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3anpononosana mampuuna mooeivb nOOAHHS NPOCMOPO-
eux 00’ckmie 045 3a0a4 cunmesy, PeKOHCMPYKUii i anarizy
ix popmu. Modeav 6ydyemvcs Ha 0CHOBL OUCKpemHUX 0AHUX
npo 06°eKxm, AKUMU, HANPUKAAO, ABNAIOMbC PACMPOSi 300pa-
JHCeHHs a00 noKazanHs npocmoposux ckawepie. Ha eiominy
610 n00iGHUX BOKCeNbHBIX MOOeel, Mampuuni mMooeni onu-
cyromv He 00°em, a nosepxhi 00’cxmie i, 36epizatouu 0ocmoin-
cmea 80KCeNbHLIX Modesell, maxi AK npocmoma i pezyaap-
Hicmb cmpykmypu, ycyearomo e6aAcmuey im HaoMipHicmo.
Y po6omi noxazano, wo 36epizatouu ingopmauiro npo popmy,
docmamnuio Ons eizyanizauii 06’exmy, mampuuna mooens
Modce 3aimamu ¢ 1.5-3 pazu menwuil 06’em nam’sami nopie-
HAHO 3 60KCeJIbHO10 (NOPIBHAHHS NPOBOOUNOC 0N MoOdeel
y popmami VOX naxemy MagicaVoxel). Bcmanosneni ymosu,
3a AKUX Mampuuna mo0eb 3AIUUMAEMBCS eKOHOMHIWOI0 34
80K CeNbHY, i NOKA3AHO, WO Ui YMOBU BUKOHYIOMBCS 01 NPAK-
MUMHO 3HAUUMUX BUNAOKTE.

Onucanuii anzopumm nodyooeu Ouckpemnoi mampuunoi
Mo0eJii Ha 0CHOBI 80K CENIbHOT.

3anpononosanuii 3azanviuii nioxio 00 eupiuenns npooe-
Mu peduckpemusauii modeneil 06’cxmie 06’emnoi epadixu,
He 3anexncHull 6i0 po3MIpHOCHI MACUBY NOUAMKOBUX OAHUX.
Y pamxax ubozo nioxody peanizosana npouedypa peduckpe-
musayuu mampuunoi mooeni. Onucani neo6xioni nepemeopen-
HA Mampuyb Mo0eJii, Wo 6KJI0UAIOMb AK PeOUCKPEeMUIAUUL0,
max i pexeanmogeanHs, wo 3abdesneuye ixX KOHMPONbLOGAHY
mounicmos n0OaAHHA NPOCMOPOBUX 00 ckxmia.

s 3anpononosanoi mampurnoi moodeni maxoxc po3pooie-
Hi npouedypu KoHmpoo i 6i0Ho6IeHHs yidicHocmi. Ompumani
YMOBU KOHMPONIO UINICHOCMT MO0 8 NPAKMUUHO SHAMUMUX
eunaoxax (Konu 4ucio enemenmie mooeni oirvue, ninc 15°)
00360/110Mb CKOPOMUMU HUCTLO eJleMeHmis, W0 nepeznsoa-
10MbCs, 6 NOPIGHANHI 3 B0KCENLHOIO MOOEIIIO.

Bcmanosneni oomesncenns mampuunux modeei, nos’sa3a-
Hi 3 MOJCIUBOI0 6MPAMOI0 IHPOPMAUii NPO HaCMUHY NOGEPXHI,
npuxogany 6i0 306HiUHBLO20 CROCMepizaia

Kntouogi cnosa: eoxcenvna modesn, mampuina mooev,
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One of the most common ways of representing three-di-
mensional bodies in the problems of their synthesis and
analysis using computer graphics is discrete models com-
posed of voxels — volume elements in the form of parallele-
pipeds (most often cubes) or, much less commonly, balls [1].
As arule, voxel material is homogeneous with fixed tran-
sparency. In some cases, the inclusion of voxels of varying
degrees of transparency is also possible [2].

Voxel models (VM) are the basis of volumetric graphics
and are used, as a rule, for the synthesis of virtual or approxi-
mations of real three-dimensional objects in the tasks of their
visualization. They are widely used in medical diagnostic

systems (computer, magnetic resonance, positron emission
tomography), for creating virtual reality of various kinds of
simulators, in 3D printers, in systems of modeling of spa-
tial forms. VMs have a number of advantages compared to
other models, primarily analytical ones. So, for example, it
should be noted that they are independent of the complexity
of the modeled objects and their surroundings, the regula-
rity of the structure, the simplicity of processing, which is
especially important for solving the problems of shape recon-
struction [3, 4].

The relevance of this issue is determined by the fact that
VMs contain a significant amount of redundant information
that is not directly related to the description of the shape
of a three-dimensional object, which is the main obstacle to



creating effective procedures for working with them. And al-
though VMs are actively used in systems where information
about the volume of an object is significant, however, in ap-
plications where the main description of an object is its sur-
face, they are largely redundant. Examples are applications
that solve the problem of reconstructing the shape of a spatial
object or 3D reconstruction (the «shape from X» task). The
initial data in them, as a rule, are discrete data from different
types of scanners.

2. Literature review and problem statement

A lot of publications are devoted to the reconstruction of
forms of three-dimensional objects using voxel models. So,
in [5], the results of a study on the development of algorithms
and methods for solving the problem of designing complex
forms that are generated using voxels are presented. The
methods described in the article use the criteria of construc-
tiveness and comfort, such as the proximity of other objects,
compactness, size of the building and others. These methods
are effective, but the authors do not take into account the
processing time and the accuracy of the result.

