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1. Introduction London). It is known from astronomy that the planets in the

solar system revolve around the Sun in orbits in the form of
Elliptic curves are the generally known curves of the ellipses. In our time, thousands of artificial satellites move
second order, which are characterized by the axial symme-  around the Earth through elliptic orbits.
try relative to the Ox and Oy axes, as well as the central The elliptical curves are understood to be the closed flat
symmetry relative to the coordinate origin [1, 2]. The tech-  lines, which can be obtained as the cross-section of a cylin-
niques for constructing these curves using graphical methods  der or a rotating cone by the plane inclined to their axis at
are considered in descriptive geometry [3], engineering [4],  a certain angle. It can also be the mapping of a circle onto
and computer graphics [5]. The examples of the practical — aplane not parallel to the plane of the circle location. A circle
application of the elliptic curves in shipbuilding are given isa separate case of an ellipse. With the affine transformation
in reference book [6], in the theory of mechanisms and ma-  of a circle, you can get an elliptical curve or just an ellipse.
chines — in [7], in the construction of profiles of the axial The elliptical curves possess some specific benefits due,
turbine blades — in [8]. Given their reflecting capability, the  for example, to the monotony of a curvature change, an angle
ellipses are widely used in architecture and building, parti-  of inclination of the tangent, derivatives, etc. However, there
cularly when erecting domes of palaces and cathedrals, as  is a certain shortcoming in the ellipses that is related to the
well as amphitheaters (for example, the «Hall of Secrets>  angles of inclination of the tangents at the intersection points
of the Alhambra in Granada and St. Peter’s Cathedral in  of the curve with the coordinate axes. These angles accept



either zero values or are equal to 90°. However, for ellipses
that are built in Cartesian coordinates, there is no way to
ensure arbitrary values of the angles of inclination of the
tangent at intersections with the coordinate axes.

One possible way to ensure the arbitrary values of the
angles of inclination of the tangents at the intersection points
of the curve with the coordinate axes is to model them in
oblique coordinate systems, as well as to construct new ellip-
tic curves by transforming the already known curve.

These issues are of theoretical and practical significance.
They are relevant for those industries where the articles of
complex geometric shapes are made (for example, in ship-
building, when describing waterlines, frames, battoks lines; in
the gas turbine engineering, when modeling air intakes, pro-
files of turbine blades). Thus, in the gas turbine industry, it
is important to ensure the estimated angles of a flow inlet to
and out of the blade apparatus. At the same time, it is neces-
sary to meet the conditions for a smooth transition between
the angles of inclination of the tangents from the starting
point to the endpoint of the modeled curve.

It should be noted that recent years have seen significant
qualitative changes in designing complex highly technologi-
cal products in various industries. There is a widespread shift
from traditional graphic information processing to paperless
technologies based on the digital descriptions of projected
and manufactured objects. Computerized technologies make
it possible to create numerical models of different objects.
A designer can view the physically non-existent object on
the computer, get the desired geometric characteristics, make
certain changes, prepare the production and, finally, produce
one or another product in modern machining centers.

Geometric information about products must determine
them in full, meet the requirements arising from the func-
tional, structural, strength, ergonomic, aesthetic, operating,
technological, and other conditions. The most important
component of the information used in the manufacture of
products in the technologically sophisticated, knowledge-
intensive industries is the geometric model of an object, which
contains a description of its shape, as well as the description of
the connecting elements in the model.

2. Literature review and problem statement

In the Cartesian coordinate system, the ellipse is de-
scribed by the following equation [9, 10]:

(o)) @

where a and b are the ellipse semi-axes whose equality trans-
forms the ellipse into a circle.

The concept of the superellipse was first introduced by
the French mathematician Gabriel Lamé in 1818, who gene-
ralized the equation of the ellipse and, instead of the exponent
equal to two in expression (1), applied an arbitrary indica-
tor n, having recorded this equation in the following form:
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where the exponent # can be any rational number, a and b are
the positive numbers, which are termed the semi-axes or the
half-diameters of a curve.

Equation (2) defines a closed curve, limited by a rectan-
gle with sides — a<x<a and — b<y<b. It is the generalized
equation of the ellipse, which, depending on the exponent
value and the magnitudes of the semi-axes, makes it possible
to obtain a circle, an ellipse, a square, and a rectangle. At n=1,
the curve degenerates into a straight line; at n=2, we obtain
a regular ellipse, at n=2/3 — the astroid (provided a=»).

