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Традицiйною схемою роботи з нейронними мере-
жами до недавнього часу було завдання архiтекту-
ри нейронної мережi та її подальше навчання. Однак 
останнi дослiдження в цiй областi показали, що заданi 
i налаштованi таким чином нейроннi мережi мають 
значну надмiрнiсть. Тому додатковою операцiєю стала 
лiквiдацiя цiєї надмiрностi за рахунок прорiджування 
зв’язкiв в архiтектурi нейронної мережi. Серед безлiчi 
пiдходiв до лiквiдацiї надмiрностi найбiльш перспектив-
ним представляється спiльне використання декiлькох 
методiв, коли їх сумарний ефект перевищує суму ефек-
тiв одиночного використання кожного з них. Проведено 
експериментальне дослiдження ефективностi спiльно-
го використання iтерацiйного прорiджування i предо-
бробки (предiскаженiй) вхiдних даних в задачi розпiзна-
вання рукописних цифр за допомогою багатошарового 
персептрона. Показано, що використання предобробки 
вхiдних даних регулярiзує процедуру навчання нейронної 
мережi, запобiгаючи її перенавчання. Спiльне викори-
стання iтерацiйного прорiджування i пред обробки вхiд-
них даних дозволило отримати меншу помилку роз-
пiзнавання рукописних цифр – 1,22 %, в порiвняннi з 
використанням тiльки прорiджування (помилка змен-
шилася з 1,89 % до 1,81 %) i з використанням тiльки 
предiскаженiй (помилка зменшилася з 1,89 % до 1,52 %). 
Крiм цього регуляризацiя за рахунок предiскаженiй доз-
воляє отримати монотонно збiльшуючуюся кiлькiсть 
вiдключених зв’язкiв при збереженнi помилки на рiвнi 
1,45 %. Отриманi кривi навчання для однiєї i тiєї ж 
задачi, якi вiдповiдають початку навчання з рiзних 
початкових умов, мають рiзнi значення як в процесi 
навчання, так i в кiнцi навчання. Це свiдчить про бага-
тоекстремальнiсть функцiї якостi – точностi роз-
пiзнавання. Практичне використання цього полягає в 
пропозицiї проводити багаторазове навчання нейронної 
мережi з вибором найкращого результату
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нна мережа, прорiджування, регуляризацiя, крива нав-
чання, ваговi коефiцiєнти
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1. Introduction

Deep neural networks are a powerful tool for addressing 
a wide range of tasks in the fields of image processing, un-
manned object management, disease diagnostics, recognition, 
voice signal generation, etc. [1]. The efficiency of the practi-
cal use of neural networks improves as their dimensionality 
increases. In this case, a practical constraint is the limited 
computational power of the processors used. This is especially 
true when a mobile phone or microcontroller serves as a com-
putational tool. This circumstance has initiated a large body 
of research that identified the redundancy of fully connected 
neural networks [2] and defined basic approaches to reducing 
it. For example, it is shown in [3] that for the popular neu-
ral networks AlexNet (more than 61 million weights) and  

VGG-16 (more than 132 million weights) employing the  
ImageNet dataset, a decrease in the number of weight coeffi-
cients by 9 and 13 times, respectively, could be achieved with-
out compromising their performance quality. Despite the prog-
ress made, it is a relevant task to undertake further research 
aimed at reducing the redundancy of neural networks while 
maintaining, or even improving, their operational quality.

2. Literature review and problem statement

The main characteristics of neural networks are the qua-
lity of operation and the amount of computation required to 
implement them. Typically, research is aimed at improving 
only one of these characteristics.
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One of the first approaches to reducing the redundancy of 
neural networks was proposed in [4, 5]. It implies pre-training 
a fully-connected neural network, then reducing the excess 
connections and retraining the pruned neural network. It was 
shown that it is possible to reduce the volume of computations 
for the implementation of a trained neural network by 60 % 
even without worsening the quality of its operation. Subse-
quent studies focused on further reducing both the amount of 
computation by a trained neural network and the amount of 
computation to train it at the same or slightly worse quality of 
operation. Paper [3] proposed an iterative procedure for a step-
by-step weight reduction and a neural network post-training, 
which made it possible to reduce by many times the number of 
weight coefficients in the trained neural network.

