u] =,

B o6aacmi xomn'tomepnozo 30py i 06pobru 300paxcens
ceemenmauis 300pajxcenv 3ANUWMAEMBCA AKMYATLHOIO
obniacmio docaidicenv, 6 AKil micmumovca G6azamo uacm-
K060 eupiwenux numanv. Q0Ha 3 HAUOITLW 3HAUYUWUX
obnacmeii 6 uudpoeiii 06podui 306paxcenv 6i0HOCUMBCA
00 ceemenmauii, npouecy, axui po3ousae 300parncenns Ha
pisni cknadosi komnonenmu. Memoo, axuili WUpoxo 6uxo-
pucmosyemvcsa 6 aimepamypi, HA3UBAEMbC HAPOUYBAH -
Ham obnacmeii. Q0nax 6in mae 6UCOKUIL piéenb 06UUCAIO-
eanvnoi cxaadnocmi. Tpaduuitini memoou HaAPOWYB8aAHHS
ob6nacmeii 3acnoeani na nopienanmi pienie cipozo cycio-
HiX nikcenié i 3a36uuail Henpuoamui, KOAU CezMeHMO8dA-
Ha obaacmov micmumv inmencusnocmi, nodioni 00 cyciouix
obnacmeii. O0HAK, AKWO 6 NOPOZOBUX 3HAUEHHAX 6KA3A-
HO WUPOKUU 00NYCK, MO 6UABJEHI MedHCl nepesuyeamu-
Mymv 06aacms idenmudixauii; i HasnaAKU, AKUO 2P AHUMHUY
00nycK 3aHaomo CuabHO 3MEHWMYEMbCL, Mo idenmuixo-
eana obaacmv 0yde menwe 6axcanoi. Ilpu ananizi mex-
Cmyp Kinvka Cuen MOJNHCHA PO32nidamu K KOMROIUUIIO
pisnux mexcmyp. Bisyanvna mexcmypa eionocumvcs 00
eépascenns wopcmxocmi abo anadkocmi, aKe cmeoproOms
Oesxi nogepxHi WAAXOM 3MiHU 6I0MINKIE A00 NOEMOPEHHA
sizyaavHux eizepynkie. Memoou ananizy mexcmyp 3acHo-
eamni na npusnauenni 00H020 abdo 0exinbKoxX napamempis,
wWo 6KaA3ylomv HA XAPAKMEPUCMUKU MEKCMYPU KONCHIU
ob6nacmi 306pascenns. B daniii cmammi noxaszano, ax 6ye
peanizoeanull napaievHull anzopumm 01 upiuenms 6io-
Kpumux npoonem 6 oodaacmi 00CHIONCEHHA cCeemenmauii
300pascens. Hapowyeanns obnracmeii — ue edockonane-
Hull nidxio do ceemenmauii 300pancenv, npu AKOMY cycio-
Hi nixceai 0ocnidxcyromovcsa o0un 3a inwum i dodaromvcs
00 6i0no06ioH020 KJaacy odaacmell, AKWO MexNca He GUAEG-
nena. Ileidt npouec € imepauitinum 0as K0IHCHO20 nikce-
A 8 medcax oonacmi. SAxuo euseaeni cymixcui obracmi,
Mo 6UKOPUCMOBYEMBCA aNlzopumM 3aumms obaacmei, 6
AKOMY caa0Ki Kpai po3uunAomsCs, a meepoi 3aIumaromy-
ca HedomopKanumu, wo eumazae d6azamo uacy o6podxu na
Komn'romepi, w00 ymoxicaueumu napaieiviy peaiizauiio.