Automatic refinement of unorganized point clouds ob-
tained by scanning systems is considered in [6]. For a given
point cloud, the proposed method first converts the input
data to supervoxels using segmentation, and then builds
a graph on the nodes of these voxels. Then an iterative resam-
pling method is introduced to project points onto all poten-
tial surfaces with given constraints. The authors propose
a complicated algorithm of several stages, although this could
be done with a lighter algorithm in other ways.

In [7, 8], the issue of the synthesis of three-dimensional
images intended for spatial visualization systems is solved.
The author offers a simple and effective method that can be
implemented in software.

In [9], computer technology for three-dimensional visua-
lization of discrete voxel objects is described, which uses
a computationally efficient method for generating lattices
consisting of almost any type of cells that can be used for
arbitrary external geometry. This article solves the problem
of visualization using voxel graphics for modeling systems.

In [10], the authors proposes a semi-automatic proce-
dure for converting a three-dimensional cloud of points of
complex objects in three-dimensional models based on finite
elements. The procedure considers the point cloud as a sum-
mation of the points. The complexity of the clouds is arbi-
trary, since the procedure is intended for ground-based scan-
ning, which is applied to buildings with irregular geometry.

In [11], the concept of a «voxel group» is proposed: each
voxel group consists of several voxels that belong to one real
world object. Then, point cloud shapes in each voxel group
are recognized, and this shape information is used to combine
the voxel group. This article discusses the efficient extraction
of LiDAR scan points using a laser scanning system on vehic-
les (VLS) belonging to different types of buildings in large-
scale complex urban environments.

In [12], an algorithm is developed for detecting three-di-
mensional buildings based on voxel segmentation to sepa-
rate the voxels of a building. The proposed algorithm first
voxelizes a point cloud into a voxel structure in gray scale.
In this case, the gray scale corresponds to the quantized
average intensity of points in the cloud. A voxelized dataset
is segmented into several 3D-connected regions depending

on the coherence and similarity of the gray scale. The areas
corresponding to the roof of the building and the facade are
determined sequentially in accordance with such characteris-
tics as their area, density, elevation and location. This article
solved the problem of building detection based on voxel seg-
mentation of onboard LiDAR data.

In [13], a new two-stage computational method is pre-
sented for finding the optimal types of surface coverage using
voxels, medial objects (MO) and the random key genetic
algorithm (RKGA). At the first stage, the proposed method
increases the surface of buildings by expanding voxels to de-
termine the subvolume around buildings. Then, the MOs of
this subvolume are calculated and points are selected using
a Gaussian sample around the MO surface. At the second
stage, the optimization problem is formulated as a coverage
problem and is solved by searching for points using RKGA
and searching. This article discusses the problem of finding
the optimal set of points that cover the entire surface of the
target geometric model of the object.

Automating point cloud processing plays a key role in
decision making systems. In [14], a model of three-dimen-
sional objects based on voxels was proposed, which better
characterizes point clusters and provides better perfor-
mance of controlled or uncontrolled classification. This
article solves the problem of providing a point cloud parsing
module for extracting semantic clusters with voxel division
of a data set.

In [15], a method based on voxel and probabilistic models
for segmenting a point cloud is proposed, which is designed
for automatic and adaptive separation of a three-dimensional
scene. It represents the entire cloud of points first with the
help of three-dimensional cubes, using a voxel structure
based on octree trees. Then, the normal vector and the cen-
ter of gravity of the points in each voxel are calculated as
an attribute of the voxel. Geometric parameters (proximity,
smoothness, closure, and continuity) are calculated based on
the attributes of voxels. The authors solve the problem of seg-
mentation of point clouds, which are designed for automatic
and adaptive separation of a three-dimensional scene.

The methods and algorithms presented in the cited publi-
cations are quite effective and original, however, they do not
address the problem of reducing the volume of voxel models
in the computer’s memory, which is important both for stor-
age and for reducing processing time.

3. The aim and objectives of research

The aim of this research is building a model of a three-di-
mensional object based on matrices to describe its shape,
which would eliminate the redundancy of the VM and save
in the model only the information that directly describes the
shape of the object.

To achieve the aim, the following objectives are set:

— give a description of the discrete matrix model of the
spatial object and show its relationship with its voxel model;

— develop an algorithm for constructing a matrix model
based on the transition from a set of voxels to a set of faces,
or from a voxel model of a spatial body to its matrix model,

—develop procedures for the resampling of a discrete
model of a three-dimensional body, taking into account the
existing limitations;

— determine the effectiveness of the proposed matrix
model in terms of the amount of required RAM.



4. The method of constructing a discrete
matrix model of a spatial object

4.1. Accepted simplifications and limitations

A three-dimensional body (spatial object)
can be represented by its VM, the main disad-
vantage of which is the need to save and process
a set of voxels of significant volume. The prob-
lem is compounded by the fact that of this set
for forming tasks, only those voxels whose faces
form the surface of the body are informative.
Therefore, it will be logical to include only them
in the body model. On the other hand, although
the amount of information used to represent the
shape of the body is reduced, due to the irregu-
larity of the connections between the voxels
that form the surface of the body, the structure
of the data representing this information and,
accordingly, the procedures for working with it
are greatly complicated.

In the work, to reduce the redundancy of
the body model, it includes only information
about the external faces of the voxels that form
its surface. In the future, the study will concern
only such faces. To simplify the data structure
intended for their storage, the matrix form of
the description of relations will be used.