Study [6] uses a low-ranking approach method; the vari-
ation dropout was employed in [7]. The proposed algorithms 
made it possible to speed up the training and reduce the 
volume of computations during training. Work [8] proposed 
a method of deep compression consisting of three stages: 
the usual reduction of connections, similarly to [3], the 
quantization of weights, and Huffman coding. The further 
adaptation of neural networks to the limited computing ca-
pabilities of a controlling element is reported in [9]. The cited 
paper proposes to use the quantization of input signals with 
a dynamically changing accuracy. However, the algorithms 
proposed in [8, 9] could be implemented effectively only by 
using programmable logic matrices and are not suitable for 
conventional processors.

The approaches in [3–9] are characterized by that the 
learning process begins in a fully-connected topology of the 
neural network, followed by a decrease in the number of 
connections in the course of training. It is possible to achieve 
a significant reduction in the required volume of RAM, in 
energy consumption, and the required number of arithmetic 
operations, by pruning the structure of a neural network at 
the outset, to then train such a pruned network. Paper [10] 
compares the characteristics of neural network training 
that begin learning with a fully connected topology and 
the RadiX-Nets-type networks that initially have a pruned 
structure. It was shown that the same end characteristics are 
obtained under such an approach but the individual imple-
mentations of the RadiX-Nets training could demonstrate  
a computational instability. Addressing this instability is the 
direction for further research. A similar approach was ap-
plied in [11]; it is proposed to prune a neural network before 
training by using a connection sensitivity criterion. It is 
possible to further train the resulting pruned network using 
any modern algorithm. Such an approach makes it possible to 
achieve the weight coefficient saving of up to 99 % in known 
neural networks but this would be accompanied by a deterio-
ration in the quality of their performance.

The IPLT (incremental pruning based on less training) 
approach, proposed in [12], can serve an interim solution. 
While the traditional approach, used, for example, in [3], 
implies a long-time neural network training at every step and 
a slight reduction of its connections, the approach in [12] em-
ploys small learning intervals followed by a radical reduction 
of its connections. Achieving the desired reduction in the 
configuration of the neural network is followed by training it 
to the established mode. Such an approach ensures the same 
quality characteristics as the conventional one but the rate 
of learning increases by an order of magnitude. It should be 
noted that a neural network can be trained using a supercom-
puter while its implementation in the trained form – using  

a low-power microprocessor. Therefore, the rate of learning is 
typically not a critical parameter for neural networks imple-
mented on low-power computers.

The approaches reported in [3–12] are aimed primarily at 
reducing the redundancy of neural networks while maintain-
ing or even compromising the operational quality of neural 
networks. This makes it easier to implement such solutions 
on less-performing computing devices but does not improve 
the quality of their operation.

In terms of improving the quality of neural network per-
formance, the most promising are those approaches that are 
orthogonal to each other. The combined application of such ap-
proaches provides a new quality. A prime example is the compu-
tational eco-system [13], which achieved the best result when 
recognizing handwritten digits from the MNIST set [14] – the 
recognition error was 0.17 %. This is 0.03 % better than the 
result shown by a person (0.2 %). The topology of this network 
contains a set of diverse classifiers built on the basis of the con-
volutional neural networks, which, in turn, employ different 
approaches for learning. All these networks run in parallel and 
their outputs are the inputs of the unifying Meta-Nets network. 
A key factor in this result is a variety of approaches for training 
the primary convolutional neural networks.

