Isolation of Phenolic Acid Compounds and Antioxidant Tests from Mindi Leaves (Melia azedarach L.)

Andriyani Budi Listyo¹, Dewi Kusriني²,³, Enny Fachriyah³

¹Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University, Jalan Prof. Soedarto, Tembalang, Semarang
²Corresponding author: dewi.kusriṇi@live.undip.ac.id

https://doi.org/10.14271/jksa.21.4.198-204

Abstract

Melia azedarach L plant categorized as traditional medicinal plant is normally used as a medicine for cough, skin diseases, drug for malaria, diabetes, colon cancer, jaundice, vaginal discharge, fever and scabies. Melia azedarach leaves contain steroid, terpenoid, alkaloid, tannin, saponin, phenolic and flavonoid compounds. The purpose of this study was isolation of phenolic acid compounds and antioxidant activity test from Melia azedarach L. Leaves. The method used to isolate phenolic acid using 3 ways that were alkaline hydrolysis (HB), acid hydrolysis (HA), and without hydrolysis (TH). The separation of phenolic acid which has Rf not the same as standard phenolic acid was undertaken by preparative TLC and characterized using UV-Vis spectrophotometer, FT-IR, and LC-MS. Moreover, antioxidant test of phenolic acid using DPPH method was also conducted. The results showed that isolation of Melia azedarach L. Leaves resulted in HB, HA and TH fractions with the weight of 1.05 grams, 1.26 grams and 1.38 grams, respectively. The identification of phenolic acid which has Rf the same as standard phenolic acids was ferulic acid. While result of phenolic acid (FA) isolates which has Rf not the same as phenolic acids standard was caffeic acid after the identifying using UV-Vis spectrophotometer, FTIR and LC-MS. Qualitative antioxidant activity test showed that FA isolate had IC₅₀ of 168,650 ppm. This result indicated that FA isolate is potential as antioxidant compound.

Kata Kunci: Melia azedarach L.; phenolic acid; DPPH
1. Pendahuluan

Indonesia merupakan negara beriklim tropis yang di dalamnya banyak memiliki keanekaragaman hayati yang dimanfaatkan sebagai sumber obat tradisional. Salah satunya adalah tanaman mindi (Melia azedarach L.) yang termasuk tanaman tahunan dan tergolong dalam famili Meliaceae. Tanaman ini dapat tumbuh suburn di Indonesia, mempunyai daun yang lebat berwarna hijau dengan bau yang tidak sedap serta rasanya pahit sekali [1]. Bagian daun dan batang seluruh tanaman telah digunakan untuk pengobatan sejumlah penyakit oleh masyarakat Indonsia antara lain, batuk, penyakit kulit, obat malaria, diabetes [2, 3], kanker gangguan perut, sakit kuning, keputihan, demam dan kudis [3]. Penelitian sebelumnya pada ekstrak daun mindi ternyata memiliki aktivitas sebagai antioksidan, antibakteri, analgesik [4], antidiabetes, antihiperension, antireumatik [1], insektisida, rodenticida, dan fungisida [1], insektisida, rodenticida, dan fungisida [5].

Kandungan metabolit sekunder dalam ekstrak etanol pada daun Melia azedarach antara lain: steroid, terpenoid, alkaloid, tannin, saponin, fenolik, dan flavonoid serta dalam ekstrak ini yang paling dominan metabolit skundernya adalah senyawa fenolik [6]. Peneliti lainnya menyatakan bahwa ekstrak daun Melia azedarach L. mengandung kaemfeol, kueresin, stigmasterol, kampesterol, β-sitosterol, diterpene, 3-metildekanoot, heptadekanoot, asam heksadekanoot, asam pentadekanoot, β-karoten, tokoferol[7]. Senyawa fenolik dari ekstrak daun Melia azedarach yang telah berhasil diidentifikasi dengan metode HPLC adalah asam protokatekat merupakan komponen mayoritas serta asam galat, asam siringat, asam ferulat, asam quinat dan asam sinapat yang merupakan golongan asam fenolat [8].

Uji aktivitas antioksidan ekstrak etanol daun Melia azedarach L telah dilaporkan memiliki harga IC₅₀ sebesar 0.0054 μg/ml [7], harga ini menunjukkan aktivitas antioksidan yang kuat, sehingga perlu dicari senyawa yang dominan dalam aktivitas tersebut.

