets in 

such a way that the right width of the fuzzy number is greater than the left width, that is E D! . 

 

3. Firefly Algorithm (FA)  

Heuristic algorithms are one of the most powerful algorithms for optimization problems. Firefly 

Algorithm (FA) was developed by Yang [23], based on the idealization of the flashing characteristics of 

fireflies.  According to Yang [23], there are three major components in the FA optimization; 1) All fireflies 

are unisex which means that they are attracted to other fireflies regardless of their sex; 2) The degree of 

the attractiveness of a firefly is proportion to its brightness, thus for any two flashing fireflies, the less 

brighter one will move towards the brighter one and the more brightness means the less distance between 

two fireflies. If there is no brighter one than a particular firefly, it will move randomly; 3) The brightness 

of a firefly is determined by the value of the objective function. 

In the firefly algorithm, there are three important issues: 

Attractiveness: In the firefly algorithm, the main form of attractiveness function ��U� can be any 

monotonically decreasing functions such as the following generalized form: 

� � � �0 , 1 18
m

r
r e m

JE E � t
 

where r is the distance between two fireflies, 0E  is the attractiveness at r = 0 and � is a fixed light 

absorption coefficient. Furthermore every member of the swarm is characterized by its light intensity Ii 

which can be directly expressed as a inverse of a cost function f(xi). 

 

Distance: The distance between any two fireflies i and j at xi and xj , respectively, is the Cartesian distance 
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where xi,k is the kth component of the spatial coordinate xi of ith firefly. 

 

Movement: The movement of a firefly i is attracted to another more attractive (brighter) firefly j is 

determined by 
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wheUH� WKH� VHFRQG� WHUP� LV�GXH� WR� WKH�DWWUDFWLRQ�ZKLOH� WKH� WKLUG� WHUP� LV� UDQGRPL]DWLRQ�ZLWK�.�EHLQJ� WKH�

UDQGRPL]DWLRQ�SDUDPHWHU�DQG�³UDQG´�LV�D�UDQGRP�QXPEHU�JHQHUDWRU�XQLIRUPO\�GLVWULEXWHG�LQ�>����@� 

Based on these three rules, the basic steps of the firefly algorithm (FA) can be summarized as the pseudo 

code shown in Fig. 1. 

Objective function f(x), x=(x1�«�[d) 

Generate initial population of fireflies xi �,���«�Q� 

Light intensity Ii at xi is determined by f(xi) 
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Define light absorption coefficient J  

while (t <MaxGeneration) 

for i = 1 : n all n fireflies 

for j = 1 : i all n fireflies 

if (Ij > Ii), Move firefly i towards j in d-dimension; end if 

Attractiveness varies with distance r YLD�H[S>íU@ 

Evaluate new solutions and update light intensity 

end for j 

end for i 

Rank the fireflies and find the current best 

end while 

Postprocess results and visualization 

 
Fig 1: Pseudo code of the firefly algorithm (FA). 

3.1. Constraints handling 

 During the algorithm running, the position of firefly may be out of feasible solution. Therefore, we 

employ an approach for constraints handling. First we try to convert constraint problem to unconstraint 

problem. There are many specific methods for constraints handling has been proposed with Evolutionary 

Algorithms, of which the most popular are the penalty function methods for their simplicity and their easy 

application. Here, a penalty method is considered for constrained optimization with the proposed 

algorithm. 

Let the following constrained problem:  
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As a consequence of penalty function can be following as [23]: 
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Where, 0
j

Q t  which should be large enough, depending on the solution quality needed. In general, for 

most applications, j
Q  can be taken as 

1010  to
1510 . Note that an equality constraint can be converted to two 

inequality constraint. 

4. Numerical experiments 

In this section, some numerical examples are provided to evaluate performance of the proposed FA. The 

algorithm is coded using Matlab software and tested on a Pentium Dual 2.6 GHz with 256 GB memory. 

The proposed algorithm is compared with model results in LINGO which can generate global optima for 

VPDOO�SUREOHPV��EXW�EHFDXVH�RI�/,1*2¶V�OLPLWDWLRQ��WKLV�FRPSDULVRQ�FRXOGQ¶W�EH�SHUIRUPHG�LQ�ODUJH�VFDOH�

data. Herein, the mean-variance-skewness-kurtosis model is applied to the data adopted from Huang [8] 

which is given in Table 1. The parameters of the proposed FA used to find the optimal solution for the 

portfolio selection problem are also given in Table 2. In addition to, we assume that in all examples upper 

bounds on assets are � �0.5,0.3,0.25,0.45,0.5,0.25,0.35,0.25,0.15,0.45 .    
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Table 1: Fuzzy returns of 10 securities 

Security i Return Security i Return 

1 (-0.4,2.7,3.4) 6 (-0.1,2.5,3.6) 

2 (-0.1,1.9,2.6) 7 (-0.3,2.4,3.5) 

3 (-0.2,3.0,4.0) 8 (-0.1,3.3,4.5) 

4 (-0.5,2.0,2.9) 9 (-0.7,1.1,2.7) 

5 (-0.6,2.2,3.3) 10 (-0.2,2.1,3.8) 

 