Some of the features of the Lamé superellipse can be
found in [10], in particular, the expressions for calculating
the arc length and the curve square. In the cited work, the su-
perellipses are examined in the Cartesian coordinates not in
the form of arcs, located in the region of positive coordinates,
but in the so-called full form.

Now it is difficult to determine who for the first time
offered to apply equation (2) with different exponent values,
that is, to write it in a more general form:
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Applying different exponent values provides even more
possibilities to constructing a set of various curves.

Summing up, one can note that all the above equations
are recorded in almost identical mathematical notation and
differ only in the values of the exponents.

The most striking examples of the practical application of
the Lamé superellipse include the Aztec Stadium, built before
the Olympic Games in Mexico City, and a square in Stockholm.

Paper [11] gives examples of constructing superellipses
with equal exponent values. Those examples demonstrate
a change in the geometry of curves as the exponents gra-
dually decrease. It is indicated that one of the squares in
Stockholm has the shape of a superellipse.

The examples of using superellipses in computer graphics
are shown in work [12]. The specified curves are considered
with equal exponents in the Cartesian coordinates.

Study [13] demonstrates that nature has many examples
of plants whose transverse cross-section coincides in the
shape with the Lamé superellipses, which are termed the
Lamé superellipses. The cited study considers superellipses
with equal exponent values. Further results of the previous
studies are given in [14], which considers the superellipse
equations in the polar coordinate system and at different ex-
ponent values. That advanced the circle of a variety of curves
whose examples found in the plant world.

Work [15] built on the search related to the description
of the features in the plant world. It also uses the Lamé su-
perellipse with equal exponent values; that ellipse is formed
in the Cartesian coordinates.

Study [16] applies the Lamé superellipses to describe
the symmetrical forms of bamboo leaves, which is crucial
to describe the morphogenesis and development of plants.
Work [17] considers the issue of modeling annular tree cuts,
which could make it possible to better estimate the produc-
tivity of forests and carbon accumulation in the terrestrial
forest ecosystems.

The asymptomatic behavior of the maximum curvature
of the Lamé superellipses was investigated in the paper [18].
This is the only known source, which argues on the curvature
of the Lamé superellipses, although it also applies curves with
equal exponent values. In this case, an optimum value of ex-
ponent was derived, which provides for the «<most exquisite»
shape. The main result of the cited paper is the expression for
finding the asymptote of a point with maximum curvature.



It is proposed in work [19] to use the Lamé superellipses
with equal exponent values to reproduce and categorize the
mine-like forms in the sonarbic images. The superellipses
were used to level the irregularities occurring in actual mine-
like forms.

Study [20] suggests employing the Lamé superellipses to
describe antennas aimed to receive electromagnetic vibra-
tions. More or less the same topic is addressed in work [21],
which reported the development of an omnidirectional
ultra-wideband antenna in the superellipse shape.

Many contact rolling or sliding mechanisms, such as rol-
ler bearings, gearbox bearings, gears, execute a contact bet-
ween two semi-infinite bodies, with the concentrated stress
occurring at the edges of the contact. Paper [22] described
a new type of profile based on the superellipse equation (the
ellipse is generalized to an order of n). Applying this profile
makes it quite simple to set the parameters according to
the alleged scope of application. The superellipse is easily
adjusted to all types of contact by changing the order of
a superellipse profile. The advantages of the superellipse pro-
file are the uniform distribution of pressure and the absence
of an edge effect while it remains easy to make.

It follows from our analysis that the most commonly
considered issues are those related to the construction of the
Lamé superellipses as closed curves, in the Cartesian coordi-
nate systems. The curves are built on the condition that the
exponents in the superellipse equations are the magnitudes
that are set with the source data. This makes it possible to
obtain a variety of lines, from a straight line to a rectangle,
with clearly defined right angles. The tasks of building the
superellipses with the assigned angles of inclination of the
tangents at points of intersection with the axes of coordinates
have not been considered. When designing articles of a com-
plex geometric shape (cam mechanisms, turbine blades, and
the like), the designers face the need to draw curves through
the two or three set points at the known angles of inclination
of the tangents. Given the appealing properties of elliptical
curves, it is necessary to devise tools that would satisfy the
practitioners in the development of the geometric models of
projected articles.

