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Buxnadena edpexmuena uucenvna memoouxa pose’s-
3aHHA 3a0a4 NPoO BLILHI KOJUBAHHS I30MPONHUX NOJIOZUX
000JI0HOK 3 3ACMOCYBAHHAM MeMOOY CNILAUH-ANPOKCUMAUTT
Hegidomux PyYHKUL no 00HOMY 3 KOOPOUHAMHUX HANPAM-
Ki6. 3 GUKOPUCMAHHAM 3ANPONOHOBAHOT MemOOuUKU Oyau
0ocaiddceHi Pe3oHaHCHI HaACMOmU KOJIUBAHL UUNTHOPUY-
HUX 00010H0K Ma 0607101H0K 0680AKOT KPUBU3HU AK 3 K6a-
opamuum, max i 3 npamokymuum naanom. Pospaxynxu
npPoBoOUNUCH MA NOPIBHIVBANUCL NO 080M MeOPisM: Kd-
cuunii (Kipxeoppa-Jlaea) ma ymouneniii (Tumowenxa-
Minonina). Bcmanoenoganaco 3anexicHicmv 6JACHUX
wacmom KoaUGAHL 610 CNIBGIOHOWEHHA MOGUWUHU 06010~
HOK 1 ix posmipie 6 naani. Busieneno, wo o6uucaeni 6 ymou-
HeHill nOCMAH0BUi MACMOMU BINbHUX KOJUGAHL NOTOZUX
00071010K MaOMb MeHUL 3HAMEHNSL, HiJC 610N0610HI Hacmo-
mu, obuucaeni 6 xaacuuniii nocmanosui. 3i 36iavuEHHAM
MoSUWUHU 0GONOHOK PIHUUS Y 3HAMEHHAX 6I0NO0GIOHUX
wacmom 3pocmae. Ompumani peyavmamu po3paxyHKie
NOPieHINBATUCH 3 HACMOMAMU, POPAXOBAHUMU AHATIMUY -
HO WAAXOM PO3KAA0AHHA Hesidomux QyHKuil 6 psaou
Dyp'e. Ilopienuanns 0ano 3mozy GUIHAMUMU ONMUMATLHY
obnacmv 3acmocyseanns KoxcHoi 3 meopii. Bcmanosneno,
Wo uacmomu GiALHUX KOMUBAHL MOHKUX NONOZUX 060-
JIOHOK QouinbHiWe PO3PAxosyeamu 6 KAACUMHI nocma-
nosui. Pospaxynox uacmom nemouxux o06ononox (npu
CnieeioHOweNnHI MOBUUHU 00 HALIMEHWO020 PO3MIPY 6 naaHi
h/a>0,05) npu 6yov-axux zeomempuuHux napamempax
000n0H0K OoyinvHime nposodumu 6 ymoumeniii nocma-
Hoeyi. Ompumani pesynomamu niomeepounu meopemurni
npuUnYuweHHs wooo 8aHCAUBOCMI 6PAXYEAHHS KYMi6 N06O-
pomy cnouamxy npAMOJIHINHOZ0 eleMenma, 6UKIUKAHUX
nonepeuHuMU 3CY68aAMU, NPU OOUUCTIEHHSX BAACHUX HACMON
Koueans Hemouxux o0ononox. Iliomeepdceno ymieep-
CabHICM® Ma 6UCOKY MOUHICMb Memody CHAlH-AnpoK-
cumauii

Kmouoei cnosa: éinvni Konueanms, nonoei 06010HKuU,
xnacuuna meopisa Kipxeodpda-Jlasa, ymounena meopis
Tumowenxa-Minonina
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1. Introduction

The isotropic gently sloping shells, rectangular in plan,
are widely used in many spheres of human activity, from
aviation to construction. The process of the development
and implementation of design and engineering solutions
predetermines a significant increase in the requirements for
the parameters of strength and reliability of the developed
structures and mechanisms. There is a need to calculate the
mechanical characteristics of structural elements, including
shells of different shapes, which implies determining their
resonance oscillation frequencies.

