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Cyuacna npaxmuxa 3acmocyeéanus eiopa-
wiiHux Mawun npu podomi 3 OPiGHUM HACIHHAM
Manoi 6azu 3iWMOBXYEMLCA 3 MAKUM HeDaANCaHUM
AeuUUEeM, K 6NIUE HA Kinemamuky 6i0pauiiinozo
PYXY Hacmunox ppaxuii HaciHHEBoi cymiui aepo-
Qunamivnux cun ma momenmis. Ilepioduunuii pyx
nosimpsa 6i0HocHo pobouux naowun Gibpauiiinoi
Mawunu 6UHUKAE 3a PAXYHOK KOJUBAHb NAKemie
YUX NIAOWUH, SKI YMEOPIooms NIOCKI aepoou-
HaMiuHi KaHaau. 3 U4b020 GUSEIIACMLCS aAKMY-
ATBHUM NUMAHHA 00CTEOHCEHHS NPoUecie 63ac-
M00ii pobouux opeamnie eibpauiiinoi mawunu 3
nogimpsaHuM cepe0osuemM 3 Memoro 00TpyHmy-
eanns ix xoncmpyxmuenux oopooox. Icuyrouu
Mamemamuumi Mooeni, AKi ouinioomo napame-
mpu pyxy nosimps 6i0HOCHO Po6oUUX NAOUGUH
siOpayitinux mMawun, 0aromv auwe Y3azanvHeny
Kapmuny ma seasomvca niaockumu. B cmam-
mi Hase0eHo NOCMAHOBKY MA PO3PAXYHKOBY KiH-
UeBO-pi3HUUEBY CXeMY PO368’A3AHHS MPUMIDHOT
Kypaeeoi 3adaui 0 0GMUCEHHA NONA WBUOKO-
cmeil ma mucky 0 o06aacmi nogimps, wo 3Ha-
X00umvbcsa Midc 060MA NAPANENLHUMU NIOUU-
Hamu, AKi CUHXPOHHO KoJueaiomvcs. B 3adaui
suxopucmano cucmemy oudepenuyitinux piensamo
0 onucy meuii ideanvhozo 2asy. Piumenns xin-
Ue80-pi3HUUe60i cxemu 30UCHEHO 34 00NOMO2010
Memody npozonxu.

Buxopucmanna memody npoeonxu 0ns eupi-
wenns maxozo poody 3aedamv 0036045€ 3a0e3-
neuumu 30icHiCMb 1 CMIUKICMb PO3PAXYHKOGUX
CXeM He3aedicHo 610 KpoKy i inuux napamempis
BUKOPUCMOBYBAHOT CIMKU.

Haegeoeno sapianm pospaxynxy, wo demon-
cmpye npayezdamuicmo 3anponoHO6aH020 Me-
moody 0ns 3adanux Kpaloeux ymoe i napame-
mpie eibpauiiinozo pexcumy pobomu mawunu.
Bcmanosaeno, wo 6 po6orwomy npocmopi, yxaa-
Oderomy Misc 0860MaA NIOWUHAMU, WO KOUBA-
10mbCs, Maroms Micye K eepmuxanivua (none-
peuna), max i zopusonmanvia (no3006%xcHs)
CK1a006i WEUOKOCMI PYXY NOGIMPsL, AKI 3MIHIO-
10MbCs 3a 4ACOM

Kniouoei caosa: eazoounamixa, cucmema
Jupepenuianvux pienanv, kpaiosa zadaua,
Memod cimok, Memoo npo2oHKU, Noje WUOKO-
cmei
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1. Introduction

The aerodynamic properties of seeds are widely used in
seed cleaning practice, especially for the removal of impuri-
ties (straw, spike particles, etc.). Such impurities are sharply
different in terms of specific weight from seeds; they have
different critical velocity and are easily detached in the air-
flow. This principle of cleaning is fully and successfully used
in simple (winnows) and complex seed-cleaning machines.
Critical seed velocity depends to a large extent on their
shape: in a spherical seed, it is quite constant, so it can be em-
ployed during cleaning. There is a group of weed seeds that
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vary in their sailing ratio; they can be completely removed by
exploiting this property.

The effective separation of seed mixtures with pro-
nounced aerodynamic properties is carried out using devices
that separate them based not on a single attribute, but rather
based on a set of physical-mechanical properties: shape,
roughness, and elasticity [1, 2]. These devices include vibra-
tory machines, which have shown high separation efficiency
for many small-seeded crops [3—5].

For such machines, it is of interest to investigate the
process of interaction between the working surfaces of the
machine and air. The need to use gas-dynamic models is



caused by that there is an air movement in the airspace be-
tween the oscillating work surfaces. This phenomenon has a
significant impact on the pattern of vibrational movement of
seeds with pronounced aerodynamic properties. To investi-
gate this interaction process, it is necessary to have adequate
mathematical models for predicting airflow parameters over
vibrating work surfaces, depending on the parameters of the
operational mode and design features of vibratory machines.