It should be noted that the improvement in the operatio-
nal quality in [13] was achieved by repeatedly increasing the 
volume of computations by the trained neural network. There-
fore, in order to reduce the redundancy of neural networks 
while improving the quality of operation, it seems appropriate 
to study approaches that differ from each other in the principle 
of action and the possibility of their combined application. 
Among these directions is the use of an input signal distor-
tion and its joint work with the usual pruning [3] regarding 
the training of a multilayer perceptron. On the one hand, the  
multilayer perceptron is part of the convolutional networks as 
an element of the finishing processing. On the other hand, it 
has a rather simple and homogeneous topology, which makes 
its use easier in the analysis and signal processing peripheral 
devices, implemented on the microcontrollers – smart sensors.

The studies reported in [15–17] show that the pre-dis-
tortion of input images in the form of turns, horizontal and 
vertical shifts, compression, as well as stretching horizontally 
and vertically, make it possible to significantly improve the 
characteristics of object recognition on images. The impact 
of each separate pre-distortion on the resulting charac-
teristics of such known convolutional networks as LeNet, 
Network3, and DropConnect was investigated in [15]. It was 
shown that the use of each type of predistortion leads to an 
improvement in the characteristics of a neural network but 
the greatest effect is obtained at a combined application of 
all kinds of pre-distortions. Paper [16] demonstrated that 
the pre-distortion of input images from the MNIST set when 
using a fully-connected multilayer perceptron with a num-
ber of hidden layers from 2 to 9 and a total quantity of the 
weight coefficients from 1.3 to 12 million reduces the error of 
handwritten digit recognition to 0.35 %. A comparison of the 
effectiveness of the use of the convolutional neural networks 
and a multilayer perceptron for analyzing text documents 
involving pre-distortions using the MNIST dataset as an ex-
ample was carried out in [17]. It was shown that even simple 
algorithms to train a neural network with a simple topology, 
a multilayer perceptron, can ensure a small recognition error 
when trained. In this case, it may take a large number of  
epochs to learn but, given today’s computational capabilities, 
this is not a problem. It was noted that an essential factor  
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that ensures a small magnitude of the recognition error is 
the quality, quantity, and variety of input data, which, in 
turn, can be acquired by pre-distorting the source data. All 
the above studies have shown the effectiveness of using the 
pre-processing of input data to improve the quality of neural 
networks operation. However, they did not aim at reducing 
the redundancy of weight coefficients.

Given the effectiveness of applying the approaches to 
prune neural networks and to pre-distort the input data, it is 
interesting to study their combined application in the train-
ing of a multilayer perceptron using one of the most popular 
data sets, MNIST.

3. The aim and objectives of the study

The aim of this study is to examine the effectiveness 
of the combined application of data pre-distortion and the 
iterative algorithm to reduce connections and to post-train  
a multilayer perceptron using an example of handwritten 
digit recognition from the MNIST set.

To accomplish the aim, the following tasks have been set:
– to identify the differences in training a multilayer per-

ceptron in the presence and absence of connection pruning 
provided that the pre-distortion is not used in this case;

– to compare the learning curves and the resulting cha-
racteristics of a multilayer perceptron in the presence and ab-
sence of input data pre-processing provided that the pruning 
is not used in this case; 

– to identify the effectiveness of the combined applica-
tion of data pruning and pre-distortion.

4. Parameters for the applied neural network  
and input data 

4. 1. Description of a neural network and its training 
algorithm

The original neural network used was a perceptron with 
two hidden layers. The first hidden layer contained 256 neu-
rons, the second hidden layer – 128 neurons. The function of 
neuron activation is sigmoid. The input layer had 784 neu-
rons (by the number of pixels in the images of handwritten 
digits from the MNIST set). The output layer had 10 neurons, 
each of which was assigned the corresponding number from  
a series of 0, ..., 9. The simplest algorithm of stochastic gra-
dient descent (SGD) with a constant step was used as a train-
ing algorithm [18]. The initial values for the neural network’s 
weight coefficients were set by a random number generator 
at normal distribution, a zero average, and an rms deviation 
whose magnitude is inversely proportional to the root square 
from the number of connections included in a neuron.