2. Metodologi Penelitian

2.1. Persiapan Sampel

Sampel penelitian berupa daun Melia azedarach L yang diperoleh dari daerah sekitar Purworejo, Jawa tengah. Daun Melia azedarach setelah dibersihkan dan dikeringkan dengan cara diangin-anginkan tanpa terkena sinar matahari selanjutnya dihaluskan sehingga menjadi serbuk

2.2. Pembuatan Ekstrak Etanol

Serbuk daun Melia azedarach L sebanyak 1 kg dimaserasi dengan pelarut etanol 96% dengan pergantian pelarut setiap 24 jam sekali sehingga jernih, selanjutnya dipisahkan. Filtrat yang diperoleh dipelitupkan dengan rotary evaporator sehingga didapatkan ekstrak kental etanol dan ditimbang.

Senyawa-senyawa non polar dipisahkan dari ekstrak etanol dengan cara diekstraksi dengan pelarut n-heksana menggunakan corong pisah sehingga membentuk lapisan n-heksana dan lapisan etanol selanjutnya dipisahkan.

2.3. Penanapan Fitokimia

Untuk identifikasi awal terhadap simplisia daun Melia azedarach dilakukan uji penanapan fitokimia untuk mengetahui kandungan golongan senyawa kimianya. Uji yang dilakukan meliputi uji fenolik, uji flavonoid, uji tanin, uji saponin, uji alkaloid, uji steroid dan triterpenoid [9].

2.4. Isolasi Asam Fenolat

Isolasi asam fenolat dilakukan terhadap ekstrak etanol dengan menggunakan tiga metoda yaitu hidrolisis basa, hidrolisis asam, dan tanpa hidrolisis [10].

2.4.1. Hidrolisis Basa

Untuk mengisolasi asam fenolat dalam bentuk ester, maka dilakukan hidrolisis basa terhadap ekstrak etanol. Metoda yang dilakukan sebanyak 100 mL ekstrak dicampur dengan 100 mL NaOH 1 N didiamkan selama 24 jam di ruang gelap. Hasil hidrolisis selanjutnya ditambahkan H₂SO₄ 10% sampai pH 3, kemudian diekstraksi dengan 100 mL eter untuk memisahkan asam fenolat dengan senyawa lain. Fraksi eter yang diperoleh diuapkan dengan rotary evaporator hingga volume 80 mL dan diekstraksi dengan NaHCO₃ 20% untuk memisahkan asam fenolat dengan senyawa fenol lainnya. Lapisan air diasamkan dengan H₂SO₄ 10% sampai pH 3 dan diekstraksi dengan etor. Fraksi etor diuapkan sampai kering, residu dilarutkan dalam 1 mL metanol dan selanjutnya disebut fraksi HB [11].

2.4.2. Hidrolisis Asam

Untuk mengisolasi asam fenolat dalam bentuk glikosida, maka dilakukan hidrolisis asam terhadap ekstrak etanol. Metoda yang dilakukan: Sebanyak 100 mL ekstrak etanol dicampur dengan 100 mL H₂SO₄ 2N di atas penangas air selama 2 jam pada suhu 60°C. Hasil hidrolisis selanjutnya diekstraksi dengan 100 mL etor untuk memisahkan asam fenolat dengan senyawa lainnya. Fraksi etor yang diperoleh diuapkan dengan rotary evaporator hingga volume tinggalkan 80 mL dan diekstraksi dengan NaHCO₃ 20% untuk memisahkan asam fenolat dengan senyawa fenol lainnya. Lapisan air diasamkan dengan H₂SO₄ 10% sampai pH 3 dan diekstraksi dengan etor. Fraksi etor diuapkan sampai kering dan residunya dilarutkan dalam 1 mL metanol dan selanjutnya disebut fraksi HA [11].

2.4.3. Tanpa Hidrolisis

Untuk mengisolasi asam fenolat bebas, maka dilakukan metoda isolasi terhadap ekstrak etanol tanpa dihidrolisis. Metoda yang dilakukan: Sebanyak 100 mL ekstrak etanol diasamkan dengan H₂SO₄ 10% sampai pH
3, selanjutnya diekstraksi dengan 100 mL etr untuk memisahkan asam fenolat dengan senyawa lain. Fraksi etr yang dihasilkan diuapkan dengan rotary evaporator hingga volume 80 mL dan di ekstraksi dengan NaHCO₃ 20% untuk memisahkan asam fenolat dengan senyawa fenol lainnya. Lapisan air kemudian diasamkan dengan H₂SO₄ 10% sampai pH 3 dan diekstraksi dengan etr. Fraksi etr selanjutnya diuapkan sampai kering dan residunya dilarutkan dalam 1 mL metanol selanjutnya disebut fraksi TH [11].

