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1. Introduction

The isotropic gently sloping shells, rectangular in plan, 
are widely used in many spheres of human activity, from 
aviation to construction. The process of the development 
and implementation of design and engineering solutions 
predetermines a significant increase in the requirements for 
the parameters of strength and reliability of the developed 
structures and mechanisms. There is a need to calculate the 
mechanical characteristics of structural elements, including 
shells of different shapes, which implies determining their 
resonance oscillation frequencies.

An effective numerical procedure has been proposed for 
solving the problems on the free oscillations of gently sloping 
isotropic shells in order to perform calculations involving the 
application of a spline-approximation method of unknown 
functions. The initial system of differential equations in the 
partial derivatives was reduced, through the spline-colloca-
tion along one of the coordinate directions, to the boundary 
value problem of eigenvalues for a system of ordinary dif-
ferential equations with variable coefficients. The resulting 

one-dimensional problem was solved by a stable numerical 
discrete orthogonalization method in a combination with an 
incremental search method.

When calculating the thin gently sloping shells, it is 
advisable to construct a computation algorithm based on the 
classic theory by Kirchhoff-Love. It implies the introduction 
of a series of simplifications to the initial equations of the 
elasticity theory, which, in this case, exert an insignificant 
influence on the calculation results but considerably simpli-
fy the resulting equations. When calculating the non-thin 
shells, it is expedient to take into consideration the turning 
angles of an initial rectilinear element caused by the trans-
verse offsets. This clarification is taken into consideration in 
the theory of the Timoshenko-Mindlin type.

It is a relevant issue to establish the limits of the use 
of each theory in the calculation of the natural oscillation 
frequencies of gently sloping shells. At low thickness, it is 
more practical to perform calculations in a classic statement. 
However, for the case of relatively thick shells, the compu-
tation in the classic statement leads to significant errors. 
Therefore, starting at a certain value of the thickness, it is 
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Викладена ефективна чисельна методика розв’я-
зання задач про вiльнi коливання iзотропних пологих 
оболонок з застосуванням методу сплайн-апроксимацiї 
невiдомих функцiй по одному з координатних напрям-
кiв. З використанням запропонованої методики були 
дослiдженi резонанснi частоти коливань цилiндрич-
них оболонок та оболонок двоякої кривизни як з ква-
дратним, так i з прямокутним планом. Розрахунки 
проводились та порiвнювались по двом теорiям: кла-
сичнiй (Кiрхгоффа-Лява) та уточненiй (Тимошенка-
Мiндлiна). Встановлювалась залежнiсть власних 
частот коливань вiд спiввiдношення товщини оболо-
нок i їх розмiрiв в планi. Виявлено, що обчисленi в уточ-
ненiй постановцi частоти вiльних коливань пологих 
оболонок мають меншi значення, нiж вiдповiднi часто-
ти, обчисленi в класичнiй постановцi. Зi збiльшенням 
товщини оболонок рiзниця у значеннях вiдповiдних 
частот зростає. Отриманi результати розрахункiв 
порiвнювались з частотами, розрахованими аналiтич-
но шляхом розкладання невiдомих функцiй в ряди 
Фур'є. Порiвняння дало змогу визначити оптимальну 
область застосування кожної з теорiй. Встановлено, 
що частоти вiльних коливань тонких пологих обо-
лонок доцiльнiше розраховувати в класичнiй поста-
новцi. Розрахунок частот нетонких оболонок (при 
спiввiдношеннi товщини до найменшого розмiру в планi  
h/a0,05) при будь-яких геометричних параметрах 
оболонок доцiльнiше проводити в уточненiй поста-
новцi. Отриманi результати пiдтвердили теоретичнi 
припущення щодо важливостi врахування кутiв пово-
роту спочатку прямолiнiйного елемента, викликаних 
поперечними зсувами, при обчисленнях власних частот 
коливань нетонких оболонок. Пiдтверджено унiвер-
сальнiсть та високу точнiсть методу сплайн-апрок-
симацiї
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more expedient, in terms of accuracy of the obtained results, 
to compute the natural oscillation frequencies of gently 
sloping shells in the refined statement. Determining such a 
limit of  the shell thickness would make it possible to prop-
erly choose between the classic and refined statements when 
investigating the natural oscillation frequencies of gently 
sloping shells, which could improve accuracy.

