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Запропонована матрична модель подання просторо­
вих об’єктів для задач синтезу, реконструкції і аналізу 
їх форми. Модель будується на основі дискретних даних 
про об’єкт, якими, наприклад, являються растрові зобра­
ження або показання просторових сканерів. На відміну 
від подібних воксельных моделей, матричні моделі опи­
сують не об’єм, а поверхні об’єктів і, зберігаючи достоїн­
ства воксельных моделей, такі як простота і регуляр­
ність структури, усувають властиву їм надмірність.  
У роботі показано, що зберігаючи інформацію про форму, 
достатню для візуалізації об’єкту, матрична модель 
може займати в 1.5–3 рази менший об’єм пам’яті порів­
няно з воксельною (порівняння проводилося для моделей 
у форматі VOX пакету MagicaVoxel). Встановлені умови, 
за яких матрична модель залишається економнішою за 
воксельну, і показано, що ці умови виконуються для прак­
тично значимих випадків.

Описаний алгоритм побудови дискретної матричної 
моделі на основі воксельної. 

Запропонований загальний підхід до вирішення пробле­
ми редискретизації моделей об’єктів об’ємної графіки, 
не залежний від розмірності масиву початкових даних. 
У рамках цього підходу реалізована процедура редискре­
тизации матричної моделі. Описані необхідні перетворен­
ня матриць моделі, що включають як редискретизацию, 
так і реквантовання, що забезпечує їх контрольовану 
точність подання просторових об’єктів.

Для запропонованої матричної моделі також розробле­
ні процедури контролю і відновлення цілісності. Отримані 
умови контролю цілісності моделі в практично значимих 
випадках (коли число елементів моделі більше, ніж 153) 
дозволяють скоротити число елементів, що перегляда­
ються, в порівнянні з воксельною моделлю.

Встановлені обмеження матричних моделей, пов’яза­
ні з можливою втратою інформації про частину поверхні, 
приховану від зовнішнього спостерігача

Ключові слова: воксельна модель, матрична модель, 
тривимірні об’єкти, реконструкція форми, редискрети­
зація, усунення надмірності 
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1. Introduction

One of the most common ways of representing three-di-
mensional bodies in the problems of their synthesis and 
analysis using computer graphics is discrete models com-
posed of voxels – volume elements in the form of parallele
pipeds (most often cubes) or, much less commonly, balls [1].  
As a rule, voxel material is homogeneous with fixed tran
sparency. In some cases, the inclusion of voxels of varying 
degrees of transparency is also possible [2].

Voxel models (VM) are the basis of volumetric graphics 
and are used, as a rule, for the synthesis of virtual or approxi-
mations of real three-dimensional objects in the tasks of their 
visualization. They are widely used in medical diagnostic 

systems (computer, magnetic resonance, positron emission 
tomography), for creating virtual reality of various kinds of  
simulators, in 3D printers, in systems of modeling of spa-
tial forms. VMs have a number of advantages compared to 
other models, primarily analytical ones. So, for example, it  
should be noted that they are independent of the complexity 
of the modeled objects and their surroundings, the regula
rity of the structure, the simplicity of processing, which is 
especially important for solving the problems of shape recon-
struction [3, 4].

The relevance of this issue is determined by the fact that 
VMs contain a significant amount of redundant information 
that is not directly related to the description of the shape 
of a three-dimensional object, which is the main obstacle to 
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creating effective procedures for working with them. And al-
though VMs are actively used in systems where information 
about the volume of an object is significant, however, in ap-
plications where the main description of an object is its sur-
face, they are largely redundant. Examples are applications 
that solve the problem of reconstructing the shape of a spatial 
object or 3D reconstruction (the «shape from X» task). The 
initial data in them, as a rule, are discrete data from different 
types of scanners.

2. Literature review and problem statement

A lot of publications are devoted to the reconstruction of 
forms of three-dimensional objects using voxel models. So, 
in [5], the results of a study on the development of algorithms 
and methods for solving the problem of designing complex 
forms that are generated using voxels are presented. The 
methods described in the article use the criteria of construc-
tiveness and comfort, such as the proximity of other objects, 
compactness, size of the building and others. These methods 
are effective, but the authors do not take into account the 
processing time and the accuracy of the result.

Automatic refinement of unorganized point clouds ob-
tained by scanning systems is considered in [6]. For a given 
point cloud, the proposed method first converts the input 
data to supervoxels using segmentation, and then builds  
a graph on the nodes of these voxels. Then an iterative resam
pling method is introduced to project points onto all poten-
tial surfaces with given constraints. The authors propose  
a complicated algorithm of several stages, although this could 
be done with a lighter algorithm in other ways.

In [7, 8], the issue of the synthesis of three-dimensional 
images intended for spatial visualization systems is solved. 
The author offers a simple and effective method that can be 
implemented in software.

In [9], computer technology for three-dimensional visua
lization of discrete voxel objects is described, which uses 
a computationally efficient method for generating lattices 
consisting of almost any type of cells that can be used for 
arbitrary external geometry. This article solves the problem 
of visualization using voxel graphics for modeling systems.

In [10], the authors proposes a semi-automatic proce-
dure for converting a three-dimensional cloud of points of 
complex objects in three-dimensional models based on finite 
elements. The procedure considers the point cloud as a sum-
mation of the points. The complexity of the clouds is arbi-
trary, since the procedure is intended for ground-based scan-
ning, which is applied to buildings with irregular geometry.

In [11], the concept of a «voxel group» is proposed: each 
voxel group consists of several voxels that belong to one real 
world object. Then, point cloud shapes in each voxel group 
are recognized, and this shape information is used to combine 
the voxel group. This article discusses the efficient extraction 
of LiDAR scan points using a laser scanning system on vehic
les (VLS) belonging to different types of buildings in large-
scale complex urban environments.