4. 2. The transition from a set of voxels to a set of faces
in a discrete model

Let’s start with an example (Fig. 1). Let’s consider a three-
dimensional object (body) in the form of a torus (Fig. 1, a)
and its voxel model (Fig. 1, b).

The matrix model (MM) is formed on the basis of voxels,
for which the notation shown in Fig. 1, ¢. Since all voxels are
oriented in the same way, the axes of the local coordinate
system of each individual voxel oxyz (Fig. 1, ¢) are parallel to
the corresponding axes of the general coordinate system of
the voxel model and the body OXYZ (Fig. 1, d).

To construct the MM from the BM of the body, let’s de-
fine a dimensional parallelepiped covering the voxel model,
whose faces OXYZ where i =0, 5, are oriented in the same way
as the corresponding faces of the voxels Fi where i=0,5, of
the components of the voxel model are (Fig. 1, d). Moreover,
G, | F,i=0,5. The external faces of the voxels that make up
the surface of the VM of the same type F; are separated from
the faces of the same type of the parallelepiped G; by a dis-
tance equal to the whole number of linear dimensions of the
voxel in the direction of the axis normal to G;. In the future,
this quantity will be considered the distance from the voxel
face to the face of the overall parallelepiped.

For each of the outer faces of the voxels of the surface of
a VM of type F; it is possible to construct an orthogonal projec-
tion onto the face G; of a dimensional parallelepiped along the
normal to G;. If the VM is convex, then the projections of such
faces F; cover all or part of the face G; without intersection. If the
VM is concave, then some projections may coincide, and in this
case the face F; closest to G; remains in consideration. In any
case, part of the G; face may remain uncovered by F; projections.

If a rectangular grid is applied to the G; face so that its
cells coincide with the projections F; and a number is as-
signed to each cell, then it is possible to obtain a matrix that
represents the relief of the VM in the direction of the normal
of the G, face, the relief matrix.

Fig. 1. Voxel model of a three-dimensional object:

a — three-dimensional object in the form of a torus; b — voxel model
of the torus; ¢ — axis of the local coordinate system; d — coordinate
system of the voxel model of the torus

4. 3. Definition of the matrix model as a set of relief
matrices of the voxel model

To build a matrix model on the basis of this VM, let’s as-
sociate each of the faces of the dimensional parallelepiped G;
with a relief matrix, which elements are numbers equal to the
distance from the corresponding F; to its projection onto G;.

Moreover, if the projections of several F; coincide, then
the value of the corresponding matrix element will be the
distance from G; to the nearest face F;. If no projection corre-
sponds to the matrix element (grid cell on G;), then its values
will be considered equal to e (infinity).

As an example, let’s consider a relief matrix constructed for
the face Gy of the overall BM parallelepiped shown in Fig. 1, d:
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If in the relief matrix let’s replace elements which value

is oo (infinity) by 0, and all the rest by 1, let’s get a stencil

matrix, which is often used in identifying the shapes of

three-dimensional objects [4]. For example, for the case un-
der consideration, the stencil matrix will look:

0
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A complete discrete matrix model (DMM) of a three-di-
mensional body is constructed on the basis of its VM and is
a set of matrices M={My, My, ... M5}. Each of them is a relief
matrix of the corresponding face of the dimensional paral-
lelepiped G;, where i=0, 5. Matrix determines the location of
the outer faces of the voxels that make up the surface of the VM
of the corresponding type Fy, Fi, ..., F5, as well as three numbers
that specify the linear dimensions of the dimensional paral-
lelepiped (distances between Gy and Gs, G1 and G4, G and Gs).




These numbers are integers, because, as noted above, dis-
tances and sizes are determined in quantities of the correspond-
ing linear dimensions of the voxel.

It should be noted that for the model presented in
Fig. 1, d, My=M3, M{=M, and My=M5, which is associated
with the symmetry of the initial body and its BM (Fig. 1, a, b).

4. 4. Algorithm for constructing a discrete matrix model
of a three-dimensional object

Using the above provisions, the algorithm for construct-
ing a DMM can be formulated as a sequence of the following
steps. The initial data for the algorithm is a voxel model of
a spatial object, obtained on the basis of discretely presented
data about it or directly synthesized.

Step 1. The overall container (box) of the model is deter-
mined by the linear dimensions of the original VM. It should
be noted that the VM can also be limited to a bulk contai-
ner (Bounding Box). However, if it exceeds the actual di-
mensions of the model, then its use for constructing a DMM
can lead to a decrease in efficiency.

Step 2. The discreteness of the DMM corresponding to
the discreteness of the VM is set. If in the future, the discrete-
ness of the DMM will need to be changed, then for this it is
possible to use the procedures of resampling described below.

Step 3. As described in paragraph 4. 3, each face of the
overall container is associated with a relief matrix. Elements
of this matrix are defined as distances from the corresponding
face of the overall container to the nearest face of the nearest
VM voxel at the location of the relief matrix element. As
noted above, the value of the element can also be «infinity» if
the VM does not contain the corresponding voxel.

Step 4. The resulting relief matrices together comprise
the DMM of the original spatial body.

Let’s note that in this paper let’s consider a dimensional
container in the form of a parallelepiped. However, this is not
necessary. For objects with radial symmetry, it may be conve-
nient to use a dimensional cylinder or sphere.

4. 5. Change in the dimension of a discrete matrix model

Further manipulations with the shape of the spatial
object in the problems of its analysis and synthesis require
a change in the dimension of the DMM, for example, using
the wavelet transform [16]. Therefore, let’s further consider
the procedure of resampling the proposed matrix model.