2.5. Pemisahan Asam Fenolat

2.6. Uji kemurnian isolat asam fenolat

Uji kemurnian isolat asam fenolat dilakukan dengan metoda KLT menggunakan berbagai eluen tunggal dan campuran. KLT dua dimensi juga dilakukan dengan eluen campuran dan setelah diputar 90°C digunakan eluen yang berbeda[12].

2.7. Karakterisasi Isolat Asam Fenolat

Isolat asam fenolat murni, selanjutnya di karakterisasi untuk mengetahui struktur molekulnya dengan menggunakan metode spektrofotometer UV-Vis, FT-IR, dan LC-MS.

2.8. Uji Antioksidan

Uji antioksidan terhadap isolate asam fenolat, dilakukan baik secara kualitatif maupun kuantitatif dengan metode DPPH. Uji antioksidan secara kualitatif menggunakan metode KLT dengan eluen yang cocok. Setelah lempeng dikeringkan selanjutnya disempit dengan larutan DPPH 0,1 mM.

Uji antioksidan secara kuantitatif terhadap isolat asam fenolat dibuat dengan berbagai konsentrasi 20, 40, 60, 80 dan 100 mg/L. Masing-masing konsentrasi isolat asam fenolat sebanyak 0,2 mL dimasukkan ke dalam botol vial, kemudian ditambahkan 3,8 mL larutan DPPH 0,1 mM. Campuran dihomogenkan dan didiamkan selama 30 menit dalam ruangan gelap. Perlakuan yang sama dilakukan terhadap asam galat standar sebagai pembanding dengan variasi konsentrasi (5, 10, 15, 20, dan 25 ppm).

Kemampuan untuk meredam radikal DPPH (inhibisi) dapat dihitung menggunakan persamaan berikut:

% inhibisi = \(\frac{A \text{ kontrol (DPPH)} - A \text{ sampel}}{A \text{ kontrol (DPPH)}} \times 100\% \)

Besarnya konsentrasi larutan uji untuk meredam 50% aktivitas radikal bebas DPPH ditentukan dengan nilai IC₅₀ yang dihitung dari persentase penghambatan berbagai konsentrasi dengan menggunakan persamaan yang diperoleh dari kurva regresi linier[13, 14].

3. Hasil dan Pembahasan

Kandungan golongan senyawa metabolit sekunder di dalam daun Melia azedarach L. diketahui setelah dilakukan uji penapisan fitokimia. Hasil penapisan fitokimia dapat dilihat pada Tabel 1.

<table>
<thead>
<tr>
<th>Uji</th>
<th>Hasil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaloid</td>
<td>+</td>
</tr>
<tr>
<td>Flavonoid</td>
<td>+</td>
</tr>
<tr>
<td>Triterpenoid</td>
<td>-</td>
</tr>
<tr>
<td>Steroid</td>
<td>+</td>
</tr>
<tr>
<td>Saponin</td>
<td>+</td>
</tr>
<tr>
<td>Tanin</td>
<td>+</td>
</tr>
<tr>
<td>Fenolik</td>
<td>+</td>
</tr>
</tbody>
</table>

Dari uji fitokimia serbuk daun Melia azedarach mengandung senyawa golongan: alkaloid, flavonoid, steroid, saponin, tannin dan fenolik. Untuk mengetahui adanya senyawa fenolik dalam daun Melia azedarach, maka selanjutnya akan dilakukan isolasi asam fenolat dari serbuk daun Melia azedarach serta di identifikasi strukturnya menggunakan metoda spektrofotometer UV–Vis, FT–IR dan LC–MS.