In [12], an algorithm is developed for detecting three-di-
mensional buildings based on voxel segmentation to sepa-
rate the voxels of a building. The proposed algorithm first 
voxelizes a point cloud into a voxel structure in gray scale. 
In this case, the gray scale corresponds to the quantized 
average intensity of points in the cloud. A voxelized dataset 
is segmented into several 3D-connected regions depending 

on the coherence and similarity of the gray scale. The areas 
corresponding to the roof of the building and the facade are 
determined sequentially in accordance with such characteris-
tics as their area, density, elevation and location. This article 
solved the problem of building detection based on voxel seg-
mentation of onboard LiDAR data.

In [13], a new two-stage computational method is pre-
sented for finding the optimal types of surface coverage using 
voxels, medial objects (MO) and the random key genetic 
algorithm (RKGA). At the first stage, the proposed method 
increases the surface of buildings by expanding voxels to de-
termine the subvolume around buildings. Then, the MOs of 
this subvolume are calculated and points are selected using 
a Gaussian sample around the MO surface. At the second 
stage, the optimization problem is formulated as a coverage 
problem and is solved by searching for points using RKGA 
and searching. This article discusses the problem of finding 
the optimal set of points that cover the entire surface of the 
target geometric model of the object.

Automating point cloud processing plays a key role in 
decision making systems. In [14], a model of three-dimen-
sional objects based on voxels was proposed, which better 
characterizes point clusters and provides better perfor-
mance of controlled or uncontrolled classification. This 
article solves the problem of providing a point cloud parsing 
module for extracting semantic clusters with voxel division 
of a data set.

In [15], a method based on voxel and probabilistic models 
for segmenting a point cloud is proposed, which is designed 
for automatic and adaptive separation of a three-dimensional 
scene. It represents the entire cloud of points first with the 
help of three-dimensional cubes, using a voxel structure 
based on octree trees. Then, the normal vector and the cen-
ter of gravity of the points in each voxel are calculated as 
an attribute of the voxel. Geometric parameters (proximity, 
smoothness, closure, and continuity) are calculated based on 
the attributes of voxels. The authors solve the problem of seg-
mentation of point clouds, which are designed for automatic 
and adaptive separation of a three-dimensional scene.

The methods and algorithms presented in the cited publi-
cations are quite effective and original, however, they do not 
address the problem of reducing the volume of voxel models 
in the computer’s memory, which is important both for stor-
age and for reducing processing time. 

3. The aim and objectives of research

The aim of this research is building a model of a three-di-
mensional object based on matrices to describe its shape, 
which would eliminate the redundancy of the VM and save 
in the model only the information that directly describes the 
shape of the object.

To achieve the aim, the following objectives are set:
– give a description of the discrete matrix model of the 

spatial object and show its relationship with its voxel model;
– develop an algorithm for constructing a matrix model 

based on the transition from a set of voxels to a set of faces, 
or from a voxel model of a spatial body to its matrix model;

– develop procedures for the resampling of a discrete 
model of a three-dimensional body, taking into account the 
existing limitations;

– determine the effectiveness of the proposed matrix 
model in terms of the amount of required RAM.
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4. The method of constructing a discrete 
matrix model of a spatial object

4. 1. Accepted simplifications and limitations
A three-dimensional body (spatial object) 

can be represented by its VM, the main disad-
vantage of which is the need to save and process 
a set of voxels of significant volume. The prob-
lem is compounded by the fact that of this set 
for forming tasks, only those voxels whose faces 
form the surface of the body are informative. 
Therefore, it will be logical to include only them 
in the body model. On the other hand, although 
the amount of information used to represent the 
shape of the body is reduced, due to the irregu
larity of the connections between the voxels 
that form the surface of the body, the structure 
of the data representing this information and, 
accordingly, the procedures for working with it 
are greatly complicated.

In the work, to reduce the redundancy of 
the body model, it includes only information 
about the external faces of the voxels that form 
its surface. In the future, the study will concern 
only such faces. To simplify the data structure 
intended for their storage, the matrix form of 
the description of relations will be used.

4. 2. The transition from a set of voxels to a set of faces 
in a discrete model

Let’s start with an example (Fig. 1). Let’s consider a three- 
dimensional object (body) in the form of a torus (Fig. 1, a)  
and its voxel model (Fig. 1, b).

The matrix model (MM) is formed on the basis of voxels, 
for which the notation shown in Fig. 1, c. Since all voxels are 
oriented in the same way, the axes of the local coordinate 
system of each individual voxel oxyz (Fig. 1, c) are parallel to 
the corresponding axes of the general coordinate system of 
the voxel model and the body OXYZ (Fig. 1, d).

To construct the MM from the BM of the body, let’s de-
fine a dimensional parallelepiped covering the voxel model, 
whose faces OXYZ where i = 0 5, , are oriented in the same way 
as the corresponding faces of the voxels Fi where i = 0 5, , of 
the components of the voxel model are (Fig. 1, d). Moreover, 
G Fi i|| , i = 0 5, . The external faces of the voxels that make up 
the surface of the VM of the same type Fi are separated from 
the faces of the same type of the parallelepiped Gi by a dis-
tance equal to the whole number of linear dimensions of the 
voxel in the direction of the axis normal to Gi. In the future, 
this quantity will be considered the distance from the voxel 
face to the face of the overall parallelepiped.

For each of the outer faces of the voxels of the surface of  
a VM of type Fi, it is possible to construct an orthogonal projec-
tion onto the face Gi of a dimensional parallelepiped along the 
normal to Gi. If the VM is convex, then the projections of such 
faces Fi cover all or part of the face Gi without intersection. If the  
VM is concave, then some projections may coincide, and in this 
case the face Fi closest to Gi remains in consideration. In any 
case, part of the Gi face may remain uncovered by Fi projections.

If a rectangular grid is applied to the Gi face so that its 
cells coincide with the projections Fi and a number is as-
signed to each cell, then it is possible to obtain a matrix that 
represents the relief of the VM in the direction of the normal 
of the Gi face, the relief matrix.