Knouosi caosa: xomn'tomepnuil 3ip, obpoora 3obpa-
JceHb, Mmemoou ceemenmauii, Hapowyeanmns oédaacmei,
napanenvia o6pobra, napanenvhi anzopummu, 2padiu-
nuil npouyecop, OKM/], ananiz mexcmyp, yudposa oopoé-
Ka 306paxcens

u] =,

Received date 08.01.202
Accepted date 17.02.2020
Published date 29.02.2020

|DOI: 10‘15587/1729-4061.2020.197095|

IMPLEMENTATION
OF A PARALLEL
ALGORITHM

OF IMAGE
SEGMENTATION
BASED ON REGION
GROWING

Jesis Antonio Alvarez-Cedillo
PhD. Advance Technology*

E-mail: jaalvarez@ipn.mx

Mario Aguilar-Fernandez

PhD. Industrial Engineering*

E-mail: maguilarfer@ipn.mx

Teodoro Alvarez-Sanchez

PhD Informatic Sciences

Section of postgraduate studies

and research- IPN

Instituto Politécnico Nacional — CITEDI

Av. Instituto Politécnico Nacional No. 1310, Nueva
Tijuana, Tijuana, Baja California, 22435

E-mail: talvarezs@citedi.mx

Raul Junior Sandoval-Gémez
PhD Public relations*

E-mail: rsandova®@ipn.mx

*Section of postgraduate studies and research of
the interdisciplinary professional unit of social and
administrative sciences of the IPN

Instituto Politécnico Nacional — UPIICSA, México
Av. Te 950, Col. Granjas México, Iztacalco, 08400

Copyright © 2020, Jesiis Antonio Alvarez- Cedillo, Mario Aguilar-Fernandez,

Teodoro Alvarez-Sanchez, Raul Junior Sandoval-Gomez

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by,/4.0)

1. Introduction

Region Growing offers several advantages over classic
segmentation techniques. Unlike the gradient and Laplacian
methods, the edges of the regions that are found by the grow-
ing region are perfectly thin and connected. The algorithm is
also very stable concerning noise [1-3].

The main objective of image segmentation is to obtain
the independent division of the domain of an image and con-
vert it into a set of disjoint regions that are visually different

concerning some characteristics or properties calculated as
the level of grey, texture or colour, with them, it is possible
to perform simple image analysis [4].

Segmentation, in concept, is a straightforward idea [5].
Only by looking at an image, one can say which regions are
contained in an image [6].

The relevance of our work here presented is to apply the
classic parallel processing techniques used to the growing
region techniques to process large and high-quality images
with the biggest number of pixels.

2. Literature review and problem statement

4. GPU and their programmation

Image segmentation based on growing regions begins
with the selection of a pixel, often referred to as a seed, that
is within the object of interest. Usually, the seed is chosen
manually. Hsiao and Tynan present the results of research
where the seed pixel (first point of the region) will begin to
extend the region by processing its neighbours and adding
them using a predefined criterion [7, 8].

Felzenszwalb showed that there were unresolved issues
related to the insertion criterion uses common character-
istics; these are the intensity, the colour, the texture of the
seed and the points that belong to the region [9, 11].

Each time a new point is inserted into the region, the
characteristic that is being used to perform the insertion
will be recalculated, for example, if the grey level is used,
the average value of the grey levels that will be recalculated
there is in the region generated so far. In this way, the region
will expand by adding neighbours until it finds one that does
not meet the insertion condition imposed by the criteria, this
approach was used in [10].

If a point has not been added to any region, it can be
added to a region near if the difference between, for example,
the grey level of this point and the average grey level of the
region does not exceed a given threshold value.

This technique is useful when the intensity of the back-
ground and the object are very similar but are separated by
an edge or another region.

The segmentation of any image would be straight-
forward if factors such as image noise and the number
of pixels in the process were not involved. In the last ten
years, the power of computing has increased with the use
of GPU.

A way to overcome these difficulties was proposed by
[10, 11]. Their research shows that the use of this type of
cards has become accessible for research, and their uses are
in different fields.

The GPU has doubled its performance every six months
on average. At present, the computing power of high-per-
formance GPUs can reach Teraflops, which is much higher
than the central processing unit of a computer [12], all
this suggests that it is advisable to conduct a study on the
architectures and behaviour of the memory and improve all
techniques of computer vision.

3. The aim and objectives of the study

The aim of the study is to implement a parallel algorithm
to solve general problems in the area of image segmentation
research. In our first approximation, the computing power is
applied to Region growing technique, which is an advanced
approach to image segmentation in which neighbouring
pixels are examined one by one and added to an appropriate
region class if no border is detected, this algorithm is viral
and very used in the literature.