The current theory of the vibrational movement of small
seeds (particles) does not fully take into consideration
the aerodynamic factor. This is mainly due to the lack of
three-dimensional air movement patterns under the influ-
ence of the working organs of a vibratory machine.

This inhibits further improvement of vibrational clean-
ing methods and means as the most effective way to separate
small-seeded crops. For example, a new mechatronic vibra-
tory cleaning machine [6—8], while providing significant
performance improvement, needs to be refined to compen-
sate for the aerodynamic factor. The selection of rational
structural parameters of the improved machine is possible
only based on multivariate studies on modeling the work-
flow taking into consideration the dynamics of air mass
movement. The kinematic parameters of air medium move-
ment that interacts with the processed seed crop must be
calculated using gas-dynamic equations that could be solved
by applying modern numerical methods. It is desirable that
the method to be used, while producing a three-dimensional
pattern of air movement, should at the same time not require
an excessive increase in computational resources, as is the
case, for example, in the gas-dynamic calculations of thermal
machines.

2. Literature review and problem statement

The numerical methods for solving the problems of hy-
dro-gas-dynamics are constantly evolving and are applied
in many practical areas of activity. These areas are related
to the design of aircraft, water, and ground-based vehicles,
various assemblies and devices, whose operation implies
taking into consideration the impact of the surrounding
air (gas) or water environment. Up to now, a large number
of estimation schemes and models have been constructed,
allowing the calculation of parameters of the gas-air (water)
environment when interacting with the structural elements
of designed vehicles (assemblies) [9]. The applied estimation
approaches are mainly based on the grid method, the method
of generators, or the Massot method [10, 11]. These meth-
ods, while demonstrating undeniable advantages in terms
of simplicity and versatility, make it possible to resolve the
issue of the non-linearity of differential equation systems,
which typically describe the examined gas dynamic (hydro-
dynamic) processes. The price incurred is the instability and
unsatisfactory convergence of the solutions derived, which
depend on the technique and grid parameters for splitting
the regions under study.

The problem of convergence of the numerical solution
to gas-dynamic equations is central to the research of es-
timation schemes used in the field of thermo-gas-dynamic
processes.

An iterative method for solving the Euler’s finite differ-
ence equations was proposed in [12]. Given the simplicity of
the method, the solution process has a slow convergence rate,
which is unacceptable for variable calculations.

In [13], to improve convergence, a matrix time step, and a
method of directional coarsening of the grid were proposed.
That made it possible to significantly increase the speed of
convergence of calculations but significantly complicated
the algorithm.

Papers [14, 15] examine the methods of multi-level multi-
ple grids, where the error of the solution obtained on a small
grid is transferred to a large grid, and then the smoothed
solution, obtained on a large grid, is transferred back to a
small grid. The methods proposed, while outperforming
the previous method in terms of convergence rate and the
achieved accuracy of calculations, are even more complex
and costly in terms of the consumption of computational
resources.

It was noted in [11] that for the case of a perfect gas
when differential equations are brought to a quasi-linear
form, thereby reducing the estimation model to a boundary
value problem, the toolset of applied computational methods
could be supplemented with a sweep method. According to
the studies reported in [16], it is claimed that a given method
is insensitive to how a region splitting grid is formed. When
decreasing a breakdown step, the accuracy of the solution
always improves, which converges to a certain value. To
ensure the stability of the solution, no additional measures
are required, for example, the use of data formats with an
increased number of bits.

The statement of a calculation scheme for solving the
boundary value problem by a sweep method for a two-dimen-
sional case when solving a problem on heat exchange on the
plane was proposed in [9]. As regards the case of a three-di-
mensional system of gas dynamics equations, the authors are
not aware of any results in obtaining the estimation schemes
to solve them using a sweep method.

For the case of studying relatively simple gas-dynamic
processes: the use of the perfect gas model, within an acous-
tic range of velocities and pressures, it is advisable to consid-
er the sweep method as a priority. This is due to a significant
gain in the rate of computing at a relatively simple analytical
development of the computational scheme.

Thus, when considering the processes of interaction be-
tween the working surfaces of vibratory machines and an air
environment, when there are weak (acoustic) disturbances,
it seems appropriate to conduct research on the analytical
development of estimation schemes using a sweep method.

3. The aim and objectives of the study

The aim of this study is to devise a method for solving a
boundary value problem for a three-dimensional system of
differential equations of air dynamics under the influence of
the working bodies of a vibratory machine using the sweep
method. Applying the sweep method to solve these kinds of
problems makes it possible to ensure the convergence and
stability of calculation schemes, regardless of the step and
other parameters of the grid used.