4. 3. Definition of the matrix model as a set of relief 
matrices of the voxel model

To build a matrix model on the basis of this VM, let’s as-
sociate each of the faces of the dimensional parallelepiped Gi 
with a relief matrix, which elements are numbers equal to the 
distance from the corresponding Fi to its projection onto Gi.

Moreover, if the projections of several Fi coincide, then 
the value of the corresponding matrix element will be the 
distance from Gi to the nearest face Fi. If no projection corre-
sponds to the matrix element (grid cell on Gi), then its values 
will be considered equal to ∞ (infinity).

As an example, let’s consider a relief matrix constructed for 
the face G0 of the overall BM parallelepiped shown in Fig. 1, d:

M0

3 2 1 0 0 0 0 0 0 0 1 2 3

4 2 1 0 0 0 0 0 0 0 0 0 1 2 4

3 2 1 0 0 0 0 0 0 0 1 2 3

=
∞ ∞

∞ ∞













 .

If in the relief matrix let’s replace elements which value 
is ∞ (infinity) by 0, and all the rest by 1, let’s get a stencil 
matrix, which is often used in identifying the shapes of 
three-dimensional objects [4]. For example, for the case un-
der consideration, the stencil matrix will look:

T0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1 0

=












 .

A complete discrete matrix model (DMM) of a three-di-
mensional body is constructed on the basis of its VM and is  
a set of matrices M = {M0, M1, … M5}. Each of them is a relief 
matrix of the corresponding face of the dimensional paral-
lelepiped Gi, where i = 0 5, . Matrix determines the location of 
the outer faces of the voxels that make up the surface of the VM 
of the corresponding type F0, F1, …, F5, as well as three numbers 
that specify the linear dimensions of the dimensional paral-
lelepiped (distances between G0 and G3, G1 and G4, G2 and G5).
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Fig. 1. Voxel model of a three-dimensional object: 	
a – three-dimensional object in the form of a torus; b – voxel model 	
of the torus; c – axis of the local coordinate system; d – coordinate 

system of the voxel model of the torus
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These numbers are integers, because, as noted above, dis-
tances and sizes are determined in quantities of the correspond-
ing linear dimensions of the voxel.

It should be noted that for the model presented in 
Fig. 1, d, M0 = M3, M1 = M4 and M2 = M5, which is associated 
with the symmetry of the initial body and its BM (Fig. 1, a, b).

4. 4. Algorithm for constructing a discrete matrix model  
of a three-dimensional object

Using the above provisions, the algorithm for construct-
ing a DMM can be formulated as a sequence of the following 
steps. The initial data for the algorithm is a voxel model of  
a spatial object, obtained on the basis of discretely presented 
data about it or directly synthesized.

Step 1. The overall container (box) of the model is deter-
mined by the linear dimensions of the original VM. It should 
be noted that the VM can also be limited to a bulk contai
ner  (Bounding Box). However, if it exceeds the actual di-
mensions of the model, then its use for constructing a DMM 
can lead to a decrease in efficiency.

Step 2. The discreteness of the DMM corresponding to 
the discreteness of the VM is set. If in the future, the discrete-
ness of the DMM will need to be changed, then for this it is 
possible to use the procedures of resampling described below.

Step 3. As described in paragraph 4. 3, each face of the 
overall container is associated with a relief matrix. Elements 
of this matrix are defined as distances from the corresponding 
face of the overall container to the nearest face of the nearest 
VM voxel at the location of the relief matrix element. As 
noted above, the value of the element can also be «infinity» if 
the VM does not contain the corresponding voxel.

Step 4. The resulting relief matrices together comprise 
the DMM of the original spatial body.

Let’s note that in this paper let’s consider a dimensional 
container in the form of a parallelepiped. However, this is not 
necessary. For objects with radial symmetry, it may be conve-
nient to use a dimensional cylinder or sphere.

4. 5. Change in the dimension of a discrete matrix model
Further manipulations with the shape of the spatial 

object in the problems of its analysis and synthesis require  
a change in the dimension of the DMM, for example, using 
the wavelet transform [16]. Therefore, let’s further consider 
the procedure of resampling the proposed matrix model.

Let’s start with the one-dimensional case. Let the model 
space be the segment OA of length L, divided into N equal 
parts (discrete). The sample length is Δ = L/N.

Each discrete is assigned a number gt, t N= 1, , which is an 
element of the model. The set of elements makes up a model 
that represents a certain one-dimensional image of Ω (in this 
case, a histogram). Model resampling consists of dividing the 
OA into another predetermined number of samples N  so that 
the corresponding new image Ω defined by the new set of 
digits gi , i N= 1, , has a minimum MSE error, the expression 
for which has the form:

MSE
L

x x x
OA

= ( ) − ( ) ∫
1 2

Ω Ω d . 	 (1)

Taking into account expression (1), a discrete version of 
which is given in [2, 5], the following procedure for calcu
lating the elements, gi , i N= 1,  is proposed:

1. The index i is determined by the «range of influ-
ence» p p, :¢[ ]

p i HN= −( ) >
1 /  and ¢ = ] [≥

p i HN/ , 	 (2)

where H N NN = ; the function x] [>
 returns the smallest in-

teger greater than x, and x] [≥
 – the smallest integer greater 

than or equal to it.
2. Then the value of the corresponding element is calculated:

g p g p g p gi p u
u p

p

p= + +
= +

¢−

¢∑1 2
1

1

3  at p p≠ ¢  

and

g gi p= ,  if p p= ¢, 	 (3)

where p pH iN1 1= − + , p HN2 = , p i H pN3 1= − ¢ −( ).
To extend the procedure to models that are represented 

by two- and three-dimensional arrays (two- and three-di-
mensional, respectively), it is proposed to use the Cartesian 
product of sets, the application of which in this case is illus-
trated by the following relations:

g g gs t st× = ,  g g gs
s

t st
s

∑ ∑× = ,

g g gs t
t

st
t

× =∑ ∑ ,

g g gs
s

t
t

st
ts

∑ ∑ ∑∑× = ,  

g g g gs
s

t
t

z
z

stz
zts

∑ ∑ ∑ ∑∑∑× × = . 	 (4)

In this case, two- and three-dimensional models can be 
constructed according to one-dimensional models corre-
sponding to perpendicular directions, such as:

g g gij i j= ×  (two-dimensional model) 

and

g g g gijk i j k= × ×  (three-dimensional model).	 (5)

This approach is not limited to the indicated dimensions 
and can naturally be applied to models of arbitrary dimension.