3. The aim and objectives of the study

The aim of this study is to construct a method to model
the Lamé superellipses, which would ensure that they pass
through two or three points at the assigned angles of incli-
nation of the tangents, applicable for the articles of complex
geometric shape.

To accomplish the aim, the methods to build the follow-
ing must be constructed:

— the arc of an ellipse in the oblique systems of coordinates;

— the arc of a Lamé superellipse in the oblique systems of
coordinates;

— the arc of a Lamé superellipse through three set points
with the known angles of inclination of the tangents at them.

4. A method for constructing the arc of an ellipse
in the oblique coordinate system

Consider an ellipse arc, described by equation (1), located
in the region of the coordinates’ positive values. We shall con-
struct this arc in an oblique coordinate system with the angles

of inclination of the axial lines of this system o and B to the
axis of the abscissa in a certain rectangular coordinate system.

Take two arbitrary points T; and Ty in the Cartesian coor-
dinate system, draw the straight lines through these points,
inclined to the abscissa axis at angles o and B. Assume that
these straight lines are the coordinate axes in the oblique
coordinate system.

Denote the axes in the oblique coordinate system and its
center via ¥, y and O. In Fig. 1, in the xOy coordinate sys-
tem, two points Ty and Ty are assigned, for which the angles of
inclination of the tangents o and B are known. It is required
to draw the arc of the curve so that it passes through the
specified points and accepts, at the endpoints, the assigned
angles of inclination of the tangents.

Based on the known initial data, we build a parallelogram.
The side OT, of this parallelogram is taken as the ¥, axis;
the side OT, — the y axis. Thus, an oblique coordinate sys-
tem xQOy. is formed. In this coordinate system, we model the
arc of the ellipse so that it passes through points T; and T and is
the tangent to the sides TT; and TT; of the built parallelogram.
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Fig. 1. The arc of an ellipse in the oblique coordinates

Since the arc of the ellipse is to be built in an oblique
coordinate system, the equation (1) is re-recorded in the
form, which reflects the fact of its application in this coor-
dinate system:

} 2 y 2

— |+ = =1 4
(2)(7) @
The equations of the axial lines are constructed based on

the known coordinates of the endpoints of the modeled curve
and the angles of inclination of the tangents at them:

Y—Y =(x—xr‘)k2; Y=Y, :(x_xrz) ki, )
where
k =tgo; k,=—tgp.

By solving the derived system of equations, we find the
coordinates of point O, which is the origin of the oblique
coordinate system:

- Yr, — Yy, +hyx, —koy ©)
¢ kz _k1 ,

Y5 =Yy, +k2(x6_x1;)- )



In the oblique coordinate system %0y, the segments OT,
and OT, define the values for the major @ and the minor b

semi-axes of the ellipse:

az\/(xﬂ _x6)2+(yr1 _]/5)2; b=\/(xTz —x5)2+(yn —ya)Z.

It is possible to show that the relation between the Car-
tesian coordinates x, y of a certain point in the ellipse with
coordinates x, y and the oblique coordinate system takes
the following form:

X =x5+Xcoso.—y cosp; ®)
C= G +Xsina.—ysinp. )

Since, from equation (4),

f 2
o ]
a
then, by substituting 7 in expressions (8) and (9), we obtain:

2
_ X
X=X5+Xcos0,—b 1—(—) cosp;
a

(10)

2
Y=y, +Tsina—b 1—(2) sin. (11)

Expressions (10) and (11) make it possible to determine
the x and y coordinates at any point in the curve and thereby
describe the section of an ellipse in the rectangular xOy co-
ordinate system.

5. A method for building the arc of a Lamé superellipse
in the oblique coordinate system

The superellipses are built in the rectangular coordinate
systems based on equations (2) and (3). In this case, the tan-
gents, drawn at the point of intersection of the curves with
the coordinate axes, form the right angles with these axes.
However, for some practical applications, it is required that the
specified angles should differ from the right angles. This result
can be achieved only when constructing the Lamé superellips-
es in the oblique coordinate systems whose axes are oriented to
each other at an angle required for building the desired curve.