3.1. Isolasi Senyawa Asam Fenolat

Isolasi asam fenolat dari ekstrak etanol hasil maserasi dilakukan dalam tiga metode, yaitu hidrolisis basa (HB), hidrolisis asam (HA), dan tanpa hidrolisis (TH). Untuk mengisolasi asam fenolat dalam bentuk ester dilakukan hidrolisis basa. Pada tahap ini digunakan larutan NaOH 1 N untuk mengisolasi asam fenolat dari bentuk ester, dimana gugus ester akan mengalami hidrolisis dengan NaOH dan air. Untuk mengisolasi asam fenolat dari bentuk glikosida dilakukan hidrolisis asam. Pada tahap ini digunakan H₂SO₄ 2N untuk memutuskan ikatan glikosida sehingga asam fenolat dapat terpisahkan. Isolasi asam fenolat dalam bentuk bebas dilakukan tanpa hidrolisis bertujuan untuk mengambil asam fenolat bebas. Fraksi HB, HA, dan TH hasil hidrolisis masing-masing sebesar 1,05 gram, 1,26 gram dan 1,38 gram. Ketiga fraksi tersebut (HB, HA dan TH) dilarutkan dalam methanol dan dilakukan pemisahan menggunakan metoda KLT.

3.2. Pemisahan Asam Fenolat

Pemisahan asam-asam fenolat dari fraksi HB, HA dan TH dilakukan menggunakan KLT dengan fase diam
silika gel GF252 ukuran 10 x 10 cm dan eluen campuran kloroform: etil asetat: asam asetat (50:50:3) sebagai fase gerak. Noda-noda yang terbentuk dari fraksi HB, HA dan TH dibandingkan dengan noda-noda dari asam fenolat standar.

Hasil KLT dari ketiga fraksi dalam gambar 1, terlihat ada satu noda yang sejajar dan memiliki Rₗ yang hampir sama, sehingga dapat diduga bahwa dalam ketiga fraksi tersebut mempunyai senyawa asam fenolat yang sama.

Identifikasi selanjutnya dengan membandingkan noda-noda dari ketiga fraksi dengan asam fenolat standar (asam ferulat, asam pirogalol, asam galat, asam kafeat dan asam salisilat). Hasil yang diperoleh terlihat noda-noda yang sejajar dari ketiga fraksi tersebut, memiliki noda yang sejajar pula dengan salah satu asam fenolat standar yaitu asam ferulat dengan Rₗ = 0,63. Hasil KLT dapat dilihat di gambar 1.

Gambar 1. Hasil KLT fraksi HB, HA, dan TH dibandingkan dengan senyawa pembanding diamati pada sinar UV 254 nm (I) dan setelah disemprot perekasi FeCl₃ (II).

Keterangan: HB: Fraksi Hidrolisis Basa (Rnoda ke-3,0,65), HA: Fraksi Hidrolisis Asam (Rnoda ke-5,0,63), TH: Fraksi Tanpa Hidrolisis (Rnoda ke-4,0,63), G: Asam Galat (Rₗ: 0,333), K: Asam Kafeat (Rₗ: 0,43), F: Asam Ferulat (Rₗ: 0,633), P: Asam Pirogalol (Rₗ: 0,56), S: Asam Salisilat (Rₗ: 0,683)

Pada hasil KLT di atas ada satu noda lagi dari ketiga fraksi yang sejajar dan terlihat dominan (konsentrasi lebih tinggi), tetapi tidak sejajar dengan asam fenolat standar yaitu noda ke 2 (HB), noda ke 3 (HA) dan noda ke 3 (TH). Selanjutnya ketiga noda dari ketiga fraksi tersebut dipisahkan dengan metode KLT.

3.3. Pemisahan senyawa fenolat dengan metode Kromatografi Lapis Tipis Preparatif

Pemisahan noda ke-2 fraksi HB, noda ke-3 fraksi HA, dan noda ke-3 fraksi TH menggunakan metode KLT preparatif dengan eluen campuran kloroform: etil asetat: asam asetat (50:50:3). Setelah dilakukan elusi terlihat pita-pita asam fenolat yang terkandung dalam fraksi (HB, HA, TH) yang sejajar selanjutnya disebut fraksi (FA) terlihat pada gambar 3.

Gambar 3. Hasil KLT preparatif fraksi HB (A), HA (B), dan TH (C) dengan eluen kloroform: etil asetat: asam asetat (50:50:3) diamati pada sinar UV 254 nm.