For example, for the relief matrix [17], taking into ac-
count (3)–(5):

g PQ g PQ g

PQ g P Q g

ij pq pv
v q

q

pq uq
u p

p

= + +

+ + +

= +

¢−

¢
= +

¢−

∑

∑

1 1 1 2
1

1

1 3 2 1
1

1

PP Q g

P Q g P Q g

uv
v q

q

u p

p

uq
u p

p

p q

2 2
1

1

1

1

2 3
1

1

3 1

= +

¢−

= +

¢−

¢
= +

¢−

¢

∑∑

∑

+

+ + + PP Q g P Q gp v
v q

q

p q3 2
1

1

3 2¢
= +

−

¢ ¢∑ + , 	 (6)

where q j HM= −( ) >
1 , ¢ = ] [≥

q j HM ; H M MM = ; М and 
M  are, respectively, the old and new number of samples in 
the direction of change of indices q, ¢q  ( , , ),q q M¢ = 1  and j 
( , ),j M= 1  Q qH jM1 1= − + ; Q HM2 = ; Q j H qM3 1= − ¢ −( ).

For the three-dimensional case of a VM, an expression 
similar to (6) is not given because of its considerable volu
me (the expression has 33 = 27 terms).

4. 6. Procedures for resampling the voxel model and the  
discrete matrix model

Next, let’s consider the practical aspect of the application 
of the proposed approach, and, in particular, the procedures for 
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the resampling of VMs and DMMs, as examples of three- and 
two-dimensional models of volumetric graphics, respectively.

Let’s believe that the VM is represented by a three-di-
mensional array, the elements of which can be logical values 
that determine the presence or absence of the corresponding 
voxel, or real values from the range, [0, 1], which indicate the 
degree of transparency of the voxel. At the same time, 0 de-
fines an absolutely transparent voxel (space does not contain 
matter), 1 – absolutely opaque or dense voxel (space is filled 
with substance, does not transmit rays). Intermediate values 
determine the fraction of radiation transmitted by matter in 
a given region of space [17, 18].

It should be noted that the first case can be reduced to 
the second by replacing the logical values «true» and «false» 
with integers 0 and 1, respectively.

To redistribute the VM, after determining the model ele
ments gijk, gijk are calculated. Their values are real numbers 
from the range [0, 1]. The boundaries of the range indicate, 
respectively, the absence and presence of a voxel in a given 
position of the sampled model. An intermediate value defines 
a translucent voxel, which can be:

a)  left in the model translucent, if allowed by the condi-
tions of the problem;

b)  removes from the model if the value is less than a pre-
determined threshold;

c)  remains in the model as opaque if its density value is 
greater than the threshold.

Let’s note that the visualization of VMs with translucent 
voxels is possible using the α channel. At the same time, the 
resulting image is markedly much more similar to a contin-
uous analogue of VM than when removing such voxels from 
the model or replacing them with opaque ones.

The resampling of the DMM also provides for the neces-
sity of carrying out a requantization procedure – changing 
those values of the elements of the relief matrices that direct-
ly may not have been subjected to resampling, but have been 
exposed to it [16, 19].

This is due to the fact that if the whole DMM is sampled, 
rather than a separate matrix, then due to a change in the 
model discreteness along a certain coordinate axis, the cor-
responding linear voxel size changes, which, in turn, leads 
to the need for recalculation of values (requantization) of 
matrix elements representing the faces of the model to which 
this coordinate axis is normal.

Thus, each resampling along a separate coordinate axis 
causes a resampling of the four matrixes of the model parallel 
to this axis and the requantization of two matrices normal to it.

As an example, Table 1 provides information on which 
transformations of relief matrices are caused by the resam-
pling along one or another coordinate axis.

In the general case, if the resampling is carried out along 
the i axis (i takes values 0, 1 and 2, denoting, respectively, the 
OX, OY and OZ axes), then one-size resampling should be 
performed for all matrices, except for the matrices Мi, Мi+3, 
and requantization of the matrices Мi, Мi+3.

If the resampling is carried out along the two axes i and j 
themselves, then the sampling of the same size and quantiza-
tion should be performed for all matrices, except for М3–i–j and 
М6–i–j, for which it is necessary to perform the resampling of 
two sizes. If the resampling is carried out along three axes, then 
for all six matrices of the discrete matrix model, one should 
perform the resampling of two sizes and the requantization.

The requantization procedure is as follows. After calcu-
lating the new value of the element gij  of the relief matrix 
according to formula (6), it should be adjusted in accordance 
with the new value of the linear size of the voxels in the di-
rection normal to the face of the dimensional parallelepiped, 
which is represented by the relief matrix M0.

In this case, the new value of the element is calculated as:

g g M M g Hij ij ij M
 = = , 	 (7)

where M and M  – the old and new number of samples in 
the direction of the normal to the face of the dimensional 
parallelepiped, which is the matrix being subjected to re
quantization.

As a result, the general procedure for the DMM complete 
resampling, taking into account the necessary requantiza-
tion, consists of the following steps:

1)  according to expression (6), all relevant relief matrices 
are rediscovered. The order of their resampling is arbitrary;

2)  using Table 1 and the relations of the general case 
considered above, matrices are determined that should be 
quantized;

3)  matrices are recounted in an arbitrary order;
4)  the obtained real values of the elements of the matrices 

approach the integers, taking into account the values repre-
senting «infinity».