However, to achieve this aim, the following objectives are
accomplished:

— understand and apply all the techniques of parallel
computing to the computer vision field;

— establish a parallel strategy to implement the Region
growing technique;

— validate the correct function of the algorithm;

— show the measures of performance and improvements.

NVIDIA proposed a free CUDA (Compute Unified De-
vice Architecture) GPU program development tool in 2007,
which allowed programming any type of GPU and turned
the technology into general-purpose [13, 14].

It has contributed to high-speed scientific operations,
so the scientific fields benefited are: statistical engineering,
Monte Carlo statistical simulation, financial engineering,
global climate change simulation, 3D multimedia, biomedi-
cine, national defence science, oil exploration, civil engineer-
ing, CAM, CAE, CAD [15, 16].

From an architectural point of view, the first genera-
tions of GPUs had a relatively small number of cores, but it
quickly increased until today, when we talk about many-core
devices with hundreds of cores on a single chip [17].

This increase in the number of cores caused that in 2003
there was a significant jump in the capacity of calculation in
a floating-point of the GPUs concerning the CPUs, as shown
in Fig. 1. Fig. 1 shows the evolution of the floating-point
performance of Intel and NVIDIA based technology during
the last decade.

It can be seen that GPUs are much more ahead than
CPUs in terms of performance improvement, especially since
2009, when the ratio was approximately 10 to 1 [18, 19].

Tesla C870
.

GeForce 8800 ;y

G71
G70-512
70
3.0 GHz
3.0 GHz Core2 Quad
Core2 Duo

3.0 Ghz Pentium 4

Fig. 1. Performance comparison (theoretical peak) between
CPU and GPU technologies, Source: NVIDIA [13]

The significant differences between CPU and multi-core
GPU performance are mainly due to a design philosophy
issue. While GPUs are designed to exploit parallelism data
level with mass parallelism and relatively simple logic, the
design of a CPU is optimized for efficient sequential code
execution [20].

The CPUs use sophisticated control logic that allows in-
structional and out-of-order parallelism and use quite large
cache memories to reduce data access time in memory.

There are also other issues, such as power consumption
or memory access bandwidth. Current GPUs have memory
bandwidths around ten times higher than those of CPUs,
among other things because CPUs must meet requirements
inherited from operating systems, applications or output-in-
put devices.

There has also been a very rapid evolution from GPU
programming that has changed the purpose of these devices.
GPUs in the early 2000s used programmable arithmetic
units (shaders) to return the colour of each pixel on the
screen.

Since the programmer could fully control the arithmetic
operations that were applied to the input colours and tex-
tures, the researchers observed that the input colours could
be any type of data.

Thus, if the input data were numerical data that had
some meaning beyond a colour, the programmers could
execute any of the calculations they needed on that data
through the shaders [21].

Despite the limitations that programmers had to develop
high-performance applications with arithmetic operations,
many efforts were devoted to developing general-purpose
application programming interfaces and environments for
GPUs. Some of these programming interfaces have been
widely accepted in various sectors, although their use still
requires some specialization [22].

OpenMP has been successfully implemented in small to
medium scale shared memory systems and large scale systems.
OpenMP was developed by the Architecture Review Board
(ARB) in November 2004. Its main evolution allowed the use
of the C, C++ and FORTRAN languages. As computer com-
ponents decrease in size, architects have begun to consider dif-
ferent strategies to exploit space on a chip. A recent trend is to
implement Multi-Threading Chip (CMT) in hardware [23, 24].

This term refers to the simultaneous execution of two
or more threads within a processor. It can be implemented
through several cores of physical processors on a chip, a sin-
gle-core processor with feature replication to maintain the
status of multiple threads simultaneously or the combination
of CMP and SMT. OpenMP support for these new microar-
chitectures needs to be evaluated and possibly improved [25].

5. Parallel implementation

Region-based segmentation consists of dividing an im-
age into similar and equal areas delimited by connected pix-
els through standard criteria between sets of sample pixels.
Each pixel of a region is similar in some features usually like
colour, intensity and texture.

If these criteria are not adjusted, the results will be in-
correct and undesirable. The following problems are:

1) the segmented region is smaller or larger
than the current one;

2) pseudo objects arise;

3) fragmentation.

