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Tpaouuiiinoro cxemoro poéomu 3 HEUPOHHUMU Mepe-
acamu 00 Hedasnvboz0 uacy 6yao 3aedanns apximexmy-
pu Helponnoi mepesci ma ii nodanvuwe nasuanus. Oonax
ocmanni docaidxcenns 6 yil obaacmi noxazaau, wo 3adami
i HaLAWmMoBaHi MAaxKuM HUHOM HEUPOHHI Mepexnci Maromo
3nauny naomipnicmo. Tomy dodamxoeoto onepauicto cmana
nixeidauis uici HAOMIpHOCME 34 PAXYHOK NPOPIOHCYBAHHSA
368’a3Ki6 6 apximexmypi neiiponnoi mepeoici. Ceped Gezniui
niodxo0ie do nixeidauii HAOMipHOCMI HAGI LW NePCneKmue-
HUM NPedCcmasisiemvCs CniibHe SUKOPUCMAHHA 0eKiNbKOX
Memodis, Koau ix cymapnuil epexm nepesumye cymy edex-
mie 00UHOUH020 BUKOPUCMAHHS K0ICHO20 3 Hux. IIposedeto
excnepumenmanvie 00CaAi0NCEHNA ePpeKxmueHocmi cniavho-
20 euKopucmamnna imepauiiinozo npopioxcyeanus i npedo-
O0pobKu (npedickadiceniii) exionux oanux é sada4i po3nizna-
8aHHS PYKONUCHUX UUPp 3a 00noM02010 Gazamowaposozo
nepcenmpona. Iloxazano, wo euxopucmanmns npedoopodxu
8XI0HUX 0aHUX pezynapi3ye npouedypy HA6UAHHS HeUPOHHOT
Mepedici, 3anobizatouu ii nepenasuanus. Cninvhe euxopu-
cmanna imepauyitinozo npopioicysanns i npedoopobxu 6xio-
HUX O0aHux 00360UN0O OMPUMAMU MEHULY NOMUIKY PO3-
niznasanua pyxonuchux uudp — 1,22 %, 6 nopisnanui 3
BUKOPUCMAHHAM MINLKU NPOPIONCYEAHHS (ROMUNKA 3MEH-
wunacs 3 1,89 % do 1,81 %) i 3 euxopucmannam minvku
npedickascenii (nomunxa smenwmunaca s 1,89 % do 1,52 %).
Kpim yvoeo pezyaspuszauin 3a paxynox npedickaxceniii 003-
60JI€ OMPUMAMU MOHOMOHHO 30LNLUYIOUYIOCA KiNbKICMD
gioKtouenux 36°a3Ki6 npu 30epercenni NOMuUIKU Ha PieHi
1,45 %. Ompumani Kpuei nHasuanus 0ns 00Hi€i i miei e
3adaui, axi eionogidaromv nouamxy HAGUAHHA 3 PIZHUX
nOMAMKOBUX YMOB, MAIOMb PI3HI 3HAUEHHA AK 6 Npoueci
Haeuanns, max i 6 Kinui nasuanna. Ile céiouumo npo 6aza-
moexcmpemanvHicmov QYHKUii axocmi — mouHocmi po3-
niznasanns. Ilpaxmuune suxopucmanns ub020 nONsA2a€ 6
npono3uuyii npogodumu 6azamopazose HABUAHHS HEUPOHHOT
Mepedici 3 6UGOPOM HATIKPAW,020 pe3ybmamy

Kntouosi cnosa: 6azamowaposuii nepcenmpow, Heupo-
HHA Mepexca, npopiorHCYBanHs, pesyrapu3ayisi, Kpuea Hae-
YanHs, 6a206i Koepiyienmu
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1. Introduction