The proposed general approach to solving the problem 
of the resampling of models of three-dimensional graphic 
objects expands the possibilities of using the latter due to 
their effective adaptation to the conditions of a particular 
problem, which is confirmed by the considered examples of 
its application to transformations of a voxel model and a dis-
crete matrix model.

4. 7. Restoring the integrity of the discrete matrix model
The next problem that should be solved is the restoration 

of the integrity of the DMM in the case when it is synthesized 
artificially, and not according to the existing VM. In this case, 

a situation may arise when the synthesized DMM 
can’t be associated with one VM.

As a result, it is necessary to determine the 
conditions that a holistic model of a three-di-
mensional object satisfies, presented in the form 
of a VM or a DMM, and does not satisfy a model 
that has lost its integrity. In addition, based on 
such conditions, procedures should be developed 
to restore the lost integrity of the model.

Performing the first part of the task, let’s 
note that the integrity of the model is ensured by 
the preservation of certain relationships between 
the elements of the relief matrixes that make up 
the DMM [17, 20].

Table 1
Matrix transformation caused by model resampling

Sampling  
direction

Variable 
dimension

Sampling  
of the same size

Sampling  
of two sizes

Requantization

OX N М1, М2, М4, М5 – М0, М3

OY M М0, М2, М3, М5 – М1, М4

OZ K М0, М1, М3, М4 – М2, М5

OX and OY N, M М0, М1, М3, М4 М2, М5 М0, М1, М3, М4

OY and OZ M, K М1, М2, М4, М5 М0, М3 М1, М2, М4, М5

OZ and OX K, N М0, М2, М3, М5 М1, М4 М0, М2, М3, М5

OX, OY and OZ N, M, K – all all



Information technology. Industry control systems

11

Moreover, these relations are established between pairs 
of matrices (more precisely, between their elements) and, 
since a DMM consists of 6 relief matrices, the number of 
conditions is equal to the number of combinations of 6 by 2 or  
a  binomial coefficient C6

2 15= .
Below are these conditions for matrix elements whose 

values are finite. Fig. 2 illustrates the relationships between 
the elements of the relief matrices that make up the DMM.

m i m i j M j1 0 1, , ,[ ]+  ≤ −  i K= 1, ,  j M= 1, ;

m m i j M i N j0 2 1 1, , ,[ ]+ − +  ≤ −  i M= 1, ,  j N= 1, ;

m i j N m i M j0 3 1 1, , ,[ ]≤ − − +[ ]−  i K= 1, ,  j M= 1, ;

m i N m i j j4 0, , ,− [ ]  ≤  i K= 1, ,  j M= 1, ;

m K m i j M i j0 5 1− [ ] − +  ≤, , ,  i M= 1, ,  j N= 1, ;

m m i j N j j2 1 1 1, , ,[ ]+ − +  ≤  i N= 1, ,  j K= 1, ;

m i m i j N j3 1 1, , ,[ ]+  ≤ −  i K= 1, ,  j N= 1, ;

m i j M m i N j1 4 1 1, , ,[ ]≤ − − +[ ]−  i K= 1, ,  j N= 1, ;

m i m i j K j5 1 1, , ,[ ]+  ≤ −  i N= 1, ,  j K= 1, ;

m m i j i j3 2 1, , ,[ ]+  ≤  i M= 1, ,  j N= 1, ;

m m i j j M i4 2 1, , ,[ ]+  ≤ −  i M= 1, ,  j N= 1, ;

m i j K m i N j2 5 1 1, , ,[ ]≤ − − +[ ]−  i M= 1, ,  j N= 1, ;

m i m i j M j4 3 1, , ,[ ]+  ≤ −  i K= 1, ,  j M= 1, ;

m j N m i j K i5 3, , ,− [ ]  ≤ −  i K= 1, ,  j M= 1, ;

m M m i j N j K i5 4 1− [ ] − +  ≤ −, , ,  i K= 1, ,  j N= 1, , 	 (8)

where mq[i, j] – the matrix element Mq, q = 1 6, ; N, M and K –  
the dimensions of the model along the coordinate axes OX, 
OY, and OZ, respectively.

X

Y

Z
M3 M2

M1

M5

M0M4

x–

x+

y–

y+

z+

z–

O

Направление увеличения столбцов
Направление увеличения строк

Column increasing direction
Line increasing direction 

Fig. 2. The relationship between the elements of the relief 
matrix of the discrete matrix model

If the element of the relief matrix takes on an infinite va
lue, then conditions (8) change and take the following form:

– if m i j0 , ,[ ] = ∞  then

m i k M j1 , ,[ ] ≠ −  m i M j3 1, ,− +[ ] = ∞  

m i k j4 1, ,[ ] ≠ −  m M j k K i5 1− +[ ] ≠ −, , 	 (9)

where i K= 1, ,  j M= 1, ,  k N= 1, ;
– if m i j1 , ,[ ] = ∞  then

m i k j0 1, ,[ ] ≠ −  m k N j i2 1 1, ,− +[ ] ≠ −  

m i k N j3 , ,[ ] ≠ −  m i N j4 1, ,− +[ ] = ∞  

m k j K i5 , ,[ ] ≠ − 	 (10)

where i K= 1, ,  j N= 1, ,  k M= 1, ;
– if m i j2 , ,[ ] = ∞  then

m k M i N j0 1, ,− +[ ] ≠ −  m k N j i1 1, ,−[ ] ≠ −  

m k i j3 1, ,[ ] = −  m k j M i4 , ,[ ] ≠ −  m i N j5 1, ,− +[ ] = ∞ 	(11)

where i M= 1, ,  j N= 1, ,  k K= 1, .
Let’s note that, due to the symmetry of the model 

(Fig. 2), condition (9) by the replacement ¢ = − +j M j 1  ex-
tends to the case m i j3 , ,¢[ ] = ∞  and conditions (10) and (11) 
by the replacement ¢ = − +j N j 1  by the cases m i j4 , ¢[ ] = ∞  
and m i j5 , ,¢[ ] = ∞  respectively.