As the main objective of segmentation is to di-
vide an image into regions, segmentation methods
such as threshold achieve this objective partially
by seeking boundaries between regions based on
discontinuities. However, region-based segmen-
tation is a technique that works well to determine
the region directly [2].

The basic formulation is defined as follows:

Image segmentation partitions the set X into the subsets
R(@), where i=1, 2, 3, ..., N having the following properties:

Ui=1 nRi=R.)
Riis a connected region, i=1, 2, ..., n. 2)
RiNRj=0, i#). 3)

P(Ri) is alogical predicate defined over the points in set R i:

1) segmentation must be completed; for this to happen,
each pixel must be in a region;

2) the points in a region must always be connected,;

3) regions should be disjoint;

4) the properties that pixels in a segmented region must
meet must be clearly defined,

5) indicates that regions R i are different in the sense of
predicate P.

With this information, the algorithm was developed
shown in Listing 1.

As shown in Listing 1, all the instructions within the
while statement correspond to the structure that can be
parallelized, because this block of sentence can be sent to
the different GPUs.

With the previous information, it is possible to paral-
lelize the algorithm using OpenMP. Fig. 2 shows how the
parallelization strategy is applied. Parallelization.

Listing 1. Region Growing Algorithm
WHILE (NUM) {

IF (MASK_VALUE (X, Y, Z)==255) {
IF (THRESHOLD MASK (X, Y, Z)==255) {
MASK_VALUE (X-1, Y, Z)
THRESHOLD MASK (X-1,Y, Z);
MASK_VALUE (X+1, Y, Z)
THRESHOLD MASK (X+1, Y, Z);
MASK VALUE (X, Y-1, Z)
THRESHOLD MASK_ (X, Y-1, Z);
MASK_VALUE (X, Y+1, Z)
THRESHOLD MASK (X, Y+1, Z);
MASK VALUE (X, Y, Z-1)
THRESHOLD MASK (X, Y, Z-1);
MASK_VALUE (X, Y, Z+1)
THRESHOLD MASK (X, Y, Z+1);
THRESHOLD_ MASK (X, Y, Z)=0;
NUM=NUM+{;

B

Fig. 2 shows the implementation strategy, using Open-
MP, the central part of the code is sent in different threads

independently.
== -

—)

. -

#pragma omp Parallel code

for

Fig. 2. The strategy of the algorithm shown in Listing 1

In the end, there is a synchronization called the barrier,
which expects the tasks to be completed and then accumu-
late the sub-results obtained.

6. Discussion of experimental results

The results presented in this work cover three critical
stages:
1) verification of algorithm operation;

2) execution and parallel performance and parallel
speedup.

6. 1. Checking the operation of the algorithm

The algorithm performed was tested by different profes-
sional tomography and x-ray images. In the image analyzed
by tomography of a slice of the brain, Fig. 3 shows the orig-
inal image, Fig. 4 and the segmented image and finally, in
Fig. 5 both overlapping images. Fig. 6 shows the resulting
histogram.

Fig. 4. Segmentation performed of the image, x=198;
y=359, maxdist=0.2

Fig. 5. Complete result of the algorithm

T
Fig. 6. Resulting histogram

Another test was performed directly on an X-ray plate
on the side of a human head. Fig. 7 shows the original image;
Fig. 8 shows the original and segmented image, both over-
lapping images.

Two fundamental problems that were observed are the
selection of the appropriate seeds to define the regions of in-
terest; and the choice of properties that allow adding pixels.

The selection of the starting points depends on the image
to be segmented.

Fig. 7. X-ray plate analysed

Fig. 8. Complete result of the algorithm application.
Segmentation performed of the image, x=198; y=359,
maxdist=0.2

The selection of similarity criteria depends on the prob-
lem and the type of image available.

Another test was performed directly on a stream of 4k
video to know the real-time parameters of the parallelized
processing. Fig.9 shows the stream images and the pro-
cessed images.

qerblt |

Fig. 9. Complete result of the algorithm application on video
stream. Segmentation performed of the image, x=4096;
y=2160, maxdist=0.2

6. 2. Execution and parallel performance

The CT images from cancer imaging archive with con-
trast and patient age dataset obtained from kaggle.com is
used to perform the parallel performance tests.