Deep neural networks are a powerful tool for addressing
a wide range of tasks in the fields of image processing, un-
manned object management, disease diagnostics, recognition,
voice signal generation, etc. [1]. The efficiency of the practi-
cal use of neural networks improves as their dimensionality
increases. In this case, a practical constraint is the limited
computational power of the processors used. This is especially
true when a mobile phone or microcontroller serves as a com-
putational tool. This circumstance has initiated a large body
of research that identified the redundancy of fully connected
neural networks [2] and defined basic approaches to reducing
it. For example, it is shown in [3] that for the popular neu-
ral networks AlexNet (more than 61 million weights) and

VGG-16 (more than 132 million weights) employing the
ImageNet dataset, a decrease in the number of weight coeffi-
cients by 9 and 13 times, respectively, could be achieved with-
out compromising their performance quality. Despite the prog-
ress made, it is a relevant task to undertake further research
aimed at reducing the redundancy of neural networks while
maintaining, or even improving, their operational quality.

2. Literature review and problem statement

The main characteristics of neural networks are the qua-
lity of operation and the amount of computation required to
implement them. Typically, research is aimed at improving
only one of these characteristics.



One of the first approaches to reducing the redundancy of
neural networks was proposed in [4, 5]. It implies pre-training
a fully-connected neural network, then reducing the excess
connections and retraining the pruned neural network. It was
shown that it is possible to reduce the volume of computations
for the implementation of a trained neural network by 60 %
even without worsening the quality of its operation. Subse-
quent studies focused on further reducing both the amount of
computation by a trained neural network and the amount of
computation to train it at the same or slightly worse quality of
operation. Paper [3] proposed an iterative procedure for a step-
by-step weight reduction and a neural network post-training,
which made it possible to reduce by many times the number of
weight coefficients in the trained neural network.

Study [6] uses a low-ranking approach method; the vari-
ation dropout was employed in [7]. The proposed algorithms
made it possible to speed up the training and reduce the
volume of computations during training. Work [8] proposed
a method of deep compression consisting of three stages:
the usual reduction of connections, similarly to [3], the
quantization of weights, and Huffman coding. The further
adaptation of neural networks to the limited computing ca-
pabilities of a controlling element is reported in [9]. The cited
paper proposes to use the quantization of input signals with
a dynamically changing accuracy. However, the algorithms
proposed in [8, 9] could be implemented effectively only by
using programmable logic matrices and are not suitable for
conventional processors.

The approaches in [3-9] are characterized by that the
learning process begins in a fully-connected topology of the
neural network, followed by a decrease in the number of
connections in the course of training. It is possible to achieve
a significant reduction in the required volume of RAM, in
energy consumption, and the required number of arithmetic
operations, by pruning the structure of a neural network at
the outset, to then train such a pruned network. Paper [10]
compares the characteristics of neural network training
that begin learning with a fully connected topology and
the RadiX-Nets-type networks that initially have a pruned
structure. It was shown that the same end characteristics are
obtained under such an approach but the individual imple-
mentations of the RadiX-Nets training could demonstrate
a computational instability. Addressing this instability is the
direction for further research. A similar approach was ap-
plied in [11]; it is proposed to prune a neural network before
training by using a connection sensitivity criterion. It is
possible to further train the resulting pruned network using
any modern algorithm. Such an approach makes it possible to
achieve the weight coefficient saving of up to 99 % in known
neural networks but this would be accompanied by a deterio-
ration in the quality of their performance.

The IPLT (incremental pruning based on less training)
approach, proposed in [12], can serve an interim solution.
While the traditional approach, used, for example, in [3],
implies a long-time neural network training at every step and
a slight reduction of its connections, the approach in [12] em-
ploys small learning intervals followed by a radical reduction
of its connections. Achieving the desired reduction in the
configuration of the neural network is followed by training it
to the established mode. Such an approach ensures the same
quality characteristics as the conventional one but the rate
of learning increases by an order of magnitude. It should be
noted that a neural network can be trained using a supercom-
puter while its implementation in the trained form — using

alow-power microprocessor. Therefore, the rate of learning is
typically not a critical parameter for neural networks imple-
mented on low-power computers.