An effective numerical procedure has been proposed for
solving the problems on the free oscillations of gently sloping
isotropic shells in order to perform calculations involving the
application of a spline-approximation method of unknown
functions. The initial system of differential equations in the
partial derivatives was reduced, through the spline-colloca-
tion along one of the coordinate directions, to the boundary
value problem of eigenvalues for a system of ordinary dif-
ferential equations with variable coefficients. The resulting
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one-dimensional problem was solved by a stable numerical
discrete orthogonalization method in a combination with an
incremental search method.

When calculating the thin gently sloping shells, it is
advisable to construct a computation algorithm based on the
classic theory by Kirchhoff-Love. It implies the introduction
of a series of simplifications to the initial equations of the
elasticity theory, which, in this case, exert an insignificant
influence on the calculation results but considerably simpli-
fy the resulting equations. When calculating the non-thin
shells, it is expedient to take into consideration the turning
angles of an initial rectilinear element caused by the trans-
verse offsets. This clarification is taken into consideration in
the theory of the Timoshenko-Mindlin type.

It is a relevant issue to establish the limits of the use
of each theory in the calculation of the natural oscillation
frequencies of gently sloping shells. At low thickness, it is
more practical to perform calculations in a classic statement.
However, for the case of relatively thick shells, the compu-
tation in the classic statement leads to significant errors.
Therefore, starting at a certain value of the thickness, it is



more expedient, in terms of accuracy of the obtained results,
to compute the natural oscillation frequencies of gently
sloping shells in the refined statement. Determining such a
limit of the shell thickness would make it possible to prop-
erly choose between the classic and refined statements when
investigating the natural oscillation frequencies of gently
sloping shells, which could improve accuracy.

2. Literature review and problem statement

Paper [1] reports the results of studying the rectangular
plates of different thicknesses using a spline-approximation
method. A given method was subsequently used by the
authors of article [2] to investigate the natural oscillation
frequencies of orthotropic rectangular plates of different
thicknesses. In this case, the calculations were carried out
both in the classical statement and in the refined statement.
The cited article considered plates. Then, the spline approx-
imation and discrete orthogonalization methods were used
to study the stressed state of orthotropic shells in the refined
statement. Thus, work [3] considered the shells of different
curvature; paper [4] — shells of different thicknesses. The
use of B-splines to solve the static problems for plates with
parameters that change in two coordinate directions was re-
ported in study [5]. However, the above papers considered the
problems exclusively on the stressed-strained state of plates
and shells. The problems on the free oscillations of the shells
were solved in article [6]; the branched meridian method was
used. This method combines a Fourier method, an incremen-
tal search method, and an orthogonal sweep method. Pa-
per [7] examined the vibration of thin-walled systems con-
sisting of coaxial combinations of spin shells of various shapes
with Toro-elliptical elements in the classic statement. In this
case, in order to solve the appropriate two-dimensional prob-
lems on eigenvalues, the authors employed a numerical-ana-
lytical procedure, which includes the method of separation
of a Fourier variable, an incremental search method, and
the orthogonal sweep method with a solution to the Cauchy
problem. Study [8] proposes two approaches to investigating
the free and forced axisymmetric oscillations of a cylindrical
shell. They are based on three-dimensional elasticity theory
and a division of the original cylindrical shell with cross-sec-
tional concentric circles into several uniaxial cylindrical
shells. The cited papers address various methods for solving
the problems on free oscillations, however, the calculations
are performed for thin shells. The oscillation frequencies of
relatively thick shells are considered in the refined statement
in study [9]. In this case, the authors examined the orthotro-
pic shells of variable thickness and the calculations were car-
ried out using a spline-approximation method. All the above
works, except [2], report studies based only on the classic
statement or only in the refined statement, without com-
paring the results of calculations of the same objects in both
theories. Article [10] proposed an approach to determine the
natural oscillation frequencies of shells of different geometry
and relative thickness. The shells were made from isotro-
pic, orthotropic, and anisotropic materials. The approach
implies building a mathematical model based on the classic
theory by Kirchhoff-Love, the improved theory by Timos-
henko-Mindlin, the theory of spatial elasticity. Although the
cited work employed different theories, the authors, however,
did not resolve the issues related to the influence of the shell
thickness on the accuracy of calculations in various theories.