Let’s start with the one-dimensional case. Let the model
space be the segment OA of length L, divided into N equal
parts (discrete). The sample length is A=L/N.

Each discrete is assigned a number g, t =1, N, which is an
element of the model. The set of elements makes up a model
that represents a certain one-dimensional image of Q (in this
case, a histogram). Model resampling consists of dividing the
OA into another predetermined number of samples N so that
the corresponding new image Q defined by the new set of
digits g, i=1, N, has a minimum MSE error, the expression
for which has the form:

MSE:%j[g’z(x)—Q(x)]2 dx. )

Taking into account expression (1), a discrete version of
which is given in [2, 5], the following procedure for calcu-
lating the elements, g,,i=1, N is proposed:

1. The index i is determined by the «range of influ-
ence» [p, p’]:

p=(i-1)/Hy[_ and p'=]i/H,[, (2)

where H,, = N / N; the function ]x [> returns the smallest in-
teger greater than x, and |x [, — the smallest integer greater
than or equal to it. )

2. Then the value of the corresponding element is calculated:

p'-1

8 =D&, *P Y &+ P&, at pED

u=p+1
and

gi:gpv lf p:p,v (3)

where p, = pH, —i+1, p,=Hy, p,=i—Hy(p’'-1).

To extend the procedure to models that are represented
by two- and three-dimensional arrays (two- and three-di-
mensional, respectively), it is proposed to use the Cartesian
product of sets, the application of which in this case is illus-
trated by the following relations:

8. X8 =8y gg_\.xgs;gx,,

g_gng, =Zg_w

ZerTe-T3e
ngxggxx;gf;;;gm- (4)

N
In this case, two- and three-dimensional models can be
constructed according to one-dimensional models corre-
sponding to perpendicular directions, such as:

8, =8, %8, (two-dimensional model)
and
8y =8 %X 8; %8, (three-dimensional model). ®)

This approach is not limited to the indicated dimensions
and can naturally be applied to models of arbitrary dimension.
For example, for the relief matrix [17], taking into ac-

count (3)—(5):

q'—1
gij = RQigpq +})1Q2 2 gpzr +

v=q+1

P p-ogd
+ P1Q3gpq' +})2Q1 Z guq +‘p2Q2 Z Z gulr +

u=p+1 u=p+1 v=g+1

p'—1 q-1
+PQ, Y 8, +PQ&,, +PQ, Y &, +PQE,,» (6)

u=p+1 v=g+1

where q=|(j-1)/H,[ , ¢'=]i/H,[.; H, =M/M; M and
M are, respectively, the old and new number of samples in
the direction of change of indices ¢, ¢ (¢,¢"=1 M), and j
(j=1,M),Q,=qH, ~j+1 Q=H,; Q= j~H,(q'~1).

For the three-dimensional case of a VM, an expression
similar to (6) is not given because of its considerable volu-
me (the expression has 33=27 terms).

4. 6. Procedures for resampling the voxel model and the
discrete matrix model

Next, let’s consider the practical aspect of the application
of the proposed approach, and, in particular, the procedures for



the resampling of VMs and DMMs, as examples of three- and
two-dimensional models of volumetric graphics, respectively.

Let’s believe that the VM is represented by a three-di-
mensional array, the elements of which can be logical values
that determine the presence or absence of the corresponding
voxel, or real values from the range, [0, 1], which indicate the
degree of transparency of the voxel. At the same time, 0 de-
fines an absolutely transparent voxel (space does not contain
matter), 1 — absolutely opaque or dense voxel (space is filled
with substance, does not transmit rays). Intermediate values
determine the fraction of radiation transmitted by matter in
a given region of space [17, 18].

It should be noted that the first case can be reduced to
the second by replacing the logical values «true» and «false»
with integers 0 and 1, respectively.

To redistribute the VM, after determining the model ele-
ments gy, 8, are calculated. Their values are real numbers
from the range [0, 1]. The boundaries of the range indicate,
respectively, the absence and presence of a voxel in a given
position of the sampled model. An intermediate value defines
a translucent voxel, which can be:

a) left in the model translucent, if allowed by the condi-
tions of the problem;

b) removes from the model if the value is less than a pre-
determined threshold;

¢) remains in the model as opaque if its density value is
greater than the threshold.

Let’s note that the visualization of VMs with translucent
voxels is possible using the o channel. At the same time, the
resulting image is markedly much more similar to a contin-
uous analogue of VM than when removing such voxels from
the model or replacing them with opaque ones.

The resampling of the DMM also provides for the neces-
sity of carrying out a requantization procedure — changing
those values of the elements of the relief matrices that direct-
ly may not have been subjected to resampling, but have been
exposed to it [16, 19].

This is due to the fact that if the whole DMM is sampled,
rather than a separate matrix, then due to a change in the
model discreteness along a certain coordinate axis, the cor-
responding linear voxel size changes, which, in turn, leads
to the need for recalculation of values (requantization) of
matrix elements representing the faces of the model to which
this coordinate axis is normal.

Thus, each resampling along a separate coordinate axis
causes a resampling of the four matrixes of the model parallel
to this axis and the requantization of two matrices normal to it.

As an example, Table 1 provides information on which
transformations of relief matrices are caused by the resam-
pling along one or another coordinate axis.

In the general case, if the resampling is carried out along
the i axis (i takes values 0, 1 and 2, denoting, respectively, the
0OX, OY and OZ axes), then one-size resampling should be
performed for all matrices, except for the matrices M;, Mj+3,
and requantization of the matrices M;, Mj;3.