The sequential program developed in C language and
its equivalent developed in OpenMP with GPU interface
NVIDIA Tegra was executed. See Fig. 9. Table 1 shows the
execution time of GPU+OpenMP time vs. Sequential time.

The speedup is defined as the linear relationship between
the execution time of serial processing over the best parallel
algorithm used to solve a problem. It is necessary to empha-
size that there will always be a serial time that cannot be
parallelized.

The equation of the speedup is defined in (4) where S'is the
speedup, Ts the processed sequential time and Tp is the pro-
cessed parallel time. Using this equation is shown in Table 2.

Table 1

Executing time

Image GPU+openmp time | Secuential time
ID 0000 AGE 0060 0.513 16.023
ID 0001 _AGE_0069 1.245 12.034
ID 0002 AGE 0074 0.876 13.234
ID 0003 _AGE_0075 0.923 9.234
ID 0004 AGE 0056 1.022 10.345
ID 0005 AGE 0048 0.945 14.750
ID 0006 AGE 0075 1.023 12.345
ID 0007 _AGE 0061 0.456 15.879
ID 0008 AGE 0051 0.678 13.056
ID 0009 AGE 0048 1.230 10.456
Table 2
Speedup
Image Parallel | Sequential Speedup
time time
ID_0000_AGE_0060 0.513 16.023 31.2339181
ID 0001 _AGE 0069 1.245 12.034 9.66586345
ID 0002 AGE 0074 0.876 13.234 15.1073059
ID 0003 AGE 0075 0.923 9.234 10.0043337
ID 0004 AGE 0056 1.022 10.345 10.1223092
ID 0005 AGE 0048 0.945 14.750 15.6084656
ID 0006 AGE 0075 1.023 12.345 12.0674487
ID 0007 _AGE_0061 0.456 15.879 12.0674487
ID 0008 AGE 0051 0.678 13.056 19.2566372
ID 0009 AGE 0048 1.230 10.456 8.50081301

As can be seen, in Table 1, 2, the calculation of the per-
formance limits of the parallelization is critical since it rep-
resents how the software will manifest when the hardware
is scaled. The previous performance considerations indicate
that it has many chances of success in the application with
multi-core hardware.

Our studio is limited to 4K images with maximum modifi-
cations of 4,096x2,160. However, it is possible to use pictures
and video with more resolution by scaling the proposed hard-
ware architecture. Our method is necessary to remember that
it is local and does not take into account the global vision of
the problem. It is necessary to emphasize that the algorithm is
sensitive to noise, for this it is necessary to apply a threshold
function to the image, there can also be a continuous route of
points related to colour, which connects any of the two points
of the image which allow affecting the performance.

7. Conclusions

1. Understand and apply all the techniques of parallel
computing to the computer vision field: In past times, the
supercomputers were the most significant system that used
precious resources and the parallel computing only could be
processed in a computer cluster. Now, using a GPU system
to do computing parallel the image analysis to the most
significant image can be processed using a sophisticated
algorithm. In our experience, 256-core Maxwell in 4 CPU
core arm Cortex A57 was used and each process was pro-
cessed in 20ns.

2. Establish a parallel strategy to implement the Region
growing technique: The proposed study showed that the im-
provement of technologies and mechanisms for obtaining data
from images has led to the obtaining of more detailed raster
information and with a higher level of resolution and spatial
precision, which has generated a gradual growth in the vol-
ume of the models. However, each model in their analysis has
the most significant computational complexity, and with this,
the processing time could be computable or hard computable.
Our strategy works fine, and it is possible to reach scalability
for the application of the algorithm in clusters.

3. Validate the correct function of the algorithm: The
Complete result of the algorithm applied in the segmentation
applied was performed of the image, x=198; y=359, max-
dist=0.2 in an image kind DICOM in the first algorithm and
excellent result was obtained in grey images and colour image,
but the algorithm is robust to be implemented in satellite
images and ecological images of most significant dimensions.