The approaches reported in [3—12] are aimed primarily at
reducing the redundancy of neural networks while maintain-
ing or even compromising the operational quality of neural
networks. This makes it easier to implement such solutions
on less-performing computing devices but does not improve
the quality of their operation.

In terms of improving the quality of neural network per-
formance, the most promising are those approaches that are
orthogonal to each other. The combined application of such ap-
proaches provides a new quality. A prime example is the compu-
tational eco-system [13], which achieved the best result when
recognizing handwritten digits from the MNIST set [14] — the
recognition error was 0.17 %. This is 0.03 % better than the
result shown by a person (0.2 %). The topology of this network
contains a set of diverse classifiers built on the basis of the con-
volutional neural networks, which, in turn, employ different
approaches for learning. All these networks run in parallel and
their outputs are the inputs of the unifying Meta-Nets network.
A key factor in this result is a variety of approaches for training
the primary convolutional neural networks.

It should be noted that the improvement in the operatio-
nal quality in [13] was achieved by repeatedly increasing the
volume of computations by the trained neural network. There-
fore, in order to reduce the redundancy of neural networks
while improving the quality of operation, it seems appropriate
to study approaches that differ from each other in the principle
of action and the possibility of their combined application.
Among these directions is the use of an input signal distor-
tion and its joint work with the usual pruning [3] regarding
the training of a multilayer perceptron. On the one hand, the
multilayer perceptron is part of the convolutional networks as
an element of the finishing processing. On the other hand, it
has a rather simple and homogeneous topology, which makes
its use easier in the analysis and signal processing peripheral
devices, implemented on the microcontrollers — smart sensors.

The studies reported in [15—17] show that the pre-dis-
tortion of input images in the form of turns, horizontal and
vertical shifts, compression, as well as stretching horizontally
and vertically, make it possible to significantly improve the
characteristics of object recognition on images. The impact
of each separate pre-distortion on the resulting charac-
teristics of such known convolutional networks as LeNet,
Network3, and DropConnect was investigated in [15]. It was
shown that the use of each type of predistortion leads to an
improvement in the characteristics of a neural network but
the greatest effect is obtained at a combined application of
all kinds of pre-distortions. Paper [16] demonstrated that
the pre-distortion of input images from the MNIST set when
using a fully-connected multilayer perceptron with a num-
ber of hidden layers from 2 to 9 and a total quantity of the
weight coefficients from 1.3 to 12 million reduces the error of
handwritten digit recognition to 0.35 %. A comparison of the
effectiveness of the use of the convolutional neural networks
and a multilayer perceptron for analyzing text documents
involving pre-distortions using the MNIST dataset as an ex-
ample was carried out in [17]. It was shown that even simple
algorithms to train a neural network with a simple topology,
a multilayer perceptron, can ensure a small recognition error
when trained. In this case, it may take a large number of
epochs to learn but, given today’s computational capabilities,
this is not a problem. It was noted that an essential factor



that ensures a small magnitude of the recognition error is
the quality, quantity, and variety of input data, which, in
turn, can be acquired by pre-distorting the source data. All
the above studies have shown the effectiveness of using the
pre-processing of input data to improve the quality of neural
networks operation. However, they did not aim at reducing
the redundancy of weight coefficients.

Given the effectiveness of applying the approaches to
prune neural networks and to pre-distort the input data, it is
interesting to study their combined application in the train-
ing of a multilayer perceptron using one of the most popular
data sets, MNIST.

3. The aim and objectives of the study

The aim of this study is to examine the effectiveness
of the combined application of data pre-distortion and the
iterative algorithm to reduce connections and to post-train
a multilayer perceptron using an example of handwritten
digit recognition from the MNIST set.

To accomplish the aim, the following tasks have been set:

— to identify the differences in training a multilayer per-
ceptron in the presence and absence of connection pruning
provided that the pre-distortion is not used in this case;

— to compare the learning curves and the resulting cha-
racteristics of a multilayer perceptron in the presence and ab-
sence of input data pre-processing provided that the pruning
is not used in this case;

— to identify the effectiveness of the combined applica-
tion of data pruning and pre-distortion.