Based on the source data given above, a parallelogram
can be built. The side OT; of this parallelogram is taken to
be the ¥, axis, the side OT, —the y axis. Thus, the oblique
coordinate system ¥Oy will be formed. The coordinates of
point O — the origin of the oblique coordinate system — are
determined from expressions (6), (7). In this coordinate sys-
tem, we model the arc of a Lamé superellipse so that it passes
through points Ty and T, and is the tangent to the sides TT;
and TT; of the parallelogram.

The superellipse equation is taken in the following form:

(30~
a b

Since the coordinates of the modeled curve are computed
in the oblique coordinates, the relation between the oblique

(12)

and Cartesian coordinates of the points in the curve are de-
termined from expressions (10)—(11).

The construction of the arc of a Lamé superellipse implies
a sequential change in the X coordinate from zero to a mag-
nitude equal to the length of the semi-axis a. For the current
value of the coordinate X, one calculates the oblique coordi-
nate y, which is determined from the following expression:

g:bm—(i) .
a

By substituting y in expressions (10) and (11), we ulti-
mately obtain:

(13)

x:x6+§cosa—b"1—(fj cosf; (14)
a

. L(Z)"
y:y5+xsmoc—bn1—(g) sinf. (15)

Expressions (14) and (15) define the x and y coordinates
at any point in the curve and thus describe the arc of a Lamé
superellipse in the rectangular coordinate system.

Fig. 2 shows an example of the three arcs of the Lamé
superellipses, constructed at the exponent values m=2 and
n=2 (curve 1), m=mn and n=e (curve 2, where e is the base
of the natural logarithms), m=5 and n=4 (curve 3). Curve 1
is the arc of a conventional ellipse, built in the oblique coordi-
nates; in fact, it is the repeated curve shown in Fig. 1.

It follows from Fig. 2 that all three curves at their end-
points are the tangents to the corresponding sides of the
parallelogram OT,TT,. One can also note that the exponent
values m an n significantly affect the shape of the curves.
With an increase in these exponents, the curves are increas-
ingly approaching the sides TT; and TT, of the parallelo-
gram OT,TT,. Consequently, changing the exponent values m
and 7 can produce a wide range of different curves.

The graphical information shown in Fig. 3 demonstrates
the influence of angles o and B on the arcs of the Lamé su-
perellipses. When modeling curves, the angle o gradually
decreased by 10°, and the angle B — by 5°. Under these cir-
cumstances, the centers of the oblique coordinates are shifted
up to the left, and the point T moves down to the right. The
points Tj and T did not change their positions. The points O
and T are indicated near the vertices of the original parallel-
ogram. The arcs of the Lamé superellipses were built at the
exponent values m=m and n=e.

y

0] X

Fig. 2. The superellipses arcs in the oblique coordinates
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Fig. 3. The influence of angles o and [ on the arcs
of the Lamé¢ superellipses

Fig. 4 shows the graphic information demonstrating the
influence of the coordinates of the original points Ty and T
on the arcs of the Lamé superellipses. The point T} gradually
moved to the right and bottom, and the point T — to the left
and down. The angles o and B remained unchanged, equal to
their original values. The vertices of the parallelogram are in-
dicated in its representation corresponding to the initial data.

O X
Fig. 4. The influence of the points 77 and 7; position
on the arcs of the Lamé superellipses

The joint influence of the o and B angles and the co-
ordinates of the original points Ty and T, on the arcs of
the Lamé superellipses is shown in Fig. 5. The initial data
were the angles o and B, which were applied in the con-
struction of the curves shown in Fig. 3; the coordinates of
the Ty and T, points, based on which the curves were built,
are shown in Fig. 4.

y T,

o

X

Fig. 5. The influence of angles o and 3 and the points 7;
and 7, position on the arcs of the Lamé superellipses

Thus, the graphical information shown in Fig. 3—5 clearly
confirms the possibility of modeling the arcs of the Lamé su-
perellipse in a wide range of variation of initial data.

6. A method for building the arc of a Lamé superellipse
through three set points at the known angles of
inclination of the tangents at them

In the above-examined examples, the arcs of the Lamé
superellipses were built under the condition that the expo-
nents m and 7 in the Lamé superellipse equation were known
values. At the same time, there was no task to draw a curve
through a set point at the assigned angle of inclination of the
tangent at it. Such a task is very common in a variety of prac-
tical applications of the Lamé superellipse arcs. The set task
could be solved by developing a specific algorithm to find
such m and m exponents that would ensure that the curve
passes through the set point and the angle of inclination of
the tangent.