2. Literature review and problem statement

Paper [1] reports the results of studying the rectangular 
plates of different thicknesses using a spline-approximation 
method. A given method was subsequently used by the 
authors of article [2] to investigate the natural oscillation 
frequencies of orthotropic rectangular plates of different 
thicknesses. In this case, the calculations were carried out 
both in the classical statement and in the refined statement. 
The cited article considered plates. Then, the spline approx-
imation and discrete orthogonalization methods were used 
to study the stressed state of orthotropic shells in the refined 
statement. Thus, work [3] considered the shells of different 
curvature; paper [4] – shells of different thicknesses. The 
use of B-splines to solve the static problems for plates with 
parameters that change in two coordinate directions was re-
ported in study [5]. However, the above papers considered the 
problems exclusively on the stressed-strained state of plates 
and shells. The problems on the free oscillations of the shells 
were solved in article [6]; the branched meridian method was 
used. This method combines a Fourier method, an incremen-
tal search method, and an orthogonal sweep method. Pa- 
per [7] examined the vibration of thin-walled systems con-
sisting of coaxial combinations of spin shells of various shapes 
with Toro-elliptical elements in the classic statement. In this 
case, in order to solve the appropriate two-dimensional prob-
lems on eigenvalues, the authors employed a numerical-ana-
lytical procedure, which includes the method of separation 
of a Fourier variable, an incremental search method, and 
the orthogonal sweep method with a solution to the Cauchy 
problem. Study [8] proposes two approaches to investigating 
the free and forced axisymmetric oscillations of a cylindrical 
shell. They are based on three-dimensional elasticity theory 
and a division of the original cylindrical shell with cross-sec-
tional concentric circles into several uniaxial cylindrical 
shells. The cited papers address various methods for solving 
the problems on free oscillations, however, the calculations 
are performed for thin shells. The oscillation frequencies of 
relatively thick shells are considered in the refined statement 
in study [9]. In this case, the authors examined the orthotro-
pic shells of variable thickness and the calculations were car-
ried out using a spline-approximation method. All the above 
works, except [2], report studies based only on the classic 
statement or only in the refined statement, without com-
paring the results of calculations of the same objects in both 
theories. Article [10] proposed an approach to determine the 
natural oscillation frequencies of shells of different geometry 
and relative thickness. The shells were made from isotro-
pic, orthotropic, and anisotropic materials. The approach 
implies building a mathematical model based on the classic 
theory by Kirchhoff-Love, the improved theory by Timos-
henko-Mindlin, the theory of spatial elasticity. Although the 
cited work employed different theories, the authors, however, 
did not resolve the issues related to the influence of the shell 
thickness on the accuracy of calculations in various theories. 

We are not aware of the studies that would establish the de-
pendence of the natural oscillation frequencies of gently slop-
ing shells on the ratio of their thickness and size in the plan 
when applying both theories. This allows us to argue that it is 
advisable to conduct relevant calculations that could make it 
possible to identify the boundaries of the application of each 
theory. This study aims to establish a dependence of the nat-
ural oscillation frequencies of isotropic gently sloping shells 
on the ratio of their thickness and dimensions in the plan 
when performing calculations based on the classic (by Kirch-
hoff-Love) and refined (by Timoshenko-Mindlin) theories. 
The results to be obtained would make it possible to choose 
between the classic and refined statements in studying the 
natural oscillation frequencies of gently sloping shells, which 
could improve the accuracy of computations.

3. The aim and objectives of the study

The aim of this study is to determine the character 
of the behavior of resonance oscillation frequencies of a 
gently sloping isotropic shell depending on the ratio of its 
thickness and minimum size in the plan. This would make 
it possible to establish the boundaries of application of the 
classic (by Kirchhoff-Love) and refined (by Timoshenko- 
Mindlin) theories.

To accomplish the aim, the following tasks have been set:
– to establish the influence of the number of collocation 

points on the result of calculating the frequency of free os-
cillations of the gently sloping isotropic shells rectangular in 
plan when applying a spline-approximation method;

– to investigate the frequencies of free oscillations of 
isotropic gently sloping shells with a square (a/b=1) plan and 
two cases of a rectangular plan (a/b=2 and b/a=2), where a 
and b are the dimensions in the plan. To consider, for each 
case, both the cylindrical shells (lx/a=0.1 and ly/a=0) and 
the shells of double curvature (lx/a=0.1 and ly/a=0.1), where 
l is the arrow of lifting. To perform calculations at different 
values of the shell thickness: from h/a=0.01 (thin shells) to 
h/a=0.11 (non-thin shells) with an increment of 0.02. All 
calculations are to be carried out according to two theories: 
classic and refined;

– to compute the frequencies of free oscillations of gen-
tly sloping shells by decomposing the unknown functions 
into a Fourier series, using a mathematical apparatus of the 
refined theory; to compare the analytical frequencies with 
those obtained by the proposed procedure and to define the 
boundary of application of each theory.