We are not aware of the studies that would establish the de-
pendence of the natural oscillation frequencies of gently slop-
ing shells on the ratio of their thickness and size in the plan
when applying both theories. This allows us to argue that it is
advisable to conduct relevant calculations that could make it
possible to identify the boundaries of the application of each
theory. This study aims to establish a dependence of the nat-
ural oscillation frequencies of isotropic gently sloping shells
on the ratio of their thickness and dimensions in the plan
when performing calculations based on the classic (by Kirch-
hoff-Love) and refined (by Timoshenko-Mindlin) theories.
The results to be obtained would make it possible to choose
between the classic and refined statements in studying the
natural oscillation frequencies of gently sloping shells, which
could improve the accuracy of computations.

3. The aim and objectives of the study

The aim of this study is to determine the character
of the behavior of resonance oscillation frequencies of a
gently sloping isotropic shell depending on the ratio of its
thickness and minimum size in the plan. This would make
it possible to establish the boundaries of application of the
classic (by Kirchhoff-Love) and refined (by Timoshenko-
Mindlin) theories.

To accomplish the aim, the following tasks have been set:

— to establish the influence of the number of collocation
points on the result of calculating the frequency of free os-
cillations of the gently sloping isotropic shells rectangular in
plan when applying a spline-approximation method,;

—to investigate the frequencies of free oscillations of
isotropic gently sloping shells with a square (a/b=1) plan and
two cases of a rectangular plan (a/b=2 and b/a=2), where a
and b are the dimensions in the plan. To consider, for each
case, both the cylindrical shells (I,/a=0.1 and /,/a=0) and
the shells of double curvature (/,/a=0.1 and /,/a=0.1), where
[ is the arrow of lifting. To perform calculations at different
values of the shell thickness: from 4/a=0.01 (thin shells) to
h/a=0.11 (non-thin shells) with an increment of 0.02. All
calculations are to be carried out according to two theories:
classic and refined;

— to compute the frequencies of free oscillations of gen-
tly sloping shells by decomposing the unknown functions
into a Fourier series, using a mathematical apparatus of the
refined theory; to compare the analytical frequencies with
those obtained by the proposed procedure and to define the
boundary of application of each theory.

4. Materials and methods to study the natural oscillation
frequencies of isotropic gently sloping shells

4. 1. Examined objects

The object of our study: isotropic gently sloping shells,
rectangular in plan, of constant thickness. The character-
istics of the shells’ material: E=2.016-10!! Pa, v=0.3, p=
~7,800 kg,/m?.

We have studied the cylindrical shells and shells of dou-
ble curvature, rectangular in plan, which meet the flatness
condition



where [ is the arrow of lifting, a and b are the dimensions
in the plan. For each value, the shell aspect ratio: a/b=1 —
square plan, a/b=2 and b/a=2 — rectangular plan, two types
of geometric parameters were calculated: the cylindrical
shell (/,/a=0.1 and /,/a=0) and the shell of double curvature
(ly/a=0.1 and [,/a=0.1).

The thickness of each of the examined shells changed
discretely, the ratio of the shell thickness to the smallest
size in plan varied from 4/a=0.01 (thin shells) to 4/a=0.11
(non-thin shells).

The calculations were performed at the hinge fastening
of the shell’s sides.

4. 2. Initial ratios

Let us represent the shell displacement in the following
form:

— classic theory (by Kirchhoff-Love):

u,(x,0,z,t)=u(x,y,t)+ 20, (x,y,t),

u,(x,0,2,t)=0(x,y,t)+ 29, (x,4,¢),

u,(x,0,2,0)=w(x,y,t); (1)

— refined theory (by Timoshenko-Mindlin):

U, (x,v,z,t) = u(x,y,t)+ 2y, (x,y,t),

u, (x,v,z,t)z v(x,y,t)+z\yy(x,y,t),

u,(x,0,z,t)=w(x,y,t), (2)
where x, y, z are the coordinates of shell points; u,, u,, u, are
the corresponding displacements; u, v, w are the displace-
ments of coordinate surface points in the directions x, y, z;
Oy, O, are the angles of rotation of a normal element relative
to the coordinate axes without taking into consideration the
transverse offsets; y, W, are the complete turning angles of
a rectilinear element.