To check the conditions (8), one should examine the fol-
lowing number of elements of the relief matrices:

E NM MK KNNMK = + +( )5  

or

E RR = 15 2,  if N M K R= = = , 	 (12)

and to check the conditions (9)–(11):

Q NM MK KN Kn Nn MnNMK K N M= + + + + + .

or

Q R R nR = +( )3 ,  if N M K R= = =

and

n n n nN M K= = = . 	 (13)

where nN, nM, nK – the number of elements having the value 
«infinity» in the matrices M0 (M3), M1 (M4) and M2 (M5), 
respectively (Fig. 2).

Let’s note that in order to verify the integrity of the DMM 
by comparing it with the existing VM, it is necessary to exa
mine the N M K× ×  elements of the model, at N M K R= = =  
is R3, therefore, with R > 15  or with the total number of mo
del elements greater than R > 15  (which, as a rule, takes place 
in practice [17, 21]) exceeds the value of (12).
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This once again proves the effectiveness of using precisely 
DMM for analyzing the shape of three-dimensional objects in 
volumetric graphics tasks.

Turning to the second part of the problem, let’s note that 
conditions (8) also provide the necessary basis for determin-
ing the procedure for restoring the integrity of the model.

Since the integrity is restored when inequalities (8) are 
fulfilled, then for each of them to be fulfilled if it is violated and 
the original model (Fig. 3, a) has lost its integrity (Fig. 3, b),  
it is necessary to change the model volume.

There are two ways:
– increase the corresponding values of the matrix ele-

ments until the violated integrity condition is satisfied and, 
thereby, reduce the volume of the model;

– reduce them, increasing the volume of the model.
As a result, let’s have two approaches, one of which ensures 

restoration of the integrity of the model by increasing its total 
volume (Fig. 3, c), and the second – by reducing (Fig. 3, d). The 
decision on the appropriateness of each of them is taken in each 
case separately, depending on the conditions of a particular task.

To formalize the procedure for restoring the integrity of the  
model, let’s consider as an example the first inequality of con
ditions (8), namely:

m i m i j M j1 0 1, , ,[ ]+  ≤ −  i K= 1, ,  j M= 1, 	 (14)

and let’s assume that it is its violation that caused the loss of 
model integrity.

If the approach to restoring integrity by adopting the 
model volume is adopted when voxels are attached to it in 
a doubtful case (Fig. 3, c), then the relief matrix M1 of the 
element m i m i j1 0 1, , ,[ ]+   in which integrity condition (14) 
is violated, should be assigned the value M–j. In fact, this 
means adding voxels to the model m M j1 − + ,  where m1  – 
the old value of the element.

A B
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mq[i, k]

k

i
j

i

      

A
B

Mp Mq
mp[i, j]

mq[i, k]

k

i
j

i
?

 
 
 

A B

Mp Mq
mp[i, j]

mq[i, k]

k

i
j

i

      

AB

Mp Mq
mp[i, j]

mq[i, k]

k

i
j

i

 

                      а                                                  b

                      с                                                  d

Fig. 3. Options for restoring the integrity of the model: 	
a – original model, b – example of loss of integrity; 	

c – restoration of the integrity of the model by increasing 	
its volume; d – restoration of the integrity of the model 	

by reducing its volume

If the approach is taken to restore integrity by reducing 
the model volume when possible voxels are removed from it 
(Fig. 3, d), then in condition (14) the element m i j0 ,[ ]  of the 
relief matrix M0 should be increased by 1 until the condition 
is satisfied or until it assumes the value N–1 (whichever 
comes first).

In the latter case, if condition (14) is not fulfilled, the 
element m i j0 ,[ ] should be assigned the value «infinity». 
Moreover, N m− −1 0 doubtful voxels will be removed from 
the model, where m0 – the old value of the element

Similarly, procedures can be defined to restore the integ-
rity of the model in violation of other inequalities (8).

4. 8. Comparison of volumes of voxel and discrete ma-
trix models of a three-dimensional body

Let’s compare the voxel and discrete matrix models of 
a three-dimensional body in terms of their volumes and de-
termine the conditions for the effective use of each of them. 
Given that the models have the same information content 
for the reconstruction of the shape of an object [22], the cri-
terion for the effectiveness of the model in this study is the 
saving of computer RAM.

The amount of memory in bits needed to store each of the 
models is defined as:

V V Nel el= ⋅ , 	 (15)

where Vel  – the volume of one element, and Nel  – the num-
ber of elements in the model.

For VMs, in the simplest case, the volume of one model 
element is equal to one bit (Vel = 1 bit), the value of which is 
«1» if the model element defines the volume element that 
belongs to the body, and «0» otherwise.

The number of VM elements is determined by its reso-
lution or dimension N and is N Nel = 3  (for now, let’s assume 
that the VM’s overall container is a cube). Thus, the memory 
capacity (15) for the VM will be:

VVM = 1·N3, bit.	 (16)

DMM, built on the basis of the above VM, includes 6 ma-
trices in size N N N× = 2 and, therefore, consists of N Nel = ⋅6 2 
elements. Each element must supply a value lying in the range 
0N , where the value N symbolizes «infinity».

Then the amount of memory designed to store such an ele
ment will be a V Nel = +( )log2 1  bit, and the total amount (15) 
of the discrete matrix model is:

V N NDMM = ⋅ +( )6 12log2 ,  bit.	 (17)

To compare relations (16) and (17), let’s construct graphs 
of the functions V NVM ( ) and V NDMM ( ) – the gray and black 
curves in Fig. 4, respectively.