4. Materials and methods to study the natural oscillation 
frequencies of isotropic gently sloping shells

4. 1. Examined objects
The object of our study: isotropic gently sloping shells, 

rectangular in plan, of constant thickness. The character-
istics of the shells’ material: Е=2.016⋅1011 Pa, ν=0.3, ρ= 
=7,800 kg/m3.

We have studied the cylindrical shells and shells of dou-
ble curvature, rectangular in plan, which meet the flatness 
condition 

( )min ,

5

a b
l ≤ ,
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where l is the arrow of lifting, a and b are the dimensions 
in the plan. For each value, the shell aspect ratio: a/b=1 – 
square plan, a/b=2 and b/a=2 – rectangular plan, two types 
of geometric parameters were calculated: the cylindrical 
shell (lx/a=0.1 and ly/a=0) and the shell of double curvature 
(lx/a=0.1 and ly/a=0.1).

The thickness of each of the examined shells changed 
discretely, the ratio of the shell thickness to the smallest 
size in plan varied from h/a=0.01 (thin shells) to h/a=0.11 
(non-thin shells). 

The calculations were performed at the hinge fastening 
of the shell’s sides.

4. 2. Initial ratios
Let us represent the shell displacement in the following 

form: 
– classic theory (by Kirchhoff-Love):

( ) ( ) ( ), , , , , , , ,x xu x v z t u x y t z x y t= + ϑ

( ) ( ) ( ), , , , , , , ,y yu x v z t v x y t z x y t= + ϑ

( ) ( ), , , , , ;zu x v z t w x y t=   (1)

– refined theory (by Timoshenko-Mindlin):

( ) ( ) ( ), , , , , , , ,x xu x v z t u x y t z x y t= + ψ

( ) ( ) ( ), , , , , , , ,y yu x v z t v x y t z x y t= + ψ

( ) ( ), , , , , ,zu x v z t w x y t=   (2)

where x, y, z are the coordinates of shell points; ux, uy, uz are 
the corresponding displacements; u, v, w are the displace-
ments of coordinate surface points in the directions x, y, z; 
ϑx, ϑy are the angles of rotation of a normal element relative 
to the coordinate axes without taking into consideration the 
transverse offsets; ψx, ψy are the complete turning angles of 
a rectilinear element. 

According to (1) and (2), the expressions for deforma-
tions are written in the form: 

– classic theory (by Kirchhoff-Love):

( ) ( ) ( ), , , , , , , ,x x xe x y z t x y t z x y t= ε + κ

( ) ( ) ( ), , , , , , , ,y y ye x y z t x y t z x y t= ε + κ

( ) ( ) ( ), , , , , 2 , , ,xy xy xye x y z t x y t z x y t= ε + κ

( ), , , 0,xze x y z t = ( ), , , 0;yze x y z t =   (3)

– refined theory (by Timoshenko-Mindlin):

( ) ( ) ( ), , , , , , , ,x x xe x y z t x y t z x y t= ε + χ

( ) ( ) ( ), , , , , , , ,y y ye x y z t x y t z x y t= ε + χ

( ) ( ) ( ), , , , , 2 , , ,xy xy xye x y z t x y t z x y t= ε + χ

( ) ( ), , , , , ,xz xe x y z t x y t≅ γ ( ) ( ), , , , , ,yz xe x y z t x y t≅ γ  (4)

where γx, γy are the angles of rotation caused by trans-
verse offsets; εx, εy, εxy are the components of tangential 
deformation defining the internal geometry of the coor-

dinate surface; κx, κy, 2κxy are the components of bend-
ing deformation in a classic theory; χx, χy, 2χxy are the 
components of bending deformation in the refined theory, 
characterizing the bending and twisting of the coordinate  
surface. 