According to (1) and (2), the expressions for deforma-

tions are written in the form:
— classic theory (by Kirchhoff-Love):

e, (vyzt)=¢, (x.y0)+ 2, (xp.0),

e, (x,y,z,t) =€, (x,y,t)+ K, (x,y,t),

e, (vyzt)=¢, (x,y.t)+22¢, (x,4.0),

e.(x,y,2t)=0, e, (x,y,21)=0; 3)

— refined theory (by Timoshenko-Mindlin):

e (v.y.zt)=¢, (x.p.0)+2x, (x..0),

e, (x,y,z,t) =€, (x,y,t)+zxy (x,y,t),

e, (x,y,2,t)= e, (2,9,t)+ 22y, (2,9,0),

e.(xy,2t)=y,(x,y.1), e,.(x,y,2.0) =7, (x,.), 4)
where v,, v, are the angles of rotation caused by trans-

verse offsets; €,, €,, &, are the components of tangential
deformation defining the internal geometry of the coor-

dinate surface; K, K, 2Ky, are the components of bend-
ing deformation in a classic theory; x, %y 2% are the
components of bending deformation in the refined theory,
characterizing the bending and twisting of the coordinate
surface.

The equations describing free transverse oscillations in
the gently sloping shells in the theories by Kirchhoff-Love
and by Timoshenko-Mindlin take the form:

— classic theory (by Kirchhoff-Love):

ON, N, N, N

+ ) J:Oy
Jx  dy Jx  dy
90, AQ, dw
< Y kN —kN +ph—=0,
ax oy TN TR
oM aM” oM oM
x W _0 =0, 2y Y_Q =0; 5
ox " oy . ox " oy 2 ®)

— refined theory (by Timoshenko-Mindlin):

%JFE)NW: BNW+8Ny:0
Jx  dy o oy
a 2
9Q. , 9%, RN, kN, +ph 2 =0,
ox  dy : v ot*
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We set, on the shell’s contours x=0,a and y=0,b, the
boundary conditions, which are determined through the
displacements and rotation angles. Below are the expressions
for boundary conditions at x=const(x=0, x=a) and at hinge
fastening:

— classic theory (by Kirchhoff-Love):

du

—=v=w= =0; 7
ox o= ox’ ™
— refined theory (by Timoshenko-Mindlin):

du _ _oy, _
ox ox

vy, =0. (®)

Similar conditions are set on the contours y=const,
making the following substitutions in equations (7) and (8):
XY, U=V, YNy,

4. 3. Solving procedure

The solutions to the systems of equations (5) and (6)
will be derived in the form: — classic theory (by Kirch-
hoff-Love):



— refined theory (by Timoshenko-Mindlin):

Mz

u (%o, (y),

u(a,y)=

N
=3

Mz

o, (x)e..(4)

v(xy)=]

T
>

N
w(x,y)=§,w,(x)¢s.,(y)v

2"‘:1 x)o,,(y

Z\Vy, x)o,,(y

where u;(x), vi(x), ©i(x), Wi(x), Yyi(x) (i=0,...,N) are the de-
sired functions; ¢i(y), x:(¥), ¢ji(y) (j=1..5) are the functions
built using the third degree B-splines N>4, y;(y) are the
functions built using the fifth degree B-splines N>6, satis-
fying the boundary conditions on the contours y=0 and y=>b.

Substituting (9) and (10) into equations (5) and (6),
respectively, we require that they should be satisfied at the
assigned collocation points &,[0,0], k#=0,...,.N. After all the
transformations, we derive a system of N+1 linear differen-
tial equations with respect to u;, v;, w; in the classic theory
and u;, v, Wj, Yy, Yyiin the refined theory.

The problem on eigenvalues for the systems of ordinary
differential equations was solved by the stable numerical
method of orthogonalization in a combination with the in-
cremental search method.