First of all, we shall determine the dependences, which re-
late the oblique coordinates ¥, y of an arbitrary point to its
Cartesian coordinates. These dependences can be derived by
solving the system of equations (8), (9) relative to X and .
Following the transforms, we obtain:

(x—xé)sin[3+(y—y5)cosﬁ'
sin(ot+B) ’

xX=

(y—yé)cosow(x—xa)sina

= sin(o+B)

The x and y coordinates can be represented in the fol-
lowing way:

X=ax+a,y+as; (16)
y=a,x+asy+ag, 7
where
sinf cosf

a = - y Ay = - ’

sin(at+B) sin(o+B)
“ __xésin[3+y6cos[5. _ sina
’ sin(o+p) * sin(o+B)’

_cosO, | XgSino—y,coso

P sin(o+B) ¢ sin(a+B)

Substituting expressions (16), (17) in the ellipse equa-
tion (14) makes it possible to establish a reciprocal relation-
ship between the Cartesian coordinates x and y:

(a1x+a2y+a3 )m +(czéx+asy+aG )" _4
a b

or
b" (a1x+a2y+a3)m +

+a" (ax+asy+ag) —a"b" =0.



The m and n exponents for equations (12) or (18) will be
determined under condition that the curve passes through the
set point A at the angle of inclination of the tangent 8 at it.

Since the coordinates x and y are implicitly related via
a dependence in the form

/(x,y)=0,
then its derivative is determined as follows:

dy of /of

dy__of Jof 19

dx  dx/ dy (19)
where

g—f =b'm(ax+ay+a,)" a+a"n(ax+ay+a) " a,;

X
af n—1

Lo pm(ax+ay+a) a,+a"n(ax+ay+a,) as.

By equating the derivative at point A to the tangent of
angle §, after the transforms, we obtain the following equation:

b'm(ax +ay +a,)"\(a,+tgda,)+

+a"n(ax +asy +ag)" (a,+tgda;)=0.

The expressions recorded in parentheses are constant
values. Apply the notation:

A=ax +a,y +a,; B=a,+tgda,;
C=ax +ay +ag; D=a,+tgda;.
Hence

b"mA™'B+a"nC"'D=0. (20)

In this expression, the unknown values are the m and n
exponents. However, one of these exponents can be expressed
through another by using equation (13) written for point A:

3)

To solve equations (20), (21) in combination, a highly
efficient algorithm, proposed in work [23], was applied. This
algorithm combines the reliability of bisection with the as-
ymptotic velocity of the secant method.

The graphic data shown in Fig. 6 indicate that the built
arcs of the Lamé superellipses clearly pass through the set
points. They also accept the assigned angles of inclination of
the tangents. At the same time, it should be noted that since
a Lamé superellipse possesses a so-called «rigid» character,
then choosing the point that the curve must pass through
must be approached reasonably. Firstly, the point should be
inside the parallelogram formed by the axes and the straight
lines parallel to them. Secondly, the angle of inclination of
the tangent at the set point should roughly correspond to the
character of the curve path. It is clear that there is a certain
margin when assigning an angle but it is undesirable to set
an arbitrary angle. A program would be terminated once the
angle is improperly set.
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Fig. 6. The construction of arcs of the superellipses passing
through the original points at the assigned angles of
inclination of the tangents at them

It should be noted that in practical applications the user
will be able to predict both the position of an intermediate
point and the probable value for an angle of inclination of
the tangent.

One of the most important characteristics of a flat curve
is the curvature and the related radius of the curvature.

Let us devise tools to define the curvature of the Lamé
superellipse arc. Generally, it is known that the curvature & of
any curve is determined from the following formula:

o dr (22)

The first derivative dy/dx is found from expression (19).
The second derivative of the implicit function is determined
as follows:

W(af)z_zwafafﬁ(af)z

&’y ox*\ oy 0xdy dx dy  dy’ \ ox
de - E)f 3 ’
o
where
9 .