The following designations were introduced:
– nin = 784 – the number of nodes in the input layer of the 

neural network (the number of inputs to a neural network);
– nh1 256=  – the number of neurons in the first hidden layer;
– nh2 128=  – the number of neurons in the second hid-

den layer;
– no = 10 – the number of neurons in the output layer (the  

number of outputs from a neural network);
– Xin – the vector of input signals to the neural network, 

dimensionality nin ;
– Xin h− 1 – the vector of input signals to the first hidden 

layer, dimensionality nh1;

– Xo h− 1 – the vector of output signals from the second 
hidden layer, dimensionality nh1;

– Xin h− 2 – the vector of input signals to the second hid-
den layer, dimensionality nh2;

– Xo h− 2 – the vector of output signals from the second 
hidden layer, dimensionality nh2;

– Xin o−  – the vector of input signals to the output layer, 
dimensionality no ;

– Xout – the vector of output signals from the output 
layer (an output signal from a neural network), dimensio-
nality no ;

– Xtar  – the vector of known correct output signals from 
the neural network, dimensionality no ;

– Win h− 1  – the matrix of weights between the input layer 
and the first hidden layer, dimensionality n nh in1 × ;

– Wh h1 2−  – the matrix of weights between the first and 
second hidden layers, dimensionality n nh h2 1× ;

– Wh o2−  – the matrix of weights between the second hid-
den layer and the output layer, dimensionality n no h× 2;

– Eout – the vector of an error at the output from the 
neural network, dimensionality no ;

– Eh2 – the vector of an error at the output from the 
second hidden layer, dimensionality nh2;

– Eh1 – the vector of an error at the output from the first 
hidden layer, dimensionality nh1.

The input and output signals vectors for the hidden layers  
and an output layer:

X W Xin h in h in− −= ×1 1 ,  (1)

X f Xo h act in h− −= ( )1 1 ,  (2)

where f x eact
x( ) = +( )−1 1  is the activation function,

X W Xin h h h o h− − −= ×2 1 2 1,  (3)

X f Xo h act in h− −= ( )2 2 ,  (4)

X W Xin o h o o h− − −= ×2 2,  (5)

X f Xout act in o= ( )− .  (6)

The vectors of errors at the outputs from the hidden layers  
and an output layer:

E X Xout tar out= − ,  (7)

E W Eh h o
T

out2 2= ×− ,  (8)

E W Eh h h
T

h1 1 2 2= ×− .  (9)

The renewal of the neural network’s weight coefficients is 
performed according to the following equations:

W W E X X Xh o h o out out out o h
T

2 2 21− − −= + ⋅ ⋅ −( )( ) ×( )µ ,  (10)

W W E X X Xh h h h h o h o h o h
T

1 2 1 2 2 2 2 11− − − − −= + ⋅ ⋅ −( )( )×( )µ ,  (11)

W W E X X Xin h in h h o h o h in
T

− − − −= + ⋅ ⋅ −( )( )×( )1 1 1 1 11µ ,  (12)

where the «·» operation denotes an element-wise multi-
plying; µ = 0 01.  is the step of training, a scalar value. 
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The proposed modification of the algorithm implies that 
the weight coefficients update is supplemented by the follow-
ing equations:

W W Hh o h o h o2 2 2− − −= ⋅ ,  (13)

W W Hh h h h h h1 2 1 2 1 2− − −= ⋅ ,  (14)

W W Hin h in h in h− − −= ⋅1 1 1,  (15)

where the Hh o2− , Hh h1 2− , Hin h− 1 matrices have, respectively, the 
dimensionalities of n no h× 2, n nh h2 1× , n nh in1 × .

At the beginning of training, all elements in the Hh o2− , 
Hh h1 2− , Hin h− 1 matrices accept single values. At the end of each 
subsequent L epoch of training, the weight coefficients Win h− 1, 
Wh h1 2− , Wh o2− . matrices are analyzed. If any ij  elements of these 
matrices accept a module below the corresponding threshold 
Pin h− 1, Ph h1 2− , Ph o2− , then the Hh o2− , Hh h1 2− , Hin h− 1 matrices ele-
ments are assigned a value of 0.