(10)

3. Results of studying
the free oscillations of isotropic gently sloping shells of
different geometry

3. 1. Determining the impact of the number of colloca-
tion points on the result of the computation of the natural
oscillation frequencies of the examined shells

In order to determine the influence of the number of the
N collocation points on the results of computing the natural
oscillation frequencies of the studied shells, we calculated
the first four oscillation frequencies ®; at the different num-
ber of collocation points, from 10 to 22 in an increment of 2.
The calculation was performed for two gently sloping shells,
rectangular in plan: a cylindrical shell with a ratio of thick-
ness to the smallest size in the plan of #/a=0.07, and a shell of
double curvature with the ratio #/a=0.11. The computation
was conducted in the refined statement. The computation
results are given in Table 1.

Given the results obtained, all subsequent calculations
were performed at N=18 collocation points, which is a trade-
off between the relative accuracy of calculations and the cost
of machine time for computation.

3. 2. Results of calculating the resonance oscillation
frequencies of the examined shells using the proposed
method

The results of our calculations of the resonance oscil-
lation frequencies of the investigated shells using the pro-
posed method of spline approximation for the case of hinge
fastening of all sides are given in Table 2 — for the case of the
classic statement, and in Table 3 — for the case of the refined
statement.

Table 1
Oscillation frequencies of gently sloping shells computed at different number of the collocation points
®, = w,a\p(1-v*)/ E
Shell plan | Shell type N

! 10 12 14 16 18 20 22
1 0.5920 0.5852 0.5818 0.5801 0.5791 0.5785 0.5782
b2 17/;15361 2 0.8154 0.8105 0.8081 0.8068 0.8062 0.8056 0.8055
h)a=0.07 3 1.2709 1.2679 1.2664 1.2657 1.2652 1.2649 1.2648
4 1.7906 1.7352 1.7086 1.6946 1.6866 1.6819 1.6790
1 0.4695 0.4689 0.4686 0.4685 0.4684 0.4683 0.4683
b % Z:(O):i 2 0.7607 0.7526 0.7486 0.7465 0.7452 0.7445 0.7440
hy/a=0A11 3 1.1830 1.1415 1.1222 1.1119 1.1060 1.1024 1.1002
4 1.2270 1.2268 1.2267 1.2267 1.2267 1.2266 1.2266

Table 2
Frequencies of the free oscillations of shells, rectangular in plan (a /b=2), computed in the classic statement
® =wap(1-v*)/E
Shell plan Shell type . h/a

! 0.01 0.03 0.05 0.07 0.09 0.11
1 0.2187 0.3701 0.4671 0.5831 0.7087 0.8398
lx/b=0.1 2 0.2206 0.3906 0.6003 0.8198 1.0430 1.2679
ly/b=0 3 0.3105 0.5676 0.9332 1.3015 1.6708 2.0404
a/b=2 4 0.4302 0.8089 1.2621 1.7322 2.2085 2.6878
1 0.5039 0.6329 0.6941 0.7769 0.8752 0.9844
Ix/b=0.1 2 0.6000 0.8504 1.0845 1.2197 1.3797 1.5566
ly/b=0.1 3 0.6604 0.9840 1.2891 1.7520 2.2241 2.7006
4 0.6661 1.0419 1.5442 2.0816 2.6326 3.1903




Table 3

Frequencies of the free oscillations of shells, rectangular in
plan (a /6=2), computed in the refined statement

= _ 2
Shell | Shell @ —oap(t-v)/
plan | type ; h/a

0.01 0.03 0.05 0.07 0.09 0.11
110.231210.3764(0.4682|0.5791|0.6980 [ 0.8195
l,/a=0.1 210.231410.3955(0.5970|0.8062 | 1.0135| 1.2154
ly/a:() 310.317810.5685(0.9205(1.2652 | 1.5959 | 1.9093
a/b=2 410.4534(0.8535|1.2648 | 1.6866|2.0956 | 2.4813
110.531210.6331(0.6860 |0.7584 | 0.8438{0.9373
l,/a=0.1|2]0.68780.8902 | 1.0740 1.1958 [ 1.3361 | 1.4864
Zy/a:0~1 3(0.6809]0.9825(1.2764 | 1.6784|1.9321|2.1902
410.74981.0711[1.4451|1.6847|2.0836 | 2.4612

3. 3. Results of computing the frequencies of the free
oscillations of gently sloping shells by decomposing the
unknown functions into a Fourier series