4. Parameters for the applied neural network
and input data

4. 1. Description of a neural network and its training
algorithm

The original neural network used was a perceptron with
two hidden layers. The first hidden layer contained 256 neu-
rons, the second hidden layer — 128 neurons. The function of
neuron activation is sigmoid. The input layer had 784 neu-
rons (by the number of pixels in the images of handwritten
digits from the MNIST set). The output layer had 10 neurons,
each of which was assigned the corresponding number from
a series of 0, ..., 9. The simplest algorithm of stochastic gra-
dient descent (SGD) with a constant step was used as a train-
ing algorithm [18]. The initial values for the neural network’s
weight coefficients were set by a random number generator
at normal distribution, a zero average, and an rms deviation
whose magnitude is inversely proportional to the root square
from the number of connections included in a neuron.

The following designations were introduced:

— n,, =784 — the number of nodes in the input layer of the
neural network (the number of inputs to a neural network);

— n,, =256 — the number of neurons in the first hidden layer;

— n,, =128 — the number of neurons in the second hid-
den layer;

— n, =10 — the number of neurons in the output layer (the
number of outputs from a neural network);

— X, — the vector of input signals to the neural network,
dimensionality n,,;

— X, — the vector of input signals to the first hidden
layer, dimensionality #,;

— X, . — the vector of output signals from the second
hidden layer, dimensionality #,,;

- X, ,, — the vector of input signals to the second hid-
den layer, dimensionality #,,;

- X, ,, — the vector of output signals from the second
hidden layer, dimensionality 7,,;

- X,,, — the vector of input signals to the output layer,
dimensionality n,;
- X, — the vector of output signals from the output
layer (an output signal from a neural network), dimensio-
nality n,;

- X,,. — the vector of known correct output signals from
the neural network, dimensionality n,;

- W, — the matrix of weights between the input layer
and the first hidden layer, dimensionality 7,,xn,;

— W,,_,, — the matrix of weights between the first and
second hidden layers, dimensionality n,, xn,,;

- W,, , — the matrix of weights between the second hid-
den layer and the output layer, dimensionality n, xn,,;

— E,, — the vector of an error at the output from the

neural network, dimensionality 7,

— E,, — the vector of an error at the output from the
second hidden layer, dimensionality 7,,;

— E,, —the vector of an error at the output from the first
hidden layer, dimensionality n,,.

The input and output signals vectors for the hidden layers
and an output layer:

Xinont = Wi X Xy (1

[l

Xo—h1 = j{ad (Xin—M)’ (2)

where £, (x)= 1/ (1+ e”") is the activation function,

Xivs =W XX 4, 3)
Xoi= o (Xin—hZ)’ (4)
Xio = Wing XX s )
X = oo (Xis)- (6)

The vectors of errors at the outputs from the hidden layers
and an output layer:

Eaur = Xlar - Xaut’ (7)
EhZ = mz—o X Eout’ (8)
E =Wy XE,,. )

The renewal of the neural network’s weight coefficients is
performed according to the following equations:

Wino =Wy + u((Enuf X (1 —Xou )) X X{)Tfhz)y (10)
Wiiine =Wy + H((Ehz . '(1 =X, )) X XZ.M)? (11)
Wi =W+ H((Em . '(1 _Xofh1)) X Xﬂ)v (12)

where the «» operation denotes an element-wise multi-
plying; u=0.01 is the step of training, a scalar value.



The proposed modification of the algorithm implies that
the weight coefficients update is supplemented by the follow-
ing equations:

‘J/]ﬂ—o = WhZ—o .th—n’ (13)
Wiins = Wi Hy s (14)
‘J/in—hl = u/in—lﬂ ! Hin—hl’ (15)

where the H,, ,, H,, ,,, H,,_,, matrices have, respectively, the
dimensionalities of n, xn,,, n,, xXn,,, n, xXn,,.