The equations describing free transverse oscillations in 
the gently sloping shells in the theories by Kirchhoff-Love 
and by Timoshenko-Mindlin take the form: 

– classic theory (by Kirchhoff-Love):

0,yxx
NN

x y

∂∂
+ =

∂ ∂
0,xy yN N

x y

∂ ∂
+ =

∂ ∂

2

1 2 2
0,yx

x y

QQ w
k N k N h

x y t

∂∂ ∂
+ − − + ρ =

∂ ∂ ∂

0,yxx
x

MM
Q

x y

∂∂
+ − =

∂ ∂
0;xy y

y

M M
Q

x y

∂ ∂
+ − =

∂ ∂
 (5)

– refined theory (by Timoshenko-Mindlin):

0,yxx
NN

x y

∂∂
+ =

∂ ∂
0,xy yN N

x y

∂ ∂
+ =

∂ ∂
2

1 2 2
0,yx

x y

QQ w
k N k N h

x y t

∂∂ ∂
+ − − + ρ =

∂ ∂ ∂

23

2
0,

12
yxx x

x

MM h
Q

x y t

∂∂ ∂ ψ
+ − + ρ =

∂ ∂ ∂
23

2
0.

12
xy y y

y

M M h
Q

x y t

∂ ∂ ∂ ψ
+ − + ρ =

∂ ∂ ∂
 (6)

We set, on the shell’s contours x=0,a and y=0,b, the 
boundary conditions, which are determined through the 
displacements and rotation angles. Below are the expressions 
for boundary conditions at x=const(x=0, x=a) and at hinge 
fastening: 

– classic theory (by Kirchhoff-Love):

2

2
0;

u w
v w

x x
∂ ∂

= = = =
∂ ∂

 (7)

– refined theory (by Timoshenko-Mindlin):

0.x
y

u
v w

x x
∂ψ∂

= = = = ψ =
∂ ∂

 (8)

Similar conditions are set on the contours y=const, 
making the following substitutions in equations (7) and (8): 
x→y, u→v, ψx→ψy.

4. 3. Solving procedure
The solutions to the systems of equations (5) and (6) 

will be derived in the form: – classic theory (by Kirch-
hoff-Love):

( ) ( ) ( )
0

, ,
i i

N

i

u x y u x y
=

= ϕ∑

( ) ( ) ( )
0

, ,
i i

N

i

v x y v x y
=

= χ∑

( ) ( ) ( )
0

, ;
i i

N

i

w x y w x y
=

= ψ∑  (9)
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– refined theory (by Timoshenko-Mindlin):

( ) ( ) ( )1,

0

, ,
i i

N

i

u x y u x y
=

= ϕ∑

( ) ( ) ( )2,

0

, ,
i i

N

i

v x y v x y
=

= ϕ∑

( ) ( ) ( )3,

0

, ,
i i

N

i

w x y w x y
=

= ϕ∑

( ) ( ) ( )4,

0

, ,
i i

N

x x
i

x y x y
=

ψ = ψ ϕ∑

( ) ( ) ( )5,

0

, ,
i i

N

y y
i

x y x y
=

ψ = ψ ϕ∑   (10)

where ui(x), vi(x), wi(x), ψxi(x), ψyi(x) (i=0,…,N) are the de-
sired functions; ϕi(y), χi(y), ϕji(y) ( j=1…5) are the functions 
built using the third degree B-splines N≥4, ψi(y) are the 
functions built using the fifth degree B-splines N≥6, satis-
fying the boundary conditions on the contours y=0 and y=b.

Substituting (9) and (10) into equations (5) and (6), 
respectively, we require that they should be satisfied at the 
assigned collocation points ξk∈[0,b], k=0,…,N. After all the 
transformations, we derive a system of N+1 linear differen-
tial equations with respect to ui, vi, wi in the classic theory 
and ui, vi, wi, ψxi, ψyi in the refined theory. 

The problem on eigenvalues for the systems of ordinary 
differential equations was solved by the stable numerical 
method of orthogonalization in a combination with the in-
cremental search method.

5. Results of studying  
the free oscillations of isotropic gently sloping shells of 

different geometry 

5. 1. Determining the impact of the number of colloca-
tion points on the result of the computation of the natural 
oscillation frequencies of the examined shells

In order to determine the influence of the number of the 
N collocation points on the results of computing the natural 
oscillation frequencies of the studied shells, we calculated 
the first four oscillation frequencies ϖi at the different num-
ber of collocation points, from 10 to 22 in an increment of 2. 
The calculation was performed for two gently sloping shells, 
rectangular in plan: a cylindrical shell with a ratio of thick-
ness to the smallest size in the plan of h/a=0.07, and a shell of 
double curvature with the ratio h/a=0.11. The computation 
was conducted in the refined statement. The computation 
results are given in Table 1.