4. 2. Description of the MNIST dataset
MNIST dataset is one of the main tests of different neural 

network structures and their training algorithms [14].
The MNIST dataset consists of two parts. The first subset 

consists of 60,000 images of handwritten digits from 0 to 9, 
designed to train a neural network. The second subset con-
tains 10,000 similar images for testing. The task is to use data 
for learning only to train a neural network to recognize digits 
from the subset for testing. Each image is 28×28 pixel-sized 
and is accompanied by information about the digit in a given 
image. The color of the images is black and white. The color 
of each pixel in the image is encoded by an integer eight-bit 
binary number ranging from 0 (black) to 255 (white). The 
typical images of the digits are shown in Fig. 1.

Fig. 1. Typical images of digits from the MNIST set

When operating the MNIST dataset, a neural network 
must have nin = 784 inputs (based on the number of pixels 
in the image) and no = 10 outputs, each of which is assigned 
its own digit. Xtar , the vector of known correct output sig-
nals for the set image must accept 1 at the input at a place 
corresponding to the digit shown in this image, and 0 at the 
remaining ones. For example, if an image of a four is sent  
to the input,

Xtar

T= ( )0 0 0 0 1 0 0 0 0 0 .  (16)

The response of the neural network is determined by the 
position of the maximal element in the Xout vector.

figure in the image .= [ ]{ }arg max
i outx i  (17)

To train a neural network, the output signal vector Xout is 
used in full according to equations (1) to (16).

4. 3. Data preprocessing
The following operations were used to pre-process the data:
– the rotation of an image relative to the center, the range 

of rotation angles is from –15 degrees to +15 degrees, the 
specific value for each operation is set by its random number 
generator with an even distribution;

– a horizontal shift in the range of –0.05 to 0.05 from 
the size of an image for width, the specific value of the shift 
magnitude is set by its random number generator with an 
even distribution;

– a vertical shift in the range of –0.05 to 0.05 from the 
size of an image for height, the specific value of the shift 
magnitude is set by its random number generator with an 
even distribution;

– a change in the size of an image by a factor ranging from 
0.95 to 1.05 from the original image size, the specific value of 
the shift magnitude is set by its random number generator 
with an even distribution;

– filling the free image pixels with the same values as the 
nearest filled pixels (for example, when shifting the image to 
1 pixel to the right, a series of unfilled pixels are formed on 
the left, which are filled with pixel values from the penulti-
mate left row);

– an increase in the contrast after the above opera-
tions, if the pixel value exceeds 100, it is assigned a value of 
255 (white), if the pixel value is less than or equal to 100, it 
is assigned a value of 0 (black).

Before submitting the next image, intended for training, 
from the MNIST set to the neural network input, all ope-
rations from the described set are consistently performed  
over it. This ensures the uniqueness of each of the images 
coming to the neural network input. Images from the test set 
are not processed.

5. Results of an experimental study of the effectiveness 
of using the pruning and pre-distortion of data in the 

training of a multilayer perceptron 

5. 1. Studying the differences in multilayer perceptron 
training in the presence and absence of connection pruning

Fig. 2 shows the learning curves of a two-layer percep-
tron. Each curve corresponds to training a neural network 
under the new random initial conditions for weight coeffi-
cients. Curves 1–3: no weight coefficient zeroing was used. 
Curves 4–6: the weight coefficients were zeroed following 
each training epoch. Fig. 3 shows the charts of change 
in the proportion of zero coefficients corresponding to  
curves 4–6 in Fig. 2.