At the beginning of training, all elements in the H,, ,
H,, ,, H, , matrices accept single values. At the end of each
subsequent L epoch of training, the weight coefficients W, _,,,
W, 4a» Wy, matrices are analyzed. If any ij elements of these
matrices accept a module below the corresponding threshold
P . Puso P, then the H,, , H, ,,, H, ,, matrices ele-
ments are assigned a value of 0.

4. 2. Description of the MNIST dataset

MNIST dataset is one of the main tests of different neural
network structures and their training algorithms [14].

The MNIST dataset consists of two parts. The first subset
consists of 60,000 images of handwritten digits from 0 to 9,
designed to train a neural network. The second subset con-
tains 10,000 similar images for testing. The task is to use data
for learning only to train a neural network to recognize digits
from the subset for testing. Each image is 28x28 pixel-sized
and is accompanied by information about the digit in a given
image. The color of the images is black and white. The color
of each pixel in the image is encoded by an integer eight-bit
binary number ranging from 0 (black) to 255 (white). The
typical images of the digits are shown in Fig. 1.

Digit: 2

Digit: 3

Digit: 8

Digit: 7

Digit: 1

Digit: 6

Digit: 3

Fig. 1. Typical images of digits from the MNIST set

Digit: 6

When operating the MNIST dataset, a neural network
must have 7, =784 inputs (based on the number of pixels
in the image) and n, =10 outputs, each of which is assigned
its own digit. X, , the vector of known correct output sig-
nals for the set image must accept 1 at the input at a place
corresponding to the digit shown in this image, and 0 at the
remaining ones. For example, if an image of a four is sent
to the input,

X, =(0000100000)". (16)

The response of the neural network is determined by the
position of the maximal element in the X, vector.

figure in the image = arg max{x,, [i]}. (17)

To train a neural network, the output signal vector X, is
used in full according to equations (1) to (16).

4. 3. Data preprocessing

The following operations were used to pre-process the data:

— the rotation of an image relative to the center, the range
of rotation angles is from —15 degrees to +15 degrees, the
specific value for each operation is set by its random number
generator with an even distribution;

— a horizontal shift in the range of —0.05 to 0.05 from
the size of an image for width, the specific value of the shift
magnitude is set by its random number generator with an
even distribution;

—a vertical shift in the range of —0.05 to 0.05 from the
size of an image for height, the specific value of the shift
magnitude is set by its random number generator with an
even distribution;

— achange in the size of an image by a factor ranging from
0.95 to 1.05 from the original image size, the specific value of
the shift magnitude is set by its random number generator
with an even distribution;

— filling the free image pixels with the same values as the
nearest filled pixels (for example, when shifting the image to
1 pixel to the right, a series of unfilled pixels are formed on
the left, which are filled with pixel values from the penulti-
mate left row);

—an increase in the contrast after the above opera-
tions, if the pixel value exceeds 100, it is assigned a value of
255 (white), if the pixel value is less than or equal to 100, it
is assigned a value of 0 (black).

Before submitting the next image, intended for training,
from the MNIST set to the neural network input, all ope-
rations from the described set are consistently performed
over it. This ensures the uniqueness of each of the images
coming to the neural network input. Images from the test set
are not processed.

3. Results of an experimental study of the effectiveness
of using the pruning and pre-distortion of data in the
training of a multilayer perceptron

5. 1. Studying the differences in multilayer perceptron
training in the presence and absence of connection pruning

Fig. 2 shows the learning curves of a two-layer percep-
tron. Each curve corresponds to training a neural network
under the new random initial conditions for weight coeffi-
cients. Curves 1-3: no weight coefficient zeroing was used.
Curves 4-6: the weight coefficients were zeroed following
each training epoch. Fig.3 shows the charts of change
in the proportion of zero coefficients corresponding to
curves 4—6 in Fig. 2.