Table 4 gives the first four dimensionless frequencies
of the free oscillations of shells, square in plan, @;, which
were calculated analytically, using the decomposition of
the unknown functions in the refined statement into a
Fourier series:

8

- munx . N
u= z a,, cos—sm—y,
m=13,..n=13,... a b

mn
m=13,..n=13 a b
- . NTE
w= 2 2 C,py SIN sin—-—,
m=13,..n=1,3,.. a b
- . N,
v,= > > d,cos sin 2,
m=13,.. n=1,3,.. a b

11

Table 4

The first four dimensionless frequencies of the free
oscillations of shells @, calculated analytically using
the decomposition of the unknown functions in the refined
statement into a Fourier series (11)

— [ 2
Shell | Shell @ - oayp(i-v)/E
plan | type ; h/a

0.01 0.03 | 0.05 | 0.07 | 0.09 | 0.11
110.2032(0.4024 | 0.457810.5284 [ 0.6070 | 0.6891
I,/a=0.1]2]0.29200.4437 | 0.7036 0.9557(1.1930|1.4129
ly/a:0 310.3710(0.7216 [0.9058 | 1.1140 | 1.3243| 1.5265
410.4309(0.7639 | 1.1525(1.5282 [ 1.8738|2.1841
a/b=1 110.7358(0.7511(0.780310.8212 | 0.8708 | 0.9266
L/a=0.1 210.7469(0.8426|1.0011 [ 1.1882|1.3827 | 1.5730
l,/a=0.1{310.7469 | 0.8427|1.0011 | 1.1883 | 1.3829 | 1.5733
410.767310.9903 | 1.3095 | 1.6456 | 1.9667 | 2.2609

The charts (Fig. 1) shows the deviation (in percentage)
in the values of the oscillation frequencies of shells, computed
by using the method of spline-approximation in the classic
(dashed line) and refined (solid line) statements from those
analytically calculated in the refined statement. Thus, we
compare the convergence of frequencies computed in the clas-
sic and refined statements with those analytically calculated
in the refined statement. Red color denotes the first frequen-
cies, orange color — second, green — third, blue — fourth.

% 20%

20

0,01 0,03 005 007 0,09 011 0,01 003 005 007 009 0,11
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e f
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Fig. 1. Deviations (percentage) in the values of the resonance
oscillation frequencies of gently sloping shells, calculated
using the spline approximation method in the classic
(dashed line) and refined (solid line) statements, from those
analytically computed in the refined statement:

a — cylindrical shell (/./a=0,1; /,/ a=0), square in plan (a/b=1);
b — shell of double curvature (//a=0,1; /,/0=0,1), square
in plan (a/b=1); ¢ — cylindrical shell (./6=0,1; /,/6=0),
rectangular in plan (a/b=2); d — shell of double curvature
(5/6=0,1; 1,/ b=0,1), rectangular in plan (a/5=2);

e — cylindrical shell (/;/a=0,1; /,/ a=0), rectangular in plan
(b/a=2); f— shell of double curvature (/;/a=0,1; /,/a=0,1),
rectangular in plan (b/a=2)

All cases of the geometric parameters of the examined
shells (Fig. 1) demonstrate a similar pattern: with the in-
creasing ratio of shell thickness and minimum size in the
plan, the accuracy of computation in the classic statement
decreases, and that in the refined statement grows.

6. Discussion of results of studying
the resonance oscillations of isotropic gently
sloping shells

The data from Table 1 indicate that an increase in the
number of collocation points leads to a decrease in the
frequency values, and the computation accuracy improves.



The magnitude of change in the values is different for dif-
ferent frequencies and varies from 0.02 % to almost 7 %.
Thus, increasing the number of collocation points from 10
to 22 could improve the computation accuracy by 7 %; but,
at the same time, the cost of machine time for calculating
each frequency dramatically and significantly increases.
Our analysis of computation results makes it possible to
assert that already at 16 collocation points the accuracy of
calculations achieves acceptable values, and the frequencies
themselves differ from those calculated at 22 points by not
larger than 1 %. Therefore, a reasonable number of colloca-
tion points in terms of computing accuracy and the cost of
machine time is 16 or 18.