At the same time, it becomes obvious that with small 
dimensions of the models, the VM has advantages from the 
point of view of saving the RAM of a computer, and with 
large dimensions it has a DMM. To clarify this statement, 
let’s solve the equation:

V VVM DMM=  or N N N3 26 1= ⋅ +( )log2 . 	 (18)

The exact solution to this equation is the expression:

N
W

= −
⋅ − ( )⋅





( )1
6

1
12

25 6ln 2

ln 2
, 	 (19)

where W x( )  – the Lambert function [23].
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Fig. 4. Graphs of functions VVM(N ) (gray curve) 	
and VDMM(N ) (black curve) according to (18)

Restricting ourselves to the actual values of the function 
W x( ) in calculating (19), let’s obtain that N ≈ 29,61778929. 
Thus, the condition under which the advantages of the 
DMM are manifested is N ≥ 30.

Otherwise, VM is more economical.
It should be noted that the representation of an indi-

vidual VM element in one bit is possible [23], but in real 
conditions it is associated with a significant complication of 
the corresponding procedures for working with the model.

The smallest addressable unit of memory that is efficient-
ly processed in a computer is a byte (8 bits). Therefore, in 
existing computing systems, VM elements are represented by 
bytes, the value of which is modeled by the logical concepts 
of «true» and «false», respectively, the presence and absence 
of a voxel within the VM geometric representation.

As for the DMM, the byte that represents the matrix 
element has a value in the range 0 255  and, therefore, is 
suitable for storing models with N ≤ 255.  Therefore, if the 
storage unit is a byte, equation (18) takes the form N N3 26= ⋅  
and the efficiency of the DMM begins to manifest itself  
at N > 6. The condition that the DMM is more effective will 
have the form

In the general case, when an element of a discrete ma-
trix model is represented by m  bits (usually m k= 2 , where 
k = 3 4 5 6, , , ), the condition under which the use of a dis-
crete matrix model is more efficient from the point of view of 
saving computer RAM than a VM takes the form:

3
4

2 1m N m< < − , 	 (20)

and the condition under which the use of VM is effective, 
respectively, is:

N m<
3
4

. 	 (21)

It should be noted that with N m= ( )⋅3 4  the model they 
occupy the same areas of RAM in the computer.

To illustrate the relations (20) and (21) in the Table 2 
shows the obtained conditions calculated for various (typi-
cal) values m.

Table 2

Efficiency conditions for using models in terms 	
of saving computer RAM

Values
VM usage efficiency 

condition
DMM m  usage efficiency  

condition 

1 N < 30 N ≥ 30

8 N < 6 6 255< ≤N

16 N < 12 12 65535< ≤N

32 N < 24 24 < ≤N 4294967295

64 N < 48 48 < ≤N 18446744073709551615

The use of a discrete matrix model under condition (20) 
leads to a decrease in the required random access memory 
of the computer in 4 3( )⋅( )N m . And if let’s take into ac-
count that in some problems of reconstructing the shape 
of a three-dimensional object, such as, for example, for the 
purpose of visualizing it or analyzing its shadow formation, 
it is planned to study no more than three faces [24] and, ac-
cordingly, three DMM matrices, while the amount of neces-
sary information decreases three times more and the memory 
savings will be 4 9( )⋅( )N m  times.

In the case when the geometric representation of the VM 
has different sizes along different coordinate axes (as, for  
example, in Fig. 2), equation (18) will have the form:

N N N N N N N N N

N N N

x y z x y y z z x

x y z

= + +( ) ×

× { }+( )
2

12log max , , , 	 (22)

where Nx, Ny and Nz – respectively, the resolving power of  
the VM along the coordinate axes OX, OY, and OZ (Fig. 1), 
and the condition under which the DMM is more effective 
from the point of view of saving the computer RAM is:

m N N N

N N N N N N
x y z

x y y z z x4
<

+ +
. 	 (23)

Moreover, the discrete matrix model will be more eco-
nomical than the voxel model in:

4N N N

m N N N N N N
x y z

x y y z z x+ +( )  times.

For example, for a body which VM is shown in Fig. 2, 
let’s have that N Nx y= = 15, and N z = 3, therefore, a discrete 
matrix model of such a body will be more economical than  
its VM if m < 8,571428571.

This means that when using cells of 1 byte size (m = 8) to 
save VM and DMM elements in the computer’s RAM, the 
latter will occupy 1.07 times (7 %) less memory.

Let’s note that many existing spatial body representa-
tion formats using VMs retain only the minimum number 
of voxels needed. As a result, the number of actually stored 
model elements will be less than Nx×Ny×Nz, as is assumed  
in (22). As an illustration, consider the VOX format used to 
represent voxel models in the MagicaVoxel application [25], 
and compare the VM representation used in it with the cor-
responding DMM.

The VOX format involves the description of one or more 
models and additional information about the structure of the 
file itself and the number of models stored in it, the color pa
lette and the parameters of the materials used [26]. A separate 
voxel model is characterized by the number of voxels N and 
a list of N elements, each of which is specified by four 16-bit 
numbers corresponding to the coordinates of the voxel (x, y, z)  
and its color index in the color palette. Fig. 5 shows three 
models included in the standard package of MagicaVoxel, 
and in table. Table 3 presents the results of comparing the 
number of elements for each model in its standard voxel rep-
resentation in the VOX file and in the DMM representation. 
In this case, when calculating the amount of memory for each 
element, it was taken into account that the VM uses 3 bytes 
per element (excluding the color index), and the DMM uses 
1 byte. Also, for the model shown in Fig. 5, a (chr_knight), the 
overall container used was shown in the figure with a white  
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outline. For the remaining models, the VM and DMM con-
tainers coincide, because in these cases the container selected 
for the VM corresponds to its definition for DMM.