One epoch corresponded to the training on 60,000 images,
intended for training, from the MNIST set. Each point on
the learning curves was derived in the following way. After
the training based on every 1,000 images, we estimated the
accuracy of digit recognition on a set of 10,000 images for
testing from the MNIST set. In this case, of course, the per-
manent weights were used, whose values were established at



a given moment. Next, we determined, from a set of 180 re-
cognition accuracy values, sequentially derived in this way,
the maximum one, which was used for a value on the learning
curve. Thus, each point on the learning curve corresponds to
the maximum value of accuracy achieved during the three
training epochs. The weight set that yielded this maximum
value is remembered and can be used in the further practical
use of a trained neural network.
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Fig. 2. The learning curves of a two-layer perceptron
under different initial conditions: 1, 2, 3 — without weight
coefficients zeroing; 4, 5, 6 — weight coefficients were
zeroed after each training epoch
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Fig. 3. Charts of change in the proportion of zero weight
coefficients depending on the number of a training epoch.
Curves 1—3 correspond to curves 4—6 in Fig. 2

The learning curves 4—6 in Fig. 2 were received using the
following thresholds:

P, = wps, /1000, (18)
Ph1fh2 = w;ﬁ;’z /4000v (19)
Py, =}y, /8000, (20)

where @, is the maximum module of the current elements
max

of the W, ,, matrix; w;}", is the maximum module of the
current elements of the W, ,, matrix; wj;" is the maximum
module of the current elements of the W, , matrix.

Fig. 2 shows that the use of weight zeroing operation

does not impair the results of digit recognition in the images

from the test set. Moreover, the best result without zeroing
is 0.9811, with it — 0.9819. In this case, the weight set, which
ensured the recognition accuracy of 0.9819, contained more
than 8.4 % of zero weight coefficients.

Fig. 4 shows the learning curves for a similar neural net-
work but the first hidden layer contained 8 % fewer neurons,
that is, 235. No zeroing was used.
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Fig. 4. The learning curves of a two-layer perceptron
under various random initial conditions without zeroing the
weights, the number of neurons in the first hidden layer
is 235, in the second — 128

A comparison of the learning curves in Fig. 2 and 4 shows
a slight deterioration in the quality of digit recognition in
the images when reducing the number of neurons in the first
hidden layer by 8 %.

The range of curves 1-3 maxima in Fig. 2 — 0.9811-0.9799.

The range of curves 4—6 maxima in Fig. 2 — 0.9819—-0.9806.

The range of curves 1, ..., 6 maxima in Fig. 4 — 0.981-0.9791.

Thus, the training algorithm with zeroing ensures an
improvement in the quality of recognition while reducing
the number of weight coefficients. At the same time, a simple
decrease in the number of weight coefficients leads to a dete-
rioration in the quality of recognition.

The charts in Fig. 3 show a monotonous increase in the
proportion of zero weights depending on the number of train-
ing epochs, which, for example, for curve 5, accepts a value
exceeding 18 % after 51 training epochs.

However, Fig. 2 demonstrates that the neural network
is retrained after 18—30 epochs, that is, the accuracy of digit
recognition in the images decreases. Therefore, in actual
practice, the weight coefficient set to be used should be cho-
sen based on the joint requirements for the accuracy of re-
cognition and the proportion of zero weights. All weight sets
obtained in the course of training can be stored in memory
with any of them to be employed in the implementation of
a neural network.

3. 2. Studying the differences in training a multilayer
perceptron in the presence and absence of the source data
pre-processing

Fig. 5 shows the learning curves of a multilayer percep-
tron (256 neurons in the first hidden layer and 128 neurons
in the second hidden layer).

The training was each time performed under the new ran-
dom initial conditions for weight coefficients. Curves 1-3:
without using the predistortion of starting images; curves 4—6:

applying it.



A comparison of these learning curves unambiguously
testifies to the positive effect of using the predistortion
during training.

The range of curves 1-3 maxima in Fig. 4 — 0.9811-0.9799.

For all curves 4—6 in Fig. 4, a maximum is 0.9841.