Given the results obtained, all subsequent calculations 
were performed at N=18 collocation points, which is a trade-
off between the relative accuracy of calculations and the cost 
of machine time for computation.

5. 2. Results of calculating the resonance oscillation 
frequencies of the examined shells using the proposed 
method

The results of our calculations of the resonance oscil-
lation frequencies of the investigated shells using the pro-
posed method of spline approximation for the case of hinge 
fastening of all sides are given in Table 2 – for the case of the 
classic statement, and in Table 3 – for the case of the refined 
statement.

Table 1

Oscillation frequencies of gently sloping shells computed at different number of the collocation points

Shell plan Shell type
( )ω = ω ρ − ν21 /i ia E

i
N

10 12 14 16 18 20 22

a/b=2
lx/a=0.1 
ly/a=0 

h/a=0.07

1 0.5920 0.5852 0.5818 0.5801 0.5791 0.5785 0.5782

2 0.8154 0.8105 0.8081 0.8068 0.8062 0.8056 0.8055

3 1.2709 1.2679 1.2664 1.2657 1.2652 1.2649 1.2648

4 1.7906 1.7352 1.7086 1.6946 1.6866 1.6819 1.6790

b/a=2
lx/a=0.1 
ly/a=0.1 
h/a=0.11

1 0.4695 0.4689 0.4686 0.4685 0.4684 0.4683 0.4683

2 0.7607 0.7526 0.7486 0.7465 0.7452 0.7445 0.7440

3 1.1830 1.1415 1.1222 1.1119 1.1060 1.1024 1.1002

4 1.2270 1.2268 1.2267 1.2267 1.2267 1.2266 1.2266

Table 2

Frequencies of the free oscillations of shells, rectangular in plan (a/b=2), computed in the classic statement

Shell plan Shell type
( )21 /i ia Eω = ω ρ − ν

i
h/a

0.01 0.03 0.05 0.07 0.09 0.11

a/b=2

lx/b=0.1 
ly/b=0

1 0.2187 0.3701 0.4671 0.5831 0.7087 0.8398

2 0.2206 0.3906 0.6003 0.8198 1.0430 1.2679

3 0.3105 0.5676 0.9332 1.3015 1.6708 2.0404

4 0.4302 0.8089 1.2621 1.7322 2.2085 2.6878

lx/b=0.1 
ly/b=0.1

1 0.5039 0.6329 0.6941 0.7769 0.8752 0.9844

2 0.6000 0.8504 1.0845 1.2197 1.3797 1.5566

3 0.6604 0.9840 1.2891 1.7520 2.2241 2.7006

4 0.6661 1.0419 1.5442 2.0816 2.6326 3.1903
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Table 3

Frequencies of the free oscillations of shells, rectangular in 
plan (a/b=2), computed in the refined statement

Shell 
plan

Shell 
type

( )21 /i ia Eω = ω ρ − ν

i
h/a

0.01 0.03 0.05 0.07 0.09 0.11

a/b=2

lx/a=0.1 
ly/a=0

1 0.2312 0.3764 0.4682 0.5791 0.6980 0.8195

2 0.2314 0.3955 0.5970 0.8062 1.0135 1.2154

3 0.3178 0.5685 0.9205 1.2652 1.5959 1.9093

4 0.4534 0.8535 1.2648 1.6866 2.0956 2.4813

lx/a=0.1 
ly/a=0.1

1 0.5312 0.6331 0.6860 0.7584 0.8438 0.9373

2 0.6878 0.8902 1.0740 1.1958 1.3361 1.4864

3 0.6809 0.9825 1.2764 1.6784 1.9321 2.1902

4 0.7498 1.0711 1.4451 1.6847 2.0836 2.4612

5. 3. Results of computing the frequencies of the free 
oscillations of gently sloping shells by decomposing the 
unknown functions into a Fourier series

Table 4 gives the first four dimensionless frequencies 
of the free oscillations of shells, square in plan, ϖi, which 
were calculated analytically, using the decomposition of 
the unknown functions in the refined statement into a 
Fourier series:

1,3,... 1,3,...

cos sin ,mn
m n

m x n y
u a

a b

∞ ∞

= =

π π
= ∑ ∑

1,3,... 1,3,...