If the resampling is carried out along the two axes i and j
themselves, then the sampling of the same size and quantiza-
tion should be performed for all matrices, except for M3_;_; and
Ms_;_j, for which it is necessary to perform the resampling of
two sizes. If the resampling is carried out along three axes, then
for all six matrices of the discrete matrix model, one should
perform the resampling of two sizes and the requantization.

The requantization procedure is as follows. After calcu-
lating the new value of the element g, of the relief matrix
according to formula (6), it should be adjusted in accordance
with the new value of the linear size of the voxels in the di-
rection normal to the face of the dimensional parallelepiped,
which is represented by the relief matrix M.

In this case, the new value of the element is calculated as:

g, =8 M/M=g,H,, (7

where M and M — the old and new number of samples in
the direction of the normal to the face of the dimensional
parallelepiped, which is the matrix being subjected to re-
quantization.

As a result, the general procedure for the DMM complete
resampling, taking into account the necessary requantiza-
tion, consists of the following steps:

1) according to expression (6), all relevant relief matrices
are rediscovered. The order of their resampling is arbitrary;

2) using Table 1 and the relations of the general case
considered above, matrices are determined that should be
quantized,;

3) matrices are recounted in an arbitrary order;

4) the obtained real values of the elements of the matrices
approach the integers, taking into account the values repre-
senting «infinity».

The proposed general approach to solving the problem
of the resampling of models of three-dimensional graphic
objects expands the possibilities of using the latter due to
their effective adaptation to the conditions of a particular
problem, which is confirmed by the considered examples of
its application to transformations of a voxel model and a dis-
crete matrix model.

4.7. Restoring the integrity of the discrete matrix model
The next problem that should be solved is the restoration

of the integrity of the DMM in the case when it is synthesized
artificially, and not according to the existing VM. In this case,
asituation may arise when the synthesized DMM

Table 1 can’t be associated with one VM.

Matrix transformation caused by model resampling As a result, it is necessary to determine the
Sampling Variable Sampling Sampling N o cond{tlons that a hghstlc model of a three-di-
direction dimension | of the same size | of two sizes cquantization H}ensmnal object Satlehez’ presented H;ythe fo(lini

of a VM or a DMM, and does not satisty a mode
(06 N M, My, My, M5 - M,, M- T ..

L Rl that has lost its integrity. In addition, based on
oy M Mo, My, M5, M5 - My, My such conditions, procedures should be developed
0z K My, My, M3, M, - My, M;s to restore the lost integrity of the model.

OX and OY N, M My, M, M3, M, | M, M; M, My, M3, M, Performing the first part of the task, let’s
OY and 07 M,K | M;, My, My, M5 | Mo, Ms | M, My, M, M; | note that the .integrity of the quel is. ensured by
0Z and OX KN Mo My M, Ms | M, M, Mo, My, My, M the preservation of certain rela?lonshlps between

the elements of the relief matrixes that make up




Moreover, these relations are established between pairs
of matrices (more precisely, between their elements) and,
since a DMM consists of 6 relief matrices, the number of
conditions is equal to the number of combinations of 6 by 2 or
a binomial coefficient C} =15.

Below are these conditions for matrix elements whose
values are finite. Fig. 2 illustrates the relationships between
the elements of the relief matrices that make up the DMM.

my[i,m[i, jl+1]<sM-j, i=1K, j=1M;

my[m,[i, jl+1, M ~i+1]SN -}, i=1,M, j=1N;

my[i, j]< N —my[i, M= j+1]-1, i=1K, j=1M;

m4[i,N—m0[i,j]]Sj, i=1,K, j=1M,

my[K=myi, jl, M—i+1]<j, i=1,M, j=1N;

my[m,[i, j]+ LN - j+1]<j, i=1

=
~.
Il
=

my[i,m[i,j]+1]<N-j, i=1K

3
=z

m,[i, j]<M-m[i, N-j+1]-1, i=1K, j=1N;

mg[i,m[i, j]+1]<K-j, i=1N,

my[m,[i, j]+1,i]<j, i=1M,

m,[m,[i, j]+1, j]<M =i, i=1,M, j=1N;

m,[i, j|<K—m;[i, N=j+1]-1, i=1, M, j=1N;

m,[i,m,[i, jl+1]<sM—-j, i=1K,

mS[j'N_m:s[iyj]]SK—i, i=1K,

my[M-m,[i,j], N-j+1]<K-i, i=1 K, j=1N,

where mg[i, j] — the matrix element M, g = 1,6;N,Mand K —
the dimensions of the model along the coordinate axes OX,
0Y, and OZ, respectively.

M; - Azt MZ%
X N4 Y
< B B,
’ =
HD
M;
=~
= IR
v VL
2= My M,
i = 2 X
umm V7 v x

— Column increasing direction
——>Line increasing direction

Fig. 2. The relationship between the elements of the relief
matrix of the discrete matrix model

If the element of the relief matrix takes on an infinite va-
lue, then conditions (8) change and take the following form:
—if m, [i, j]=<>o, then

m,[i, k] %M = j, my[i, M~ j+1]=eo,

m,[i,k]# j—1, ms[M—j+1,k]# K —i, 9)
where i=1,K, j=1,M, k=1N;

—if m,[i, j]=co, then

my (i, k)% j—1, m,[k,N—j+1]#i-1,

m, (i, k]# N —j, m,[i, N—j+1]=co,

ms [k, j]# K —i, (10)

where i=1K, j=1L, N, k=1,M,
—if mz[i,j]zoo, then

my [k, M —i+1]#N = j, m,[k,N - jl#i-1,
my[kyi]=j—1, m[k j]#M—i, m[i, N=j+1]=o0, (11)

where i=1,M, j=1 N, k=1K.