2
BTJ:Z b'm(m=1)(ax+ay+a,)" a’ +

+a"n(n—1)(aux+asy +a; )"72 a;

*f
dxdy

+a"n(n—1)(ax+asy +a )"72 a,a;

=b'm(m-1)(ax+ay+a,)"” aa,+

2
% =b"m(m-1)(ax+ay+ay)
n-2 9

+a"n(n-1)(ax+ay+ag) a;.

m-2 9

a, +

Fig. 7 shows an example of the three curves constructed
in the oblique coordinates, two of which are the arcs of the
Lamé superellipses (curves 1 and 2), while one is the arc of
a regular ellipse (curve 3). The Lamé superellipse arcs were
built at the following exponent values: curve 1 — m=>5 and
n=4, curve 2 — m=7 and n=e.
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Fig. 7. The arcs of elliptic curves with different
exponent values

For these curves, based on expression (22), we deter-
mined the curvature whose shape is shown in Fig. 8. The
numbering of curves in Fig. 7 and 8 are identical. The curves
were built depending on the relative length of the arc of the
modeled curve.

k
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Fig. 8. Charts of curvature distribution

When considering the charts of the curvature distribu-
tion, the following conclusions can be drawn:

1) all curves are smooth with a single extremum located
over the original sections of the curves;

2) after the extremum, the curves take a monotonous,
decreasing character with the curvature value slightly grea-
ter than zero (curves 2 and 3) and somewhat larger than
zero (curve 1).

7. Results of modeling the Lamé superellipses in the
oblique coordinate systems

Based on the proposed tools for the geometrical mo-
deling of the Lamé superellipses, a computer code was
developed in the programming environment Fortran Power-
Station. Employing this code helps perform the calculations
related to determining the coordinates of the points in
the modeled line. It uses the subprograms for deriving the
first and second derivatives, the curvature of a curve, for
transforming the oblique coordinates into Cartesian ones;
a subprogram to solve transcendental equations was bor-
rowed from work [23]. The developed code, in addition to
numerical results, which are the coordinates of points in
the modeled lines, makes it possible to visualize the lines on
a computer monitor screen. The graphic data are the visual
confirmation of the operability of the proposed method of
geometric modeling of the Lamé superellipses in the oblique
coordinates at two and three preset coordinates of the points
and the angles of inclination of the tangents. When consi-
dering the built arcs of the ellipses in the Cartesian coordi-
nates, one can clearly see that these arcs pass through the
original points and accept the assigned angles of inclination

of the tangents at them. An error in the divergence between
the original points’ coordinates and those computed does
not exceed 1075, which is sufficient for practical application.

Fig. 9 shows an example of the profile of an axial turbine’s
nozzle blade with the flow inlet and outlet angles equal to 90°
and 15°, respectively. The pressure and suction sides’ profiles
were modeled using the arcs of the Lamé superellipse. Both
arcs were built based on three points and the assigned angles
of inclination of the tangents at them. The two points of each
arc were in the places that join the leading and trailing edges
of the profile. At the at the suction side, the third point was
in the throat of an interblade channel, on the trough — at the
point that determines the assigned maximum thickness of the
profile. The slope of the tangent in the throat of the channel
was determined by the bending angle of the profile. The angle
of inclination of the tangent at the third point on the trough
was equal to the angle that was accepted by the tangent on
the suction in the place where it touches the circle of the
maximum thickness of the profile.
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Fig. 9. A turbine blade profile

The proposed method for modeling the arcs of superel-
lipses in the oblique coordinate can be applied for the ana-
lytical representation of ship curves, first of all, it concerns
waterlines.

8. Discussing the method of modeling the Lamé
superellipses in the oblique coordinate systems

This paper has shown that it is necessary, in order to
ensure the desired angles of inclination of the tangents at
the points of intersecting the ellipses, and, especially, the
superellipses, with the axes of the coordinates, to construct
these curves in the oblique coordinates. The axes of oblique
coordinates are chosen in such a way that one of the axes
passes through the first point and is parallel to the tangent
at the second point. Accordingly, the second axis must pass
through the second point and be parallel to the tangent at
the second point. It is clear that the tangents must not be
parallel to each other. This follows from the consideration of
formulae (6) and (7); in this case, an indefinite result would
be obtained, associated with the division by zero.