One epoch corresponded to the training on 60,000 images,  
intended for training, from the MNIST set. Each point on 
the learning curves was derived in the following way. After 
the training based on every 1,000 images, we estimated the 
accuracy of digit recognition on a set of 10,000 images for 
testing from the MNIST set. In this case, of course, the per-
manent weights were used, whose values were established at 
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a given moment. Next, we determined, from a set of 180 re-
cognition accuracy values, sequentially derived in this way,  
the maximum one, which was used for a value on the learning 
curve. Thus, each point on the learning curve corresponds to 
the maximum value of accuracy achieved during the three 
training epochs. The weight set that yielded this maximum 
value is remembered and can be used in the further practical 
use of a trained neural network.

Fig. 2. The learning curves of a two-layer perceptron 
under different initial conditions: 1, 2, 3 – without weight 

coefficients zeroing; 4, 5, 6 – weight coefficients were 
zeroed after each training epoch

Fig. 3. Charts of change in the proportion of zero weight 
coefficients depending on the number of a training epoch. 

Curves 1–3 correspond to curves 4–6 in Fig. 2

The learning curves 4–6 in Fig. 2 were received using the 
following thresholds:

P win h in h− −=1 1 1000max ,  (18)

P wh h h h1 2 1 2 4000− −= max ,  (19)

P wh o h o2 2 8000− −= max ,  (20)

where win h− 1
max  is the maximum module of the current elements 

of the Win h− 1 matrix; wh h1 2−
max  is the maximum module of the 

current elements of the Wh h1 2−  matrix; wh o2−
max  is the maximum 

module of the current elements of the Wh o2−  matrix.
Fig. 2 shows that the use of weight zeroing operation 

does not impair the results of digit recognition in the images 

from the test set. Moreover, the best result without zeroing 
is 0.9811, with it – 0.9819. In this case, the weight set, which 
ensured the recognition accuracy of 0.9819, contained more 
than 8.4 % of zero weight coefficients.

Fig. 4 shows the learning curves for a similar neural net-
work but the first hidden layer contained 8 % fewer neurons, 
that is, 235. No zeroing was used.

Fig. 4. The learning curves of a two-layer perceptron  
under various random initial conditions without zeroing the 

weights, the number of neurons in the first hidden layer  
is 235, in the second – 128

A comparison of the learning curves in Fig. 2 and 4 shows 
a slight deterioration in the quality of digit recognition in 
the images when reducing the number of neurons in the first 
hidden layer by 8 %.

The range of curves 1–3 maxima in Fig. 2 – 0.9811–0.9799. 
The range of curves 4–6 maxima in Fig. 2 – 0.9819–0.9806. 
The range of curves 1, …, 6 maxima in Fig. 4 – 0.981–0.9791.
Thus, the training algorithm with zeroing ensures an 

improvement in the quality of recognition while reducing 
the number of weight coefficients. At the same time, a simple 
decrease in the number of weight coefficients leads to a dete-
rioration in the quality of recognition.

The charts in Fig. 3 show a monotonous increase in the 
proportion of zero weights depending on the number of train-
ing epochs, which, for example, for curve 5, accepts a value 
exceeding 18 % after 51 training epochs.

However, Fig. 2 demonstrates that the neural network 
is retrained after 18–30 epochs, that is, the accuracy of digit 
recognition in the images decreases. Therefore, in actual 
practice, the weight coefficient set to be used should be cho-
sen based on the joint requirements for the accuracy of re-
cognition and the proportion of zero weights. All weight sets 
obtained in the course of training can be stored in memory 
with any of them to be employed in the implementation of  
a neural network.

5. 2. Studying the differences in training a multilayer 
perceptron in the presence and absence of the source data 
pre-processing

Fig. 5 shows the learning curves of a multilayer percep-
tron (256 neurons in the first hidden layer and 128 neurons 
in the second hidden layer).

The training was each time performed under the new ran-
dom initial conditions for weight coefficients. Curves 1–3: 
without using the predistortion of starting images; curves 4–6:  
applying it.
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A comparison of these learning curves unambiguously 
testifies to the positive effect of using the predistortion 
during training. 