In addition, while curves 1-3 clearly show the effect
of retraining, expressed by the descent in the curves after
18-30 epochs, curves 4—6 demonstrate no effect of retraining.
This suggests that the predistortions used act as a regularizer.
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Fig. 5. The learning curves of a multilayer perceptron
under different random initial conditions: 1, 2, 3 — without
predistortion; 4, 5, 6 — with predistortion

Fig. 6 shows the separate detailed sections of the learning
curves based on the training data and the test data results.
The values ik are arranged along the horizontal axis, each
unit of the ik parameter corresponds to the training on the
next 1,000 images at the input to the neural network; along
the vertical axis — the accuracy of recognition.

Fig. 6, a, ¢, e, g shows that the retraining of the neural
network manifests itself in the degeneration of the learning
curve based on training data into a straight line. At the same
time, the use of pre-processing (Fig. 6, b, d, f, h) results in
that the learning curve based on the training data acquires
a constantly quasi-noisy shape. That is, there is a constant
process of learning based on the new data at the input to the
neural network.

1.0
)
g 0.9 g
= =
g os |
‘ — train 0.7 — train
0.7 ‘ test ‘ test
0 50 100 150 ik 0 50 100 150 ik
a b
1.00 1.00
P . )
5 — train 5
g 0.99 test g 0.99
3 3
g098 -
. K Wy 0.98
[ I
925 975 1,025 ik 925 975 1,025 ik
e f

3. 3. Exploring the effectiveness of the combined appli-
cation of pruning and pre-distortion of data

Fig. 7 shows the learning curves of the multilayer per-
ceptron (256 neurons in the first hidden layer and 128 neu-
rons in the second hidden layer). The training was each
time performed under the new random initial conditions
for weight coefficients. Curves 1-3: using only the predistor-
tion of starting images; curves 4—6: using the predistortion
and pruning.

0.988
-8 5 4
0.986 ( vl
> 0.984 |
Q
2
3 Ik
g 0982
0.980 | R R Vi)
0.978 ‘ ‘ | ‘
100 200 300 400 500 600
epochs

Fig. 7. The learning curves of a multilayer
perceptron under different random initial conditions.
1—3: using only the predistortions;

4—6: using the predistortion and pruning after
each training epoch

A comparison of the learning curves in Fig. 7 shows
that the combined application of the iterative pruning and
pre-processing of source data has resulted in the maximum
recognition accuracy of 0.9878, which corresponds to a re-
cognition error of 1.22 %. At the same time, the use of prun-
ing only (Fig. 2) reduced the error from 1.89 % to 1.81 %,
while using the predistortion only (Fig.5,7) reduced the
error from 1.89 % to 1.52 %.

Thus, the combined application of the iterative pruning
and pre-processing of source data results in a greater effect in
terms of recognition accuracy than the sum of the effective-
ness of the separate use of pruning and pre-distortion.
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Fig. 6. The fragments of learning curves based on training data and for test data:
a, ¢, e, g — without the distortion of starting images, b, d, f, h— using the predistortion; a — ik=1...175,
b—ik=1...175, ¢ — ik=350...550, d— ik=350...550, e — ik=900...1,075, f— ik=900...1,075,
g — ik=2,875...3,050, h— ik=2,875...3,050



In addition, it is necessary to note the regularizing effect
from using the predistortion, which makes it possible to ob-
tain a monotonous reduction in the number of connections in
a neural network while maintaining a recognition error at the
level of 1.45 % or less throughout 660 training epochs. Fig. 8
shows the charts of change in the proportion of zero weight
coefficients depending on the number of a training epoch,
corresponding to curves 4—6 in Fig. 7.
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Fig. 8. Charts of change in the proportion of zero weight
coefficients depending on the number of a training epoch.
Curves 1—3 correspond to curves 4—6 in Fig. 7

Fig. 2, 3 show that the pure pruning (zeroing the weights)
led, after training during 51 epochs, to an increase in the
error of recognition to 2% and higher at the number of
zero coefficients of about 18 %. At the same time, Fig. 7,8
show that over 660 epochs the number of zero coefficients
reached 72 % of the initial number of weight coefficients in
a fully-connected neural network while the recognition error
remained at 1.45 % or less.