Selanjutnya isolat FA dikerok dan dilarutkan kedalam pelarut metanol, kemudian disaring dan diuapkan selanjutnya dilakukan uji kemurnian dengan metoda KLT menggunakan berbagai eluen tunggal, campuran, seperti yang terlihat pada gambar 4.

Gambar 4. Hasil uji kemurnian isolat (FA) dengan berbagai eluen tunggal dan campuran.

Keterangan:
✓ Fasa gerak (A) = etanol
✓ Fasa gerak (B) = etil asetat
✓ Fasa gerak (C) = etanol: etil asetat (1:1)
✓ Fasa gerak (D) = kloroform: etil asetat: asam asetat (50:50:3)
✓ Fasa gerak (E) = kloroform: etil asetat: asam asetat (30:50:3)

Isolat FA dilakukan juga uji kemurnian dengan metode KLT 2 dimensi yang ditunjukkan pada gambar 5.

Gambar 5. Uji kemurnian isolat FA dengan metode KLT 2 dimensi.
Keterangan:
✓ Fasa gerak 1: kloroform: etil asetat: asam asetat (40:50:3)
✓ Fasa gerak 2: kloroform: etil asetat: asam asetat (50:40:6)

Uji kemurnian yang dilakukan dengan metoda KLT menggunakan eluens yang berbeda yang hasilnya dapat dilihat pada gambar 4 dan 5, ternyata dari setiap hasil KLT hanya ada satu noda yang berwarna biru, hal ini menunjukkan bahwa isolat FA hanya ada satu senyawa sehingga diduga bahwa isolat FA yang didapatkan adalah murni. Selanjutnya untuk mengetahui struktur dari isolat FA, maka dilakukan identifikasi menggunakan spektrofotometer UV-Vis, FT-IR dan LC-MS.

3.4. Identifikasi Struktur Isolat FA

Hasil analisis isolat FA menggunakan spektrofotometer UV-Vis, dapat dilihat pada gambar 6.

Gambar 6. Spektrum UV-Vis isolat asam fenolat (FA) dalam metanol.

Selanjutnya isolat FA dianalisis menggunakan FT-IR, untuk mengetahui gugus fungsinya, spekttranya terlihat pada gambar 7.

Gambar 7. Spektrogram FTIR isolat FA

Hasil spektrogram analisis FTIR isolat FA di atas, menunjukkan adanya gugus O-H stretch (bebas) terlihat adanya serapan pada bilangan gelombang 3428,35 cm⁻¹, sedangkan serapan pada bilangan gelombang 3025,65 cm⁻¹ menunjukkan adanya =C-H aromatik, dan adanya gugus C=C aromatik ditunjukkan pada serapan 1523,33 cm⁻¹ dan 1449,76 cm⁻¹, gugus-gugus inilah yang menunjukkan adanya senyawa fenol. Serapan pada bilangan gelombang 2366,63 cm⁻¹ menunjukkan adanya gugus O-H dari asam karboksilat dan serapan 1645,95 cm⁻¹ menunjukkan adanya gugus C=O dari asam karboksilat, serta serapan pada 1617,27 cm⁻¹ adanya gugus C=C alkena yang menunjukkan adanya rantai karbon.

Adanya gugus C=O dari asam karboksilat dan C=O alkohol ditunjukkan pada serapan 1279,70 cm⁻¹ dan 1133,50 cm⁻¹. Sedangkan gugus-gugus yang tersubstitusi pada benzena ditunjukkan pada bilangan gelombang 973,53 cm⁻¹, 901,41 cm⁻¹ dan 802,38 cm⁻¹. Hasil analisis dari FT-IR menunjukkan bahwa gugus-gugus yang diperoleh sesuai dengan gugus-gugus dari senyawa asam kafeat.

Isolat FA dianalisis lebih lanjut menggunakan Liquid Chromatography – Mass Spectroscopy (LC-MS) untuk mengetahui kemurnian dan berat molekul senyawa asam fenolat. Hasil kromatogram hasil LC-MS isolat FA dapat dilihat pada gambar 8.

Gambar 8. Kromatogram isolat asam fenolat murni (FA)

Gambar 9. Spektrogram massa isolat asam fenolat (FA)

Hasil dari spektrogram pada gambar 9 menunjukkan bahwa muncul puncak pada massa 179. Puncak ini diperoleh dari molekul senyawa asam fenolat yang cenderung melepas proton pada ES (-) dengan
deprotonasi ion molekul [M-H]. Ionisasi molekul selain penambahan spesies muatan negative Cl- juga dapat melepaskan proton untuk menghasilkan ion [M-H]⁻ [16], sehingga diduga berat molekul isolat FA sebesar 180 g/mol.