The range of curves 1–3 maxima in Fig. 4 – 0.9811–0.9799. 
For all curves 4–6 in Fig. 4, a maximum is 0.9841.
In addition, while curves 1–3 clearly show the effect  

of retraining, expressed by the descent in the curves after  
18–30 epochs, curves 4–6 demonstrate no effect of retraining. 
This suggests that the predistortions used act as a regularizer. 

Fig. 5. The learning curves of a multilayer perceptron 
under different random initial conditions: 1, 2, 3 – without 

predistortion; 4, 5, 6 – with predistortion

Fig. 6 shows the separate detailed sections of the learning 
curves based on the training data and the test data results. 
The values ik are arranged along the horizontal axis, each 
unit of the ik parameter corresponds to the training on the 
next 1,000 images at the input to the neural network; along 
the vertical axis – the accuracy of recognition.

Fig. 6, a, c, e, g shows that the retraining of the neural 
network manifests itself in the degeneration of the learning 
curve based on training data into a straight line. At the same 
time, the use of pre-processing (Fig. 6, b, d, f, h) results in 
that the learning curve based on the training data acquires 
a constantly quasi-noisy shape. That is, there is a constant 
process of learning based on the new data at the input to the 
neural network.

5. 3. Exploring the effectiveness of the combined appli-
cation of pruning and pre-distortion of data

Fig. 7 shows the learning curves of the multilayer per-
ceptron (256 neurons in the first hidden layer and 128 neu-
rons in the second hidden layer). The training was each 
time performed under the new random initial conditions  
for weight coefficients. Curves 1–3: using only the predistor-
tion of starting images; curves 4–6: using the predistortion 
and pruning.

Fig. 7. The learning curves of a multilayer  
perceptron under different random initial conditions.  

1–3: using only the predistortions;  
4–6: using the predistortion and pruning after  

each training epoch

A comparison of the learning curves in Fig. 7 shows 
that the combined application of the iterative pruning and 
pre-processing of source data has resulted in the maximum 
recognition accuracy of 0.9878, which corresponds to a re-
cognition error of 1.22 %. At the same time, the use of prun-
ing only (Fig. 2) reduced the error from 1.89 % to 1.81 %, 
while using the predistortion only (Fig. 5, 7) reduced the 
error from 1.89 % to 1.52 %. 

Thus, the combined application of the iterative pruning 
and pre-processing of source data results in a greater effect in 
terms of recognition accuracy than the sum of the effective-
ness of the separate use of pruning and pre-distortion.

                             a                                                  b                                                   c                                                   d

                             e                                                  f                                                   g                                                   h

Fig. 6. The fragments of learning curves based on training data and for test data:  
a, c, e, g – without the distortion of starting images, b, d, f, h – using the predistortion; a – ik = 1…175,  

b – ik = 1…175, c – ik = 350…550, d – ik = 350…550, e – ik = 900…1,075, f – ik = 900…1,075,  
g – ik = 2,875…3,050, h – ik = 2,875…3,050
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In addition, it is necessary to note the regularizing effect 
from using the predistortion, which makes it possible to ob-
tain a monotonous reduction in the number of connections in 
a neural network while maintaining a recognition error at the 
level of 1.45 % or less throughout 660 training epochs. Fig. 8 
shows the charts of change in the proportion of zero weight 
coefficients depending on the number of a training epoch, 
corresponding to curves 4–6 in Fig. 7.

Fig. 8. Charts of change in the proportion of zero weight 
coefficients depending on the number of a training epoch. 

Curves 1–3 correspond to curves 4–6 in Fig. 7

Fig. 2, 3 show that the pure pruning (zeroing the weights) 
led, after training during 51 epochs, to an increase in the 
error of recognition to 2 % and higher at the number of 
zero coefficients of about 18 %. At the same time, Fig. 7, 8 
show that over 660 epochs the number of zero coefficients 
reached 72 % of the initial number of weight coefficients in 
a fully-connected neural network while the recognition error 
remained at 1.45 % or less.