Let’s note that, due to the symmetry of the model
(Fig. 2), condition (9) by the replacement j'=M —j+1 ex-
tends to the case m,[i, j']=, and conditions (10) and (11)
by the replacement j'=N—j+1 by the cases m,[i, j'|=eo
and m; [i, j’]:oo, respectively.

To check the conditions (8), one should examine the fol-
lowing number of elements of the relief matrices:

Eyye =5(NM + MK + KN)
or
E,=15R’, if N=M=K=R, (12)
and to check the conditions (9)—(11):
Quux = NM + MK + KN + Kn, + Nny, + Mn,,.
or
Q. =R(R+3n), if N=M=K=R
and
Ny =Ny =Ny =N. (13)

where ny, ny, ng — the number of elements having the value
«infinity» in the matrices My (Ms), M; (My) and M, (M5),
respectively (Fig. 2).

Let’s note that in order to verify the integrity of the DMM
by comparing it with the existing VM, it is necessary to exa-
mine the N x M x K elements of the model, at N=M=K=R
is R3, therefore, with R>15 or with the total number of mo-
del elements greater than R>15 (which, as a rule, takes place
in practice [17, 21]) exceeds the value of (12).



This once again proves the effectiveness of using precisely
DMM for analyzing the shape of three-dimensional objects in
volumetric graphics tasks.

Turning to the second part of the problem, let’s note that
conditions (8) also provide the necessary basis for determin-
ing the procedure for restoring the integrity of the model.

Since the integrity is restored when inequalities (8) are
fulfilled, then for each of them to be fulfilled if it is violated and
the original model (Fig. 3, @) has lost its integrity (Fig. 3, b),
it is necessary to change the model volume.

There are two ways:

— increase the corresponding values of the matrix ele-
ments until the violated integrity condition is satisfied and,
thereby, reduce the volume of the model;

— reduce them, increasing the volume of the model.

As aresult, let’s have two approaches, one of which ensures
restoration of the integrity of the model by increasing its total
volume (Fig. 3, ¢), and the second — by reducing (Fig. 3, d). The
decision on the appropriateness of each of them is taken in each
case separately, depending on the conditions of a particular task.

To formalize the procedure for restoring the integrity of the
model, let’s consider as an example the first inequality of con-
ditions (8), namely:

my[i,m[i, jl+1]<M-j, i=1K, j=1,M (14)
and let’s assume that it is its violation that caused the loss of
model integrity.

If the approach to restoring integrity by adopting the
model volume is adopted when voxels are attached to it in
a doubtful case (Fig. 3, ¢), then the relief matrix My of the
element m, [i, my (i, j]+ 1], in which integrity condition (14)
is violated, should be assigned the value M—j. In fact, this
means adding voxels to the model m, —M + j, where m, —
the old value of the element.

Fig. 3. Options for restoring the integrity of the model:
a — original model, b — example of loss of integrity;
¢ — restoration of the integrity of the model by increasing
its volume; d — restoration of the integrity of the model
by reducing its volume

If the approach is taken to restore integrity by reducing
the model volume when possible voxels are removed from it
(Fig. 3, d), then in condition (14) the element m,[i, j] of the
relief matrix My should be increased by 1 until the condition
is satisfied or until it assumes the value N—1 (whichever
comes first).

In the latter case, if condition (14) is not fulfilled, the
element m[i, j| should be assigned the value <infinity».
Moreover, N —1-1m, doubtful voxels will be removed from
the model, where 1, — the old value of the element

Similarly, procedures can be defined to restore the integ-
rity of the model in violation of other inequalities (8).

4. 8. Comparison of volumes of voxel and discrete ma-
trix models of a three-dimensional body

Let’s compare the voxel and discrete matrix models of
a three-dimensional body in terms of their volumes and de-
termine the conditions for the effective use of each of them.
Given that the models have the same information content
for the reconstruction of the shape of an object [22], the cri-
terion for the effectiveness of the model in this study is the
saving of computer RAM.

The amount of memory in bits needed to store each of the
models is defined as:

V=V,-N, (15)

where V,, — the volume of one element, and N, — the num-
ber of elements in the model.

For VMs, in the simplest case, the volume of one model
element is equal to one bit (V=1 bit), the value of which is
«1» if the model element defines the volume element that
belongs to the body, and «0» otherwise.

The number of VM elements is determined by its reso-
lution or dimension Nand is N,,=N° (for now, let’s assume
that the VM’s overall container is a cube). Thus, the memory
capacity (15) for the VM will be:

Vim=1-N3, bit. (16)

DMM, built on the basis of the above VM, includes 6 ma-
trices in size N x N = N” and, therefore, consists of N, =6- N’
elements. Each element must supply a value lying in the range
0...N, where the value N symbolizes «infinity».

Then the amount of memory designed to store such an ele-
ment will be aV,, =log, (N +1) bit, and the total amount (15)
of the discrete matrix model is:

Vi =6-N?log, (N +1), bit. 17)

To compare relations (16) and (17), let’s construct graphs
of the functions V,,,(N) and V,,,,,(N) — the gray and black
curves in Fig. 4, respectively.