The positive results obtained in the geometrical modeling
of Lamé superellipses in the oblique coordinates are prede-
termined by the correctness of mathematical calculations,
which are based on the provisions from the analytical and
differential geometry and numerical methods. Algorithmiz-
ing the methods that match the tasks of this research has
allowed us to develop operational computer code. All the
tasks set for this study have been practically implemented,
which is confirmed by the represented graphic results. Thus,



Fig. 1 demonstrates the possibility of constructing a regular
ellipse in the oblique coordinates and ensuring the assigned,
different from 90°, angles of inclination of the tangents at the
endpoints. Fig. 2-5 confirm the possibility of modeling the
Lamé superellipses in the oblique coordinates when changing
a position of the original points and the angles of inclination
of the tangents at them. In our problem, the superellipse
exponents are the values that are set by the initial data. This
is the consequence of the fact that there are no additional
conditions to find the exponents.

A condition for calculating the exponents by solving
the equations (20) and (21) numerically is the presence
of the third set point at the known angle of inclination of
the tangent at it. The solution results are graphically rep-
resented in Fig. 6, which demonstrates the impact of both
the coordinates of the initial points and the angles of incli-
nation of the tangents at them. The solution to this problem
is important for the practical application of the Lamé su-
perellipse arcs.

When constructing the Lamé superellipses at two as-
signed points and different values for the angles of inclination
of the tangents at them, there are no problems although it
is necessary to specify the exponent values. Drawing a su-
perellipse arc through three set points at the known angles
of inclination of the tangents at them requires determining
the exponent values by a numerical method and necessitates
a reasonable approach to choosing a position of the «medium»
point and the angle of inclination of the tangent at it, which
is predetermined by the «rigid» character of a Lamé superel-
lipse. However, this is not critical for experts in the subject
area of the elliptic superellipses application.

It is advisable to advance the research into the geometric
modeling of Lamé superellipses towards extending the circle
of practical tasks for which it is necessary to build the contours
of parts of a complex geometric shape. Interesting results

could be obtained when constructing the Lamé superellipses
in the polar coordinates.

9. Conclusions

1. The construction of the arc of a regular ellipse, which
has the same exponent values equal to two, in the oblique co-
ordinates makes it possible to obtain these arcs at the assigned
angles of inclination of the tangents at the endpoints. The axes
of the oblique coordinate are determined by the position of
two points at the known angles of inclination of the tangents
at them or by directly setting the inclination angles of the axes
relative to a certain original Cartesian coordinate system.

2. The practical calculations have shown that the pro-
posed method for modeling the superellipse arcs in the
oblique coordinates makes it possible to build the arcs of these
curves in a wide variation range of the angles’ initial data. The
method implies the presence of the coordinates of two points,
the angles of inclination of the tangents at them, as well as the
exponents. Based on these data, one determines the position
of the axes in the oblique coordinate system in which the
required curve is constructed. Changing the exponents in su-
perellipse equations can yield a diverse circle of curves, which
has been confirmed by the above graphic results.

3. The devised method for constructing the arc of a su-
perellipse, if there are three set points and the angles of
inclination of the tangents at them, has been implemented
in the form of computer code. That enabled finding, by using
a numerical method, the exponent values for the equation of
the modeled Lamé superellipse. It has been determined that
the error of the curve passing through an intermediate point
does not exceed 1075, An example of the profile of an axial tur-
bine’s nozzle blade has been given to show that the method for
modeling the Lamé superellipses can be practically applied.
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Y cmammi npedcmasnenuil Hosuil nioxio 00 nepePopmynro8anus, w0 003-
60JISE 3IMEHWUMU CKIAOHICMY ATLOPUMMY PO32ANYHCEHHA | Mexc 0N eupi-
wenHs AHIUHOT YLoMUCeabHOI 3a0aUi npo proK3aK. Alzopumm po3zanyicen-
HSL 1 00MedNCeHNs 8 UILOMY CRUPAEMbCA HA 36UMATINY CMpPamezilo, AKA NOAL2A€
6 nepuiomy 0CNabNeHHI ULIOUUCENbHO20 3AB0AHHA 6 MOOeal JiHiliH020 Npo-
epamysanns (JIII). Axwo onmumanvhe piwenHs AiHIlIHO20 NPOPAMYEAHHA
€ YINOMUCETIDHUM, MO € ONMUMATBHE DIUEHHS YLNOUUCETHOZ20 3A60aHHs. STKu0
onmumanvie pilleHHs NIHIH020 NPOZPAMYEAHHSA He € ULLOMUCETLHUM, MO 06U~
paemocs 3MiHHA 3 OPOOOBUM 3HAUEHHAM OJ1L CMEOPeHHA 080X nidzada4, max
wo wacmuna donycmumoi oonacmi 6ioxudaemocs 6e3 ycymenus 6yo0v-1K020
3 ModcueuUx uinovuceavHux piwens. Ipouec nosmoproemocs 0 6Cix 3min-
HUX 3 0p06O6UMU 3HAMEHHAMU, NOKU He GY0e 3HAU0eHO ULNoUUCeNbHE PIlleHHS.
Y yvomy nioxo0i aminna cyma i 000amxo6i oomedicenns eenepyromocs i dooa-
tomucs 00 6uxionoi 3adaui neped ii pimennam. J[nsa yb020 weuoKo 6usHAUAEMb-
¢ 00’exmuena mexca 3aoaui npo proxsax. Ilomim mesxca euxopucmosyemocs
0 2enepauii HaGopy Mexc IMIHHOL CYMU T HOMUPHLOX 000AMKOBUX 00MEIHCEHD.
Buxo0suu 3a mednci 3minnoi cymu, euxioni niozada4i 6yoyomvcs i Upiuy1omvcs.
Onmumanvie pimieHHs NOMIM 6UX00UMb AK Kpauje piuleHns 3 ycix niozaday
3 mouxu 30py 00’exmuenozo 3nauenus. IlIpononosana npoyedypa npuzsodumso
00 nidzadau, saKi Maroms MeHuLyY CKAAOHICMD 1 Jle2uie BUPTUYIOMbCL, HIdC 6UXT0-
Ha 3a0aua, 3 MouKu 30pyY KiabKocmi 2inok i noe’a3anux imepauii a6o nidzadau.