Berdasarkan hasil analisis dengan LC-MS menunjukkan bahwa isolat FA merupakan isolat asam kafeat dengan berat molekul sebesar 180 g/mol. Dugaan ini didukung dengan hasil analisis spektrofotometer UV-Vis, dan analisis FTIR yang menunjukkan bahwa isolat FA merupakan asam kafeat. Pola fragmentasi asam kafeat ditunjukkan pada gambar 10.

![Gambar 10. Pola fragmentasi asam kafeat](image)

3.5. Uji Antioksidan

3.5.1. Uji antioksidan secara kualitatif

Hasil aktivitas antioksidan isolat FA (asam kafeat) yang dilakukan menggunakan KLT dengan eluen campuran klorofrom: etil asetat: asam asetat (50:50:3) setelah disempot dengan DPPH 0,1 mM menunjukkan perubahan warna dari violet menjadi kuning pada noda dari isolat FA, ini menandakan bahwa isolat FA dapat meredam radikal DPPH.

Hasil uji aktivitas antioksidan secara kualitatif ditunjukkan pada gambar 11.

![Gambar 11. Hasil KLT peredaman radikal DPPH pada isolat FA](image)

Pada gambar di atas merupakan hasil uji aktivitas antioksidan secara kualitatif dengan metode DPPH yang menunjukkan bahwa isolat FA aktif sebagai antioksidan.

3.5.2. Uji antioksidan secara kuantitatif

Penentuan aktivitas antioksidan secara kuantitatif dilakukan dengan DPPH (1,1-difenil-2-pirilhidrazil) terhadap isolat FA dan asam galat standar sebagai pembanding. Asam fenol secara sinergis akan menghambat aktivitas radikal bebas karena memiliki kemampuan untuk mendenorkan radikal protonya yang akan menyebabkan terjadinya reduksi membentuk DPPH nonradikal.

Parameter uji antioksidan secara kuantitatif adalah konsentrasinya atau *Efficient Concentration (EC₅₀)* atau *Inhibition Concentration (IC₅₀)* yaitu konsentrasi suatu zat antioksidan yang menyebabkan 50 % DPPH kehilangan karakter radikal. Hasil aktivitas antioksidan secara kuantitatif dapat dilihat pada tabel 3.

<table>
<thead>
<tr>
<th>Senyawa</th>
<th>IC₅₀ (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolat FA</td>
<td>168,650</td>
</tr>
<tr>
<td>Asam Galat Standart</td>
<td>46,647</td>
</tr>
</tbody>
</table>

Pada tabel diatas isolat FA menghasilkan IC₅₀ sebesar yaitu 168,650 mg/L dan asam galat standar sebesar 46,647 mg/L. Secara spesifik, suatu senyawa dikatakan sebagai antioksidan bernilai < 200 ppm [12], maka isolat FA memiliki aktivitas antioksidan yang lemah. Aktivitas pada isolat FA lebih lemah dibandingkan dengan asam galat standart, hal ini disebabkan asam galat yang digunakan merupakan asam galat murni dan memiliki empat gugus –OH sehingga mempunyai kemampuan yang lebih besar untuk mendenorkan protonya. Isolat FA diduga merupakan asam kafeat yang diikutkali mempunyai aktivitas antioksidan yang lebih rendah dibanding asam galat karena hanya memiliki tiga gugus –OH. Struktur asam galat ditunjukkan pada gambar 12 berikut:

![Gambar 12. Struktur asam galat](image)

4. Kesimpulan

Hasil isolasi asam fenol diperoleh fraksi (HB), (HA), dan (TH) masing-masing sebesar 1,05 gram, 1,26 gram, dan 1,38 gram. Hasil analisis dengan spektrofotometri UV-Vis, FTIR dan LC-MS diperoleh isolat FA merupakan asam kafeat. Hasil uji aktivitas antioksidan secara kualitatif maupun kuantitatif isolat FA aktif meredam radikal DPPH dengan IC₅₀ sebesar yaitu 168,650 mg/L.
5. Daftar Pustaka