At the same time, it becomes obvious that with small
dimensions of the models, the VM has advantages from the
point of view of saving the RAM of a computer, and with
large dimensions it has a DMM. To clarify this statement,
let’s solve the equation:

Vi =Vous o N*=6-Nlog, (N +1). (18)

The exact solution to this equation is the expression:

6-W(—%ln(2)-25/6)
In(2) ’

N=1- (19)

where W (x) — the Lambert function [23].
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Fig. 4. Graphs of functions Vyu(N) (gray curve)
and Vpum(N) (black curve) according to (18)

Restricting ourselves to the actual values of the function
W (x) in calculating (19), let’s obtain that N = 29,61778929.
Thus, the condition under which the advantages of the
DMM are manifested is N > 30.

Otherwise, VM is more economical.

It should be noted that the representation of an indi-
vidual VM element in one bit is possible [23], but in real
conditions it is associated with a significant complication of
the corresponding procedures for working with the model.

The smallest addressable unit of memory that is efficient-
ly processed in a computer is a byte (8 bits). Therefore, in
existing computing systems, VM elements are represented by
bytes, the value of which is modeled by the logical concepts
of «true» and «false», respectively, the presence and absence
of a voxel within the VM geometric representation.

As for the DMM, the byte that represents the matrix
element has a value in the range 0...255 and, therefore, is
suitable for storing models with N <255. Therefore, if the
storage unit is a byte, equation (18) takes the form N* =6-N*
and the efficiency of the DMM begins to manifest itself
at N >6. The condition that the DMM is more effective will
have the form

In the general case, when an element of a discrete ma-
trix model is represented by m bits (usually m = 2", where
k=3,4,5,6...), the condition under which the use of a dis-
crete matrix model is more efficient from the point of view of
saving computer RAM than a VM takes the form:

%m<N<2’”—1, (20)
and the condition under which the use of VM is effective,
respectively, is:

21

It should be noted that with N =(3/4)-m the model they
occupy the same areas of RAM in the computer.

To illustrate the relations (20) and (21) in the Table 2
shows the obtained conditions calculated for various (typi-
cal) values m.

N<§m.
4

Table 2

Efficiency conditions for using models in terms
of saving computer RAM

Values VM issr%giiif(f)ilcliency DMM 7201;:121(;;; ifficiency
1 N <30 N =30
8 N<6 6<N <255
16 N <12 12< N 65535
32 N<24 24 < N 4294967295
64 N <48 48 < N <18446744073709551615

The use of a discrete matrix model under condition (20)
leads to a decrease in the required random access memory
of the computer in (4/3)-(N/m). And if let’s take into ac-
count that in some problems of reconstructing the shape
of a three-dimensional object, such as, for example, for the
purpose of visualizing it or analyzing its shadow formation,
it is planned to study no more than three faces [24] and, ac-
cordingly, three DMM matrices, while the amount of neces-
sary information decreases three times more and the memory
savings will be (4/9)-(N/m) times.

In the case when the geometric representation of the VM
has different sizes along different coordinate axes (as, for
example, in Fig. 2), equation (18) will have the form:

N,N,N,=2(N.N,+N,N,+N,N,)x

x log, (max{Nx, N,.N_}+ 1), (22)

where N, N, and N, — respectively, the resolving power of
the VM along the coordinate axes OX, OY, and OZ (Fig. 1),
and the condition under which the DMM is more effective
from the point of view of saving the computer RAM is:

N.N,N,
< .
N,N,+N,N,+N N,

(23)

m
4

Moreover, the discrete matrix model will be more eco-
nomical than the voxel model in:
AN NN,

times.
m(N.N,+N,N,+N.N)

For example, for a body which VM is shown in Fig. 2,
let’s have that N = N, =15, and N, =3, therefore, a discrete
matrix model of such a body will be more economical than
its VM if m < 8,571428571.

This means that when using cells of 1 byte size (m=8) to
save VM and DMM elements in the computer’s RAM, the
latter will occupy 1.07 times (7 %) less memory.

Let’s note that many existing spatial body representa-
tion formats using VMs retain only the minimum number
of voxels needed. As a result, the number of actually stored
model elements will be less than NyxN,xN,, as is assumed
in (22). As an illustration, consider the VOX format used to
represent voxel models in the MagicaVoxel application [25],
and compare the VM representation used in it with the cor-
responding DMM.

The VOX format involves the description of one or more
models and additional information about the structure of the
file itself and the number of models stored in it, the color pa-
lette and the parameters of the materials used [26]. A separate
voxel model is characterized by the number of voxels N and
a list of N elements, each of which is specified by four 16-bit
numbers corresponding to the coordinates of the voxel (v, y, 2)
and its color index in the color palette. Fig. 5 shows three
models included in the standard package of MagicaVoxel,
and in table. Table 3 presents the results of comparing the
number of elements for each model in its standard voxel rep-
resentation in the VOX file and in the DMM representation.
In this case, when calculating the amount of memory for each
element, it was taken into account that the VM uses 3 bytes
per element (excluding the color index), and the DMM uses
1 byte. Also, for the model shown in Fig. 5, a (chr_knight), the
overall container used was shown in the figure with a white



outline. For the remaining models, the VM and DMM con-
tainers coincide, because in these cases the container selected
for the VM corresponds to its definition for DM M.

is reduced. The conditions for such a reduction (20) and (23)
are given for specific values of the bitness of model elements in
Table 2 and demonstrated on specific models (Table 3).

In order to adapt the model to
specific sets of input data, a genera-
lized procedure for resampling (3),
(4) of the initial array has been de-
veloped, which does not depend on
its dimension. It is shown how it is
used for the two-dimensional case of
DMM relief matrices (6). The fact
of the effect of resampling of relief
matrices on their values (Table 1)
is established, which requires their
corresponding requantization.