sin cos ,mn
m n

m x n y
v b

a b

∞ ∞

= =

π π
= ∑ ∑

1,3,... 1,3,...

sin sin ,mn
m n

m x n y
w c

a b

∞ ∞

= =

π π
= ∑ ∑

1,3,... 1,3,...

cos sin ,x mn
m n

m x n y
d

a b

∞ ∞

= =

π π
ψ = ∑ ∑

1,3,... 1,3,...

sin cos .y mn
m n

m x n y
e

a b

∞ ∞

= =

π π
ψ = ∑ ∑   (11)

Table 4

The first four dimensionless frequencies of the free 
oscillations of shells ϖi, calculated analytically using  

the decomposition of the unknown functions in the refined 
statement into a Fourier series (11)

Shell 
plan

Shell 
type

( )21 /i ia Eω = ω ρ − ν

i
h/a

0.01 0.03 0.05 0.07 0.09 0.11

a/b=1

lx/a=0.1 
ly/a=0

1 0.2032 0.4024 0.4578 0.5284 0.6070 0.6891

2 0.2920 0.4437 0.7036 0.9557 1.1930 1.4129

3 0.3710 0.7216 0.9058 1.1140 1.3243 1.5265

4 0.4309 0.7639 1.1525 1.5282 1.8738 2.1841

lx/a=0.1 
ly/a=0.1

1 0.7358 0.7511 0.7803 0.8212 0.8708 0.9266

2 0.7469 0.8426 1.0011 1.1882 1.3827 1.5730

3 0.7469 0.8427 1.0011 1.1883 1.3829 1.5733

4 0.7673 0.9903 1.3095 1.6456 1.9667 2.2609

The charts (Fig. 1) shows the deviation (in percentage) 
in the values of the oscillation frequencies of shells, computed 
by using the method of spline-approximation in the classic 
(dashed line) and refined (solid line) statements from those 
analytically calculated in the refined statement. Thus, we 
compare the convergence of frequencies computed in the clas-
sic and refined statements with those analytically calculated 
in the refined statement. Red color denotes the first frequen-
cies, orange color – second, green – third, blue – fourth.

a                                                 b 

c                                                 d 

e                                                 f 

Fig. 1. Deviations (percentage) in the values of the resonance 
oscillation frequencies of gently sloping shells, calculated 

using the spline approximation method in the classic 
(dashed line) and refined (solid line) statements, from those 

analytically computed in the refined statement:  
a – cylindrical shell (lx/a=0,1; ly/a=0), square in plan (a/b=1);  

b – shell of double curvature (lx/a=0,1; ly/a=0,1), square 
in plan (a/b=1); c – cylindrical shell (lx/b=0,1; ly/b=0), 
rectangular in plan (a/b=2); d – shell of double curvature 

(lx/b=0,1; ly/b=0,1), rectangular in plan (a/b=2);  
e – cylindrical shell (lx/a=0,1; ly/a=0), rectangular in plan 

(b/a=2); f – shell of double curvature (lx/a=0,1; ly/a=0,1), 
rectangular in plan (b/a=2)

All cases of the geometric parameters of the examined 
shells (Fig. 1) demonstrate a similar pattern: with the in-
creasing ratio of shell thickness and minimum size in the 
plan, the accuracy of computation in the classic statement 
decreases, and that in the refined statement grows.

6. Discussion of results of studying  
the resonance oscillations of isotropic gently  

sloping shells

The data from Table 1 indicate that an increase in the 
number of collocation points leads to a decrease in the 
frequency values, and the computation accuracy improves. 

 

   
 
 

   
 
 

   
  

 

   
 
 

   
 
 

   
  

 

   
 
 

   
 
 

   
  



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 2/7 ( 104 ) 2020

24

The magnitude of change in the values is different for dif-
ferent frequencies and varies from 0.02 % to almost 7 %. 
Thus, increasing the number of collocation points from 10 
to 22 could improve the computation accuracy by 7 %; but, 
at the same time, the cost of machine time for calculating 
each frequency dramatically and significantly increases. 
Our analysis of computation results makes it possible to 
assert that already at 16 collocation points the accuracy of 
calculations achieves acceptable values, and the frequencies 
themselves differ from those calculated at 22 points by not 
larger than 1 %. Therefore, a reasonable number of colloca-
tion points in terms of computing accuracy and the cost of 
machine time is 16 or 18.