Analyzing the data given in the form of charts (Fig. 1),
one notes a peculiarity typical for almost all cases of the
geometric parameters of the shells. At low relative thick-
ness, the difference between the analytically calculated
frequencies and those computed in the classic statement is
less than the corresponding difference to the frequencies
calculated in the refined statement. This indicates that at
a small shell thickness relative to the dimensions in the
plan, the computation of frequencies in the classic state-
ment makes it possible to obtain more accurate results.

With an increase in shell thickness, at a particular &/a
ratio (different for different cases of geometric parame-
ters), the difference between the analytically calculated
frequencies and those calculated in the refined statement
becomes less than the corresponding difference at compu-
tation in the classic statement. With an increase in shell
thickness, this difference continues to decrease, which
indicates the improved accuracy of the corresponding
calculations. Therefore, starting at a certain thickness
value, it is more expedient to carry out computation in the
refined statement.

The analysis of our results (Fig. 1) indicates that the
boundary value is the ratio of the thickness to the smallest
size in plan of h/a=0.05. Therefore, the natural oscilla-
tion frequencies of gently sloping shells with the ratio
h/a<0.05 should be calculated, in terms of accuracy, in the
classic statement while for thicker shells — in the refined
statement.

Determining the shell thickness limit makes it possi-
ble to choose between the classic and refined statements
when studying the natural oscillation frequencies of
gently sloping isotropic shells, rectangular in plan, which
would improve the computation accuracy. In the future,
it is advisable to conduct a study of the character of the
behavior of the resonance oscillation frequencies of ortho-
tropic gently sloping shells depending on the ratio of their
thickness and minimum size in the plan.

7. Conclusions

1. We have devised a numerical procedure for solving
the problems on the free oscillations of gently sloping iso-

tropic shells, rectangular in plan, with the application of a
spline-approximation method of unknown functions and a
numerical method of discrete orthogonalization in a com-
bination with the incremental search method. We have
computed the frequencies of free oscillations of the gently
sloping shells both in the classical and refined statements
with the different number of collocation points, from 10
to 22, in an increment of 2. It has been determined that
the computation results demonstrate a significant depen-
dence on the number of collocation points. In some cases,
when increasing the number of collocation points from 10
to 22, the calculation accuracy increases by 7 %. It has
been established that a compromise value is 18 collocation
points, so all subsequent calculations were conducted at
this value.

2. The first four frequencies of the free oscillations
of isotropic gently sloping cylindrical shells and shells
of double curvature, with a square and rectangular plan,
have been investigated with the application of the pro-
posed method of spline approximation. The ratios of the
thickness of the studied shells and the smallest size in
plan varied from A/a=0.01 to i#/a=0.11 in an increment
of 0.02. The calculations were carried out based on two
theories: classic (by Kirchhoff-Love) and refined (by
Timoshenko-Mindlin). The computation results are given
in Tables 2, 3. It has been established that at the shell
thickness less than #/a=0.04 the frequencies, calculat-
ed in the refined statement, accept higher values than
the corresponding frequencies calculated in the cl assic
statement. However, for shells with a thickness exceeding
h/a=0.04 the frequencies computed in the refined state-
ment accept lower values than the corresponding frequen-
cies calculated in the classic statement. With the increase
in shells thickness, this difference increases.

3. We have calculated the frequencies of free oscilla-
tions of gently sloping shells by expanding the unknown
functions into a Fourier series, using a mathematical
apparatus of the refined theory. A comparison was per-
formed between the results obtained with the help of the
proposed method and those calculated analytically by
expanding the unknown functions into a Fourier series. It
has been established that at the low relative thickness, the
difference between the analytically calculated frequen-
cies and those calculated in the classic statement is less
than the corresponding difference from the frequencies
computed in the refined statement. However, with the
increase in thickness, this difference increases. Instead,
the difference between the analytically calculated fre-
quencies and those calculated with the use of the proposed
procedure in the refined statement decreases with the
increase in the shell thickness. Thus, there is such a value
of the shell thickness for which, at thickness smaller than
it, it is advisable to use the classic theory, and when the
thickness is larger (the ratio of thickness and smallest
size in the plan is #/a>0.05) — the refined theory should
be applied.
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