 
Table 2: Parameters of firefly algorithm approach 

Parameters Value 

The number of fireflies
 

20 

Iterations 1500 

Alpha 0.5 

Beta 0.3 

Gama 1 

 

 

Example 1: Assume that an investor wants to select his portfolio from 10 securities given in Table 1. Let 

the maximum kurtosis that the investor can accept is 2, the bearable maximum risk is 1.2 and the skewness 

of his portfolio is at least -1. Based on the model presented in Eq. (11), we have the following model: 
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According to the results of the firefly algorithm, the investor should allocate his money as shown in Table 

3. The corresponding maximum expected value in this example is 2.33. 

Table 3: Asset allocation of the mean-variance-skewness-kurtosis model in Example 1 

Security i 1 2 3 4 5 6 7 8 9 10 Expected value Time(min) 

LINGO 0 0 0.25 0 0.5 0 0.25 0 0 0 2.35 18 

FA 0.0002 0.0001 0.21 0 0.5 0.01 0.24 0.0297 0.01 0 2.33 1 

 

Example 2: Assume that an investor wishes to choose his portfolio from 10 securities given in Table 1. 

Let the minimum expected return that the investor can accept is 1.8, the bearable maximum kurtosis is 2, 

and the skewness of his portfolio is at least -1. Based on the model presented in Eq. (12), we have the 

following model: 
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Results of the firefly algorithm show that the investor should allocate his money as given in Table 4.  

 

Table 4: Asset allocation of the mean-variance-skewness-kurtosis model in Example 2 

Security i 1 2 3 4 5 6 7 8 9 10 Variance value Time(min)   

LINGO  0.5 0 0 0.2 0 0 0.15 0 0.15 0 0.1620 24   

FA 0.49 0 0 0.19 0 0.03 0.14 0 0.14 0.01 0.1629 1   

 

The corresponding minimum variance in this example is 0.1629.  

Example 3: Suppose that an investor wants to select his portfolio from 10 securities given in Table 1. Let 

the minimum expected return that the investor can accept is 1.5, the bearable maximum risk is 1.2 and the 

skewness of his portfolio is at least -1. Based on the model presented in Eq. (13), we have the following 

model: 
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Applying the proposed algorithm shows that the investor should allocate his money according to Table 5. 

 

Table 5: Asset allocation of the mean-variance-skewness-kurtosis model in Example 3 

Security i 1 2 3 4 5 6 7 8 9 10 Kurtosis value Time(min) 

LINGO 0.5 0 0 0.45 0 0 0 0 0 0.05 0.098 27 

FA 0.5 0 0 0.44 0 0.004 0.0004 0.01 0 0.0456 0.099 1 

 

In this example, the corresponding minimum kurtosis is 0.099. 

4.1. Discussion 

To investigate trade-off between the four moments, it is supposed that two of them are constant in any 

case. Then, we observe how the other moments change. First, assume that the variance and skewness are 

FRQVWDQW��,Q�WKLV�FDVH��WKH�LQYHVWRUV¶�KLJKHU�SUHIHUHQFH�IRU�H[SHFWHG�UHWXUQ in portfolio leads to a larger 

kurtosis. As shown in Example 3, when the minimum expected return that the investor can accept is 1.5, 

the value of kurtosis is 0.099. If the investor increases the level of expected return to 1.7, 1.8, 1.9 and 2, 

then the value of kurtosis increases to 0.112, 0.133, 0.162 and 0.190 respectively. 
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Now consider the value of skewness and kurtosis to be constant. If the maximum bearable risk for 

the investors is 1.5, the expected return is 2.33 as shown in Example 1. If the investor sets the maximal 

risk at 1.8, then the expected return will be 2.22. This implies that if the investor wants to get higher 

expected return, he/she should bear a higher risk. Also, in order to investigate the influence of kurtosis 

considers the example 1. Suppose that variance and skewness are constant. Now we change the different 

levels of kurtosis that investors can bear. The results show that if the levels of kurtosis decrease of 2 to 

0.8, the expected value will not change. However, decrease the level of kurtosis of 0.8 to 0 reduces the 

expected value. Such results can be achieved considering other cases. 

5. Summary and Conclusions  

As an extension of the fuzzy portfolio selection model, a fuzzy mean-variance-skewness-kurtosis model 

was presented in this research. Since the variables are triangular fuzzy variables, the models were 

converted to deterministic programming. In order to solve these models a firefly algorithm (FA) was 

developed to find the final optimal portfolio solutions. The proposed algorithm was tested against LINGO 

software in some numerical examples. The results clearly showed that that the proposed algorithm is 

robust and effective.  In addition to, the computational testing indicated that the kurtosis has a direct impact 

on portfolio performance.  

There still remain some further directions for future research. Other algorithms such as genetic 

algorithm (GA), simulated annealing (SA), particle swarm optimization (PSO), and tabu search (TS) can 

be employed instead of firefly algorithm (FA) and compared with the results obtained in current paper. In 

addition to, other realistic constraints, e.g. minimum transaction lots, sector capitalization, and cardinality 

constraint with various measures of risk such as semi-variance, value at-risk, entropy, and so on can be 

added to develop more complex portfolio optimization models. 
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