3aodaua npo proxsax — ye ocobausa Popma 3az2anvHoi NKIUHOI YinoUUCe b~
Hoi 3adaui. € 6azamo sudis 3adau npo proxzax. Bonu exmouaroms 6 cebe 3adaui
<HYNb-00UH>, <MHONCUHHOZ0 8UOOPY>, <OOMedNHCEHY >, <HEOOMedHcenY >, <K6da-
opamuuny >, «6a2amouinbosy >, «0a2amosuMipny >, <KoJNaAncy HYib-00un> ma
3a0dauy npo 06’conanns proxsaxie. 3adaui npo PrOK3AKU <HYAb-00UH> — mi,
6 axux 3minni npuiimaromo miavku 0 i 1. Ilpuuuna 6 momy, wo npedmem modice
oymu o6pano a6o ne o0pano. Mwumu crosamu, HeMae MOHCAUCOCME OMPUMA-
mu 0po0osi cymu a6o npedmemu. Lle natinpocmiwuii knrac 3aedans npo prox3a-
Ku, i 6iH €OuHUIL, AKUU MOJCe OYymu eupiuenuil 8 nOIHOMI 3a 00NOMO2010 AL20-
pummie 6HYMpiUHIX MO4OK i 8 NCe600NONIHOMIANLHOMY HACL 3a 0ONOMO2010
Memo0ie QUHAMIMHO20 NPOPAMYEANHS. 3A0aAMi 3 MHONCUHHUM 6UOOPOM PIOK3A-
Ki6 — Ue Yy3azanvHenHs 36Unalinoi 3adaui npo prox3axu, Koau Haodip npedmemis
posousaemvca na kaacu. Hyavosuil éapianm eéubopy npeomema 3aminioemocs
GUOOPOM PiBHO 001020 NpeOMema 3 KOHCHO20 KIACY Npeomemis

Kntouosi crnosa: yinowucenvna sadaua npo proxsaxu, nepe@opmyniosanis,
anzopumm 2inox i mesic, YHIMOOYAAPHUU, 00MUCI08ATILHA CKIAAOHICMb
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1. Introduction

In general the linear integer programming problem has
very important real life applications. The general linear in-
teger problem comes in the form of capital budgeting, trans-
portation, traveling salesman, facility location, scheduling,
knapsack etc. This model even though it is very easy to

This is an open access article under the CC BY license
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model mathematically, has proved to be very difficult to solve.
See [1-5] for more on linear integer models.

The paper presents a new reformulation approach to
reduce the complexity of a branch and bound algorithm for
solving the knapsack linear integer problem. The branch
and bound algorithm [6,7] in general relies on the usual
strategy of first relaxing the integer problem into a linear