To accomplish the aim, the following tasks have been set:

—to construct a numerical sweep algorithm for three
orthogonal axes;

—to implement the built computer algorithm on PC
using the MATLAB programming environment, in order
to demonstrate its feasibility by computing the field of ve-
locities and pressures of air medium for the characteristic
positions of the working bodies of a vibratory machine.



4. Construction of a numerical sweep algorithm for three
orthogonal axes

In a general form, the statement of a boundary value prob-
lem to calculate the field of velocities and air pressures, locat-
ed between two parallel synchronously oscillating working
planes of a vibratory machine, is given in [19]. The results are
presented in the analytical and finite difference form.

The Euler equation, supplemented with a continuity
equation, was used as a mathematical model of the process
under study.
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where a is the air medium acceleration vector; F is the vector
of acceleration due to the action of mass forces (gravity); p is
the air pressure at the point in question; p is the air density,
V, p is the motion velocity vector and the velocity of air me-
dium pressure change at the point in question, respectively;
c is the speed of sound.

In the coordinate form, the system of equations being
solved takes the form:
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where u, v, w are the projections of the air medium velocity
vector, V, onto the X, Y, Z axes of the selected coordinate
system; g, g, & are the projections of the acceleration of free
fall onto the axes of the selected coordinate system.

The boundary conditions for the borders of the region
confined between two synchronously oscillating work sur-
faces can be recorded as follows:

—for edges: C, D, E and G (along the contour of the cal-
culated area) there is an unimpeded relative movement of air
and the pressure is equal to the atmospheric pressure
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where V(¢)/C, D, E, G is the velocity vector of air particle
motion, which belong to the C, D, E and G edges of region =,
relative to the system of coordinates of the working surface;
VE(#) is the velocity vector of the oscillations of points at
the working surface relative to the inertial system of coordi-
nates; p/C, D, E, G is the air pressure along the C, D, E, and
G border; py is the atmospheric pressure;

— for the A and B edges, which come into contact with
the surfaces of the lower and upper working planes of a vi-
bratory machine, there is complete braking of the air when
it comes into contact with the surface (the air at rest is set
into motion by the oscillating working surfaces). A positive
or negative pressure difference Ap is formed. The sign of this
difference is determined depending on the motion direction
of the working surface. That is, the boundary conditions for
edges A and B take the form:
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where p is the air density; V(¢), V,(¢), VX(¢) are the pro-
jections of the oscillation velocity.

An estimation scheme was proposed in [20], which
implements the sweep for three orthogonal axes of the co-
ordinate system associated with the working planes of a
vibratory machine.

To derive an estimation scheme, the system of equa-
tions (3) to (6) is written in a matrix form:
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The sweep will run along two axes: the X axis and the Y
axis. Thus, for a direct sweep along the X axis, each j-th node
belonging to the Y axis is assigned with a set of nodes lying
on the vertical axis, which passes through the j-th node. The
formed left boundary of the studied region along the j-th sec-
tion is swept to the right boundary by moving it from the ZOY
plane along the OX axis. The resulting set of nodes (i, j, k),



i=0, ..., b/h, k=0, ..., H/s, is also assigned to the j-th node of
the Y axis. Next, the formed section is swept to node j=a/!
(to the side end of the studied region). The directions of di-
rect sweep along the X axis and Y axis are shown by arrows

in Fig. 1. Reverse sweep is performed in reverse order.

Fig. 1. Sweep scheme

Papers [19, 20] give the finite difference notation

of the

system of equations (16) and its transformation aimed to

derive the recurrent direct-to-reverse sweep ratios.

In the course of a direct sweep, for j=0,..., a/l, 1=1,..., T,
one computes the elements of Xj; and yj, tensors, using the

following recurrent ratios:
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The computed elements are saved for all the steps

=0, .., a/l.
The elements of the tensor-section for
0 the far-right position (at the end of the di-
rect sweep), /1. are determined:
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The values for u; 41kt Via/tke @ia/ike Piasiks are deter-
mined based on the boundary conditions for edge D.

Next, we run a reverse sweep. We compute the ten-
sor-section elements for all intermediate positions to the left
of the right end of the sweep interval:

E‘(j—1),1 = Xj,‘rE‘j,‘c tYo
i=a/l,(a/l-1),(a/l-2),... 1. (25)

The field of velocities and pressures is computed.

5. The results obtained and their analysis

Based on the proposed analytical expressions (14) to (25),
we have constructed an estimation algorithm, which is
implemented in the applied software package MATLAB
designed to solve the problems of technical calculations.
The results that were obtained using it are given for time
moments (=0 (Fig. 2), t=1/4Q (Fig. 3) and t=1/2Q (Fig. 4).
The time point =0 corresponds to the neutral position of a
vibratory machine’s planes. There is a maximum (by mod-
ule) value of the velocity magnitude and a zero value of the
acceleration of the movement of oscillating planes. The time
point t=1/4Q corresponds to such position of planes where
their deviation from the zero position is maximum. There are
a maximum acceleration and a zero velocity of plane move-
ment. The motion parameters and the position of the planes
corresponding to point time t=1/2Q are identical to the time
point £=0, but the movement speed of the working planes of a
vibratory machine here is directed in the opposite direction.