Analyzing the data given in the form of charts (Fig. 1), 
one notes a peculiarity typical for almost all cases of the 
geometric parameters of the shells. At low relative thick-
ness, the difference between the analytically calculated 
frequencies and those computed in the classic statement is 
less than the corresponding difference to the frequencies 
calculated in the refined statement. This indicates that at 
a small shell thickness relative to the dimensions in the 
plan, the computation of frequencies in the classic state-
ment makes it possible to obtain more accurate results.

With an increase in shell thickness, at a particular h/a 
ratio (different for different cases of geometric parame-
ters), the difference between the analytically calculated 
frequencies and those calculated in the refined statement 
becomes less than the corresponding difference at compu-
tation in the classic statement. With an increase in shell 
thickness, this difference continues to decrease, which 
indicates the improved accuracy of the corresponding 
calculations. Therefore, starting at a certain thickness 
value, it is more expedient to carry out computation in the 
refined statement.

The analysis of our results (Fig. 1) indicates that the 
boundary value is the ratio of the thickness to the smallest 
size in plan of h/a=0.05. Therefore, the natural oscilla-
tion frequencies of gently sloping shells with the ratio  
h/a0.05 should be calculated, in terms of accuracy, in the 
classic statement while for thicker shells ‒ in the refined 
statement. 

Determining the shell thickness limit makes it possi-
ble to choose between the classic and refined statements 
when studying the natural oscillation frequencies of 
gently sloping isotropic shells, rectangular in plan, which 
would improve the computation accuracy. In the future, 
it is advisable to conduct a study of the character of the 
behavior of the resonance oscillation frequencies of ortho-
tropic gently sloping shells depending on the ratio of their 
thickness and minimum size in the plan.

7. Conclusions

1. We have devised a numerical procedure for solving 
the problems on the free oscillations of gently sloping iso-

tropic shells, rectangular in plan, with the application of a 
spline-approximation method of unknown functions and a 
numerical method of discrete orthogonalization in a com-
bination with the incremental search method. We have 
computed the frequencies of free oscillations of the gently 
sloping shells both in the classical and refined statements 
with the different number of collocation points, from 10 
to 22, in an increment of 2. It has been determined that 
the computation results demonstrate a significant depen-
dence on the number of collocation points. In some cases, 
when increasing the number of collocation points from 10 
to 22, the calculation accuracy increases by 7 %. It has 
been established that a compromise value is 18 collocation 
points, so all subsequent calculations were conducted at 
this value.

2. The first four frequencies of the free oscillations 
of isotropic gently sloping cylindrical shells and shells 
of double curvature, with a square and rectangular plan, 
have been investigated with the application of the pro-
posed method of spline approximation. The ratios of the 
thickness of the studied shells and the smallest size in 
plan varied from h/a=0.01 to h/a=0.11 in an increment 
of 0.02. The calculations were carried out based on two 
theories: classic (by Kirchhoff-Love) and refined (by 
Timoshenko-Mindlin). The computation results are given 
in Tables 2, 3. It has been established that at the shell 
thickness less than h/a=0.04 the frequencies, calculat-
ed in the refined statement, accept higher values than 
the corresponding frequencies calculated in the cl assic 
statement. However, for shells with a thickness exceeding  
h/a=0.04 the frequencies computed in the refined state-
ment accept lower values than the corresponding frequen-
cies calculated in the classic statement. With the increase 
in shells thickness, this difference increases.

3. We have calculated the frequencies of free oscilla-
tions of gently sloping shells by expanding the unknown 
functions into a Fourier series, using a mathematical 
apparatus of the refined theory. A comparison was per-
formed between the results obtained with the help of the 
proposed method and those calculated analytically by 
expanding the unknown functions into a Fourier series. It 
has been established that at the low relative thickness, the 
difference between the analytically calculated frequen-
cies and those calculated in the classic statement is less 
than the corresponding difference from the frequencies 
computed in the refined statement. However, with the 
increase in thickness, this difference increases. Instead, 
the difference between the analytically calculated fre-
quencies and those calculated with the use of the proposed 
procedure in the refined statement decreases with the 
increase in the shell thickness. Thus, there is such a value 
of the shell thickness for which, at thickness smaller than 
it, it is advisable to use the classic theory, and when the 
thickness is larger (the ratio of thickness and smallest 
size in the plan is h/a0.05) – the refined theory should  
be applied.
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