Table 3 analysis shows that the smaller the number of 
VM voxels in the used overall container, the lower the DMM 
efficiency. As a rule, the number of VM elements is less than 
that of the DMM (in case the VM includes only the minimum 
necessary number of voxels, as in the VOX format). However, 
due to the fact that each element of the VM is represented by 
three coordinates, the volume of the VM is larger. In addition, 
it is possible to further reduce the DMM volume (with the 
complication of the processing of a file storing the model) 
by using the minimum required number of bits to represent  
a single element, according to Table 2. So, for example, for the 
chr_knight and castle models (Fig. 5, a, b), it is possible to use 
5 bits instead of 8, while for the teapot model (Fig. 5, c) – 7.

5. Discussion of the proposed methods and models

The result of the work is the constructed matrix model, 
which, like the existing voxel models, based on the discrete-
ness of the initial data on the object and having their sim-
plicity, unlike the latter, takes into account only the surface 
shape of the spatial body, and thereby eliminates the redun-
dancy associated with the need to store information about 
the volume of the object.

This is due to the fact that 
the DMM determines the shape 
of the object, describing its sur-
face by the set of distances to the 
overall container (Fig. 1, d) and 
replaces the three-dimensional  
array of voxels with six relief 
matrices. Due to this, a discrete 
representation of the surface of 
the object is preserved, but the 
total volume of model elements 

is reduced. The conditions for such a reduction (20) and (23) 
are given for specific values of the bitness of model elements in 
Table 2 and demonstrated on specific models (Table 3).

In order to adapt the model to 
specific sets of input data, a genera
lized procedure for resampling (3), 
(4) of the initial array has been de-
veloped, which does not depend on 
its dimension. It is shown how it is 
used for the two-dimensional case of 
DMM relief matrices (6). The fact 
of the effect of resampling of relief 
matrices on their values (Table 1)  
is established, which requires their 
corresponding requantization.

Manipulations with models can  
lead to violation of their integri-
ty. To control the integrity of the 
DMM, in violation of which the 
restoration of the shape of the ob-
ject becomes impossible, the integ-
rity conditions (8) and (11) are 
obtained. It is shown that the use 
of these conditions in practically 
significant cases (when the number 
of model elements is more than 15) 
requires viewing fewer data ele-
ments than a direct comparison of 
DMM with VM.

Comparison of the proposed matrix model for repre-
senting the same spatial features (Fig. 5) as voxel models in 
the VOX format used in the MagicaVoxel package confirms 
their efficiency (Table 3). Depending on the specific form,  
a DMM requires a memory capacity that is 1.5–3 times 
smaller than for a VM.

The limitations of the proposed model include the lack 
of transparency, which is overcome in voxel models by using 
voxels of different optical densities. This issue requires fur-
ther study.

Also a natural limitation of the proposed model is the 
possible loss of information about part of the surface of  
a spatial object, if it has more than one projection on the 
verge of a dimensional container (Fig. 6). However, this 
restriction is not critical in the applications that the DMM 
is oriented to, namely, where the part of the object’s surface 
visible to the external observer is used.

In addition, at the moment, there is no procedure for 
visualizing spatial forms directly on the basis of DMM. For 
this, the transition to a VM is used, followed by the appli-
cation of specific imaging methods (such as the Marching 
Cubes method and its modifications, which are widely used 
in computed tomography).

Table 3

Comparison of the representation of three models (Fig. 5) in the VM and DMM formats

Model
Overall 

container

Amount of elements
The total amount of 

memory occupied by the 
elements, bytes

The ratio of VM 
volume to the 
DMM volume

DMM VМ DMM VМ

chr_knight 17×8×14 972 516 972 1548 1.59

castle 21×21×21 2646 2745 2646 8235 3.11

teapot 126×80×61 45292 28528 45292 85584 1.89

     
                  a                                     b                                                     c

Fig. 5. Standard models of the MagicaVoxel package: 	
а – chr_knight (the overall container for DMM is highlighted in white); 	

b – castle; c – teapot

   

Fig. 6. Forms inaccessible to description with DMM
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As a result, one of the directions of future research is 
finding an effective transformation of the matrix model into 
a description of the form based on the graphic primitives of 
modern modeling systems (e. g., Blender) or visualization 
libraries (e. g., OpenGL).

In addition, studies require the prospect of using the pro-
posed DMM in applications using surface analysis of objects 
for their reconstruction and identification.

6. Conclusions

1. A matrix model is proposed that describes the surface 
of a spatial object in the form of six relief matrices and pos-
sesses the advantages of existing voxel models. Moreover, it 
eliminates the inherent redundancy of VM associated with 
the need to store information about the volume, which is not 
used in the problems of analysis and reconstruction of the 
surface of an object, i. e., its shape.

2. An algorithm for constructing a matrix model based 
on the existing voxel model is presented. It consists in de-
termining the overall container covering the VM, and the 
subsequent assignment of six relief matrices.

3. A generalized method is described for determining 
the procedures of the resampling, which does not depend 

on the dimension of the source data array, which allows one 
to determine the procedures of the resampling of arrays of 
arbitrary dimension. Using it, a resampling procedure was 
obtained for the relief matrices of the DMM.

A relationship has been established between the pro-
cesses of resampling the matrix model and its corresponding 
voxel model. It is shown that in the case of the matrix model, 
resampling is reduced to transformations of relief matrices, 
which reduces the total amount of calculations.

The general case of violation of the integrity of the ma-
trix model is considered, which leads to the ambiguity of 
the description of the form. Two options for its recovery are 
proposed. One is associated with an increase in the volume of 
the represented object, and the second is associated with its 
decrease. At the same time, the amount of data used by the 
model itself remains unchanged. Both options equally restore 
the integrity of the model and the choice of one of them is de-
termined only by preferences regarding the change in the vo
lume of the object – in the direction of its increase or decrease.

4. The effectiveness of the proposed matrix model is 
compared with the corresponding voxel model in terms of 
the amount of required RAM. It is shown that the condition 
for the efficiency of the matrix model is N ≥ 30, where N – the 
model dimension. It is noted that this condition is fulfilled for 
the vast majority of practically significant cases.
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