Manipulations with models can
lead to violation of their integri-
ty. To control the integrity of the
DMM, in violation of which the
restoration of the shape of the ob-

Fig. 5. Standard models of the MagicaVoxel package:
a — chr_knight (the overall container for DMM is highlighted in white);
b — castle; ¢ — teapot

Table 3
Comparison of the representation of three models (Fig. 5) in the VM and DMM formats

N ol The total am?‘é“g th The ratio of VM | Ject becomes impossible, the integ-

Overall mount of elements | memory occupied by the it diti 8 d (1
Model . elements, bytes volume to the Tty condiions (8) and (11) are
container ’ obtained. It is shown that the use

DMM volume

DMM VM DMM VM of these conditions in practically
chr_knight | 17x8x14 972 516 972 1548 1.59 significant cases (when the number
castle | 21x21x21 | 2646 2745 2646 8235 3.11 of model elements 1fs more dt}fm 115)
requires viewing fewer data ele-
teapot 126x80x61 45292 28528 45292 85584 1.89 ments than a direct comparison of

Table 3 analysis shows that the smaller the number of
VM voxels in the used overall container, the lower the DMM
efficiency. As a rule, the number of VM elements is less than
that of the DMM (in case the VM includes only the minimum
necessary number of voxels, as in the VOX format). However,
due to the fact that each element of the VM is represented by
three coordinates, the volume of the VM is larger. In addition,
it is possible to further reduce the DMM volume (with the
complication of the processing of a file storing the model)
by using the minimum required number of bits to represent
a single element, according to Table 2. So, for example, for the
chr_knight and castle models (Fig. 5, a, b), it is possible to use
5 bits instead of 8, while for the teapot model (Fig. 5, ¢) — 7.

5. Discussion of the proposed methods and models

The result of the work is the constructed matrix model,
which, like the existing voxel models, based on the discrete-
ness of the initial data on the object and having their sim-
plicity, unlike the latter, takes into account only the surface
shape of the spatial body, and thereby eliminates the redun-
dancy associated with the need to store information about
the volume of the object.

This is due to the fact that
the DMM determines the shape
of the object, describing its sur-
face by the set of distances to the
overall container (Fig. 1,d) and
replaces the three-dimensional
array of voxels with six relief
matrices. Due to this, a discrete
representation of the surface of
the object is preserved, but the
total volume of model elements

DMM with VM.

Comparison of the proposed matrix model for repre-
senting the same spatial features (Fig. 5) as voxel models in
the VOX format used in the MagicaVoxel package confirms
their efficiency (Table 3). Depending on the specific form,
a DMM requires a memory capacity that is 1.5-3 times
smaller than for a VM.

The limitations of the proposed model include the lack
of transparency, which is overcome in voxel models by using
voxels of different optical densities. This issue requires fur-
ther study.

Also a natural limitation of the proposed model is the
possible loss of information about part of the surface of
a spatial object, if it has more than one projection on the
verge of a dimensional container (Fig.6). However, this
restriction is not critical in the applications that the DMM
is oriented to, namely, where the part of the object’s surface
visible to the external observer is used.

In addition, at the moment, there is no procedure for
visualizing spatial forms directly on the basis of DMM. For
this, the transition to a VM is used, followed by the appli-
cation of specific imaging methods (such as the Marching
Cubes method and its modifications, which are widely used
in computed tomography).




As a result, one of the directions of future research is
finding an effective transformation of the matrix model into
a description of the form based on the graphic primitives of
modern modeling systems (e.g., Blender) or visualization
libraries (e. g., OpenGL).

In addition, studies require the prospect of using the pro-
posed DMM in applications using surface analysis of objects
for their reconstruction and identification.

6. Conclusions

1. A matrix model is proposed that describes the surface
of a spatial object in the form of six relief matrices and pos-
sesses the advantages of existing voxel models. Moreover, it
eliminates the inherent redundancy of VM associated with
the need to store information about the volume, which is not
used in the problems of analysis and reconstruction of the
surface of an object, i. e., its shape.

2. An algorithm for constructing a matrix model based
on the existing voxel model is presented. It consists in de-
termining the overall container covering the VM, and the
subsequent assignment of six relief matrices.

3. A generalized method is described for determining
the procedures of the resampling, which does not depend

on the dimension of the source data array, which allows one
to determine the procedures of the resampling of arrays of
arbitrary dimension. Using it, a resampling procedure was
obtained for the relief matrices of the DMM.

A relationship has been established between the pro-
cesses of resampling the matrix model and its corresponding
voxel model. It is shown that in the case of the matrix model,
resampling is reduced to transformations of relief matrices,
which reduces the total amount of calculations.

The general case of violation of the integrity of the ma-
trix model is considered, which leads to the ambiguity of
the description of the form. Two options for its recovery are
proposed. One is associated with an increase in the volume of
the represented object, and the second is associated with its
decrease. At the same time, the amount of data used by the
model itself remains unchanged. Both options equally restore
the integrity of the model and the choice of one of them is de-
termined only by preferences regarding the change in the vo-
lume of the object — in the direction of its increase or decrease.

4. The effectiveness of the proposed matrix model is
compared with the corresponding voxel model in terms of
the amount of required RAM. It is shown that the condition
for the efficiency of the matrix model is N>30, where N — the
model dimension. It is noted that this condition is fulfilled for
the vast majority of practically significant cases.
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