6. Discussion of results of studying the effectiveness
of using the pruning and pre-distortion of data in the
training of a multilayer perceptron

Our experimental study of the combined application
of pruning and predistortions has shown that their joint
application is efficient and produces an additional effect on
the accuracy of handwritten digits recognition, as well as
maintains the recognition error at a low level when pruning
the connections in a multilayer perceptron. The study was
conducted based on the MNIST dataset. One can expect that
in tasks close to the set of handwritten digits MNIST, the
would-be effect would be of the same order. At the same time,
the regularizing properties of the input data predistortions
could be used in a wide range of neural network learning
tasks along with regularization methods such as .2, Dropout,
and others [1].

The learning curves in Fig. 2, 4, 5,7 show that the pro-
cess of training a multilayer perceptron is significantly
dependent on the initial conditions for weight coefficients,
which is the result of the complex nature of the surface of
the quality function — the accuracy of recognition. This
fact can be practically implemented in two ways. First, by
conducting multiple neural network training, it becomes
possible, starting from different random initial conditions,
to choose a variant of weight coefficients that would yield

a minimal error. Second, the neural network variants, trained
under different initial conditions, could be combined in an
additional neural network to build an ensemble classifier,
which would significantly reduce the recognition error [13].
The last provision can be illustrated with data from Table 1,
giving the number of errors for each digit for the three per-
ceptron training options corresponding to curves 4—6 in
Fig. 7, after training over 660 pochs. The total number of
images in the test set is 10,000.

Table 1

The number of recognition errors for each digit for three
neural network training options

Digit in Error quantity

an image Option 1 Option 2 Option 3
0 7 4 9
1 6 4 5
2 25 16 16
3 16 18 18
4 15 18 8
5 14 12 21
6 1 17 17
7 16 27 2
8 18 25 11
9 29 17 2

Table 1 shows that even if the images that have been
misidentified are matched, combining the results of the three
variants would reduce the error. And if some of the images
that are misidentified by the different variants do not match
up, the final error would be even smaller.

It should be noted that the frequency of pruning L=1 (after
each epoch), as well as the magnitudes of thresholds when
pruning, were chosen based on our practical experience. The
issues related to the better justified and dynamic choice of
a pruning frequency and the pruning thresholds magnitudes
are the areas for further research. The same applies to the
parameters of the procedure of distortion of input images, as
well as the size of the training step.

One should note that the effectiveness of the proposed
approach strongly depends on the choice of a set of pre-pro-
cessing operations, which should be adequate for the practi-
cal task to be solved. All possible deviations from the samples
submitted for training should be taken into consideration.

7. Conclusions

1. Pruning the connections while training a multilayer
perceptron makes it possible not only to reduce the required
volume of computations when using a trained network but
also to improve the likelihood of the correct handwritten
digit recognition. In particular, the best option to train a per-
ceptron with pruning at the fewer connections, by 8.4 %,
yielded a decrease in error from 1.89 % to 1.81 % (a gain of
1.04 times), compared to non-pruning training options.

2. The pre-processing of source data submitted to the
input of a multilayer perceptron during training ensures that
the learning process is regularized; it reduced the output



error from 1.89 % to 1.52 % (a gain of 1.24 times), compared
to using the data unchanged.

3. The combined application of pre-distortions and prun-
ing provides a cumulative effect that exceeds the sum of
effects from the individual use of each. In particular, the
margin of error was reduced from 1.89 % to 1.22 % (a gain of

1.55 times, 1.55>1.04-1.24). In addition, it has been shown
that the use of predistortions in pruning regularizes the
process of training a neural network and prevents retrain-
ing, which gives the possibility of monotonous reduction of
connections in the perceptron at consistently high-quality
recognition of handwritten digits.
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