6. Discussion of results of studying the effectiveness 
of using the pruning and pre-distortion of data in the 

training of a multilayer perceptron

Our experimental study of the combined application 
of pruning and predistortions has shown that their joint 
application is efficient and produces an additional effect on 
the accuracy of handwritten digits recognition, as well as 
maintains the recognition error at a low level when pruning 
the connections in a multilayer perceptron. The study was 
conducted based on the MNIST dataset. One can expect that 
in tasks close to the set of handwritten digits MNIST, the 
would-be effect would be of the same order. At the same time, 
the regularizing properties of the input data predistortions 
could be used in a wide range of neural network learning 
tasks along with regularization methods such as L2, Dropout, 
and others [1].

The learning curves in Fig. 2, 4, 5, 7 show that the pro-
cess of training a multilayer perceptron is significantly 
dependent on the initial conditions for weight coefficients, 
which is the result of the complex nature of the surface of 
the quality function – the accuracy of recognition. This 
fact can be practically implemented in two ways. First, by 
conducting multiple neural network training, it becomes 
possible, starting from different random initial conditions, 
to choose a variant of weight coefficients that would yield  

a minimal error. Second, the neural network variants, trained 
under different initial conditions, could be combined in an 
additional neural network to build an ensemble classifier, 
which would significantly reduce the recognition error [13]. 
The last provision can be illustrated with data from Table 1, 
giving the number of errors for each digit for the three per-
ceptron training options corresponding to curves 4–6 in 
Fig. 7, after training over 660 pochs. The total number of 
images in the test set is 10,000.

Table 1

The number of recognition errors for each digit for three 
neural network training options

Digit in 
an image

Error quantity

Option 1 Option 2 Option 3

0 7 4 9

1 6 4 5

2 25 16 16

3 16 18 18

4 15 18 8

5 14 12 21

6 11 17 17

7 16 27 24

8 18 25 11

9 29 17 24

Table 1 shows that even if the images that have been 
misidentified are matched, combining the results of the three 
variants would reduce the error. And if some of the images 
that are misidentified by the different variants do not match 
up, the final error would be even smaller.

It should be noted that the frequency of pruning L = 1 (after  
each epoch), as well as the magnitudes of thresholds when 
pruning, were chosen based on our practical experience. The 
issues related to the better justified and dynamic choice of  
a pruning frequency and the pruning thresholds magnitudes 
are the areas for further research. The same applies to the 
parameters of the procedure of distortion of input images, as 
well as the size of the training step. 

One should note that the effectiveness of the proposed 
approach strongly depends on the choice of a set of pre-pro-
cessing operations, which should be adequate for the practi-
cal task to be solved. All possible deviations from the samples 
submitted for training should be taken into consideration.

7. Conclusions

1. Pruning the connections while training a multilayer 
perceptron makes it possible not only to reduce the required 
volume of computations when using a trained network but 
also to improve the likelihood of the correct handwritten 
digit recognition. In particular, the best option to train a per-
ceptron with pruning at the fewer connections, by 8.4 %, 
yielded a decrease in error from 1.89 % to 1.81 % (a gain of 
1.04 times), compared to non-pruning training options.

2. The pre-processing of source data submitted to the 
input of a multilayer perceptron during training ensures that 
the learning process is regularized; it reduced the output  
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error from 1.89 % to 1.52 % (a gain of 1.24 times), compared 
to using the data unchanged.

3. The combined application of pre-distortions and prun-
ing provides a cumulative effect that exceeds the sum of 
effects from the individual use of each. In particular, the 
margin of error was reduced from 1.89 % to 1.22 % (a gain of 

1.55 times, 1.55>1.04⋅1.24). In addition, it has been shown 
that the use of predistortions in pruning regularizes the 
process of training a neural network and prevents retrain-
ing, which gives the possibility of monotonous reduction of 
connections in the perceptron at consistently high-quality 
recognition of handwritten digits.
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