The illustrations above (Fig. 2—4) show that in the working
space confined between two oscillating planes there are both
vertical (transverse) and horizontal (longitudinal) components
of air velocity, which change over time. The law of change in the
longitudinal and transverse components of velocity is periodic,
with a change in the movement direction. The superposition of
these two movements produces a complex distribution pattern
of the movement speed of the elements within the studied air
continuum, where there are uneven velocities both vertically
and horizontally in the estimation area.

The resulting distribution of pressures is characterized
by unevenness for the height of the region. When moving
from top to bottom, at time point t=0 (Fig. 2) there is a max-
imum pressure difference at the inner surface of the upper
plane. In an extreme position of the working bodies, when
the velocity of planes is zero, there is no dynamic pressure
difference (Fig.3). When moving backward (time point

t=1/2Q) (Fig. 4), there is excess pressure at the inner surface
of the lower plane.

The magnitude of excess pressure corresponds to the
magnitude of relative air velocity. The layer of air directly
adjacent to the inner surface of the plane is inhibited — the
boundary condition (9). Its relative velocity becomes zero.
The kinetic energy of air movement passes into the energy of
excess pressure — the boundary conditions (10) to (12).
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Fig. 2. The field of velocities and pressures for time point =0
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Fig. 3. The field of velocities and pressures for time point
=1/4Q
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Fig. 4. The field of velocities and pressures for time point
=1/2Q

Thus, the maximum air velocity relative to working sur-
faces is achieved in a position where the working bodies of a
vibratory machine pass the neutral position. When moving
from top to bottom: the maximum relative air velocity is



reached near the lower plane. When moving from bottom to
top: near the top plane.

6. Discussion of results of studying the application of
a sweep method

The above calculation results (Fig. 2—4) demonstrate
that the field of velocities and pressures changes in accor-
dance with the harmonic law, over a period equal to the
period of oscillations of the working planes of a vibratory
machine. For t=[0; 1/2Q], which is equal to the half-peri-
od of oscillations of the working planes, the direction of
air motion changes to the opposite, and the pattern of the
distribution of velocities and pressures for t=1/2Q (Fig. 4)
mirrors the pattern for =0 (Fig. 2). It is obvious that over
the full period of oscillations, for t=1/Q, the pattern of the
distribution of velocities and pressures would take the form
shown in Fig. 2 for the starting time point ¢=0. The move-
ment of the air occurs under the influence of pressure drop
caused by the dynamic pressure, which is exerted on the air
by the incoming plane, on the one hand, and by sucking near
the outgoing plane, on the other hand.

The resulting pattern of the dynamics of air movement
does not include the vortex phenomena that are likely to ac-
tually occur. However, the model used, which does not take
into consideration the viscosity of the air, does not make it
possible to derive swirls in a calculated way. When using, as
a kinematic model, instead of the Euler equation, the Navier-
Stokes equation, such vortex effects would be obtained.
However, at the same time, the estimation scheme would
be much more complicated and, perhaps, would not make it
possible to implement the sweep method.

However, for the practical aspect of this issue, the noted
methodical flaw is of inconsequential importance. To study

the effect of the aerodynamic factor on the character of the
vibrational movement of seeds, the most significant is the
accounting of the tangential components of air velocity.
And the proposed calculation method makes it possible to
compute them successfully, and at the low time and machine
MEemory costs.

Further prospects for the development of the results
reported here imply the improvement of the formalized de-
scription of the boundary conditions, which make it possible
to take into consideration the various structural elements
used to eliminate the harmful effects of the aerodynamic
factor. In addition, we believe, the proposed algorithm has
an independent value for its application in the field of gas
dynamic calculations over the acoustic range of gas currents.
The convergence of the solution automatically provided by the
sweep method could significantly simplify the various compu-
tational problems on determining the parameters of gas (air)
in subsonic flows, without taking into account the viscosity.

7. Conclusions

1. An algorithm for sweeping along three orthogonal
axes has been constructed in order to solve a system of
gas-dynamic equations recorded for the case of perfect gas
over the acoustic range.

2. The algorithm calculates the field of velocities and
pressures in the air mass, located between two parallel syn-
chronously oscillating planes of a vibratory machine. The
resulting three-dimensional air dynamics pattern does not
require significant computational resources, so it is advisable
to use it to build complex models to study the processes of
interaction between the air environment and the oscillating
elements of vibratory machines when solving the tasks of
their design (improvement).
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