4. Show the measures of performance and improvements:
Table 2 shows the excellent results of the functionality test
of the proposed algorithm. The number of cores 256 was suf-
ficient for executing the images of any size, and it is possible
to use the hardware architecture proposed for another al-
gorithm more complexes in all the fields of computer vision.

Acknowledgements

We appreciate the facilities granted to carry out this work
to the INSTITUTO POLITECNICO NACIONAL through
the Secretary of Research and Postgraduate with the SIP
project 20180023. To the Interdisciplinary Unit of Engineering
and Social and Administrative Sciences, Center for Research
and Development of Digital Technology. Likewise, the Pro-
gram for Stimulating the Performance of Researchers (EDI)
and the Program for Stimulating Teaching Performance.

(EDD) and COFAA.

References

1. Keely, C. C., Hale, J. M., Heard, G. W.,, Parris, K. M., Sumner, J., Hamer, A. J., Melville, J. (2015). Genetic structure and diversity of
the endangered growling grass frog in a rapidly urbanizing region. Royal Society Open Science, 2 (8), 140255. doi: https://doi.org/

10.1098 /1505.140255

2. Ashburner, J., Friston, K. J. (2005). Unified segmentation. Neurolmage, 26 (3), 839-851. doi: https://doi.org/10.1016/

j.neuroimage.2005.02.018

3. Bandler, R, Tork, I. (1987). Midbrain periaqueductal grey region in the cat has afferent and efferent connections with solitary tract
nuclei. Neuroscience Letters, 74 (1), 1-6. doi: https://doi.org/10.1016,/0304-3940(87)90041-3
4. Patel, N. H,, Liu, P. Z. (2009). Segmentation. Encyclopedia of Insects, 909-912. doi: https://doi.org/10.1016,/b978-0-12-374144-

8.00240-x

5. Taylor, J. R. A, deVries, M. S,, Elias, D. O. (2019). Growling from the gut: co-option of the gastric mill for acoustic communication in
ghost crabs. Proceedings of the Royal Society B: Biological Sciences, 286 (1910), 20191161. doi: https://doi.org/10.1098 /rspb.2019.1161

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

Chen, D. (2008). Image Segmentation. User Centered Design for Medical Visualization, 258—279. doi: https://doi.org/10.4018 /978-
1-59904-777-5.ch013

Hsiao, Y.-T,, Chuang, C.-L., Jiang, J.-A., Chien, C.-C. (2005). Robust Multiple Targets Tracking Using Object Segmentation and
Trajectory Estimation in Video. 2005 TEEE International Conference on Systems, Man and Cybernetics. doi: https://doi.org/
10.1109/icsmc.2005.1571289

Tynan, A. C., Drayton, J. (1987). Market segmentation. Journal of Marketing Management, 2 (3), 301-335. doi: https://doi.org/
10.1080,/0267257x.1987.9964020

Felzenszwalb, P. F, Huttenlocher, D. P. (2004). Efficient Graph-Based Image Segmentation. International Journal of Computer
Vision, 59 (2), 167-181. doi: https://doi.org/10.1023/b:visi.0000022288.19776.77

Hu, R., Dollar, P, He, K., Darrell, T,, Girshick, R. (2018). Learning to Segment Every Thing. 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition. doi: https://doi.org/10.1109/cvpr.2018.00445

Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E., Phillips, J. C. (2008). GPU Computing. Proceedings of the IEEE,
96 (5), 879-899. doi: https://doi.org/10.1109/jproc.2008.917757

Stuart, J. A., Owens, J. D. (2011). Multi-GPU MapReduce on GPU Clusters. 2011 IEEE International Parallel & Distributed
Processing Symposium. doi: https://doi.org/10.1109/ipdps.2011.102

Nickolls, J., Dally, W. J. (2010). The GPU Computing Era. IEEE Micro, 30 (2), 56—69. doi: https://doi.org/10.1109/mm.2010.41
Bergstra, J., Breuleux, O., Bastien, F. F, Lamblin, P, Pascanu, R., Desjardins, G. et. al. (2010). Theano: a CPU and GPU math
compiler in Python. Proceedings of the Python for Scientific Computing Conference (SciPy).

Sanders, J., Kandrot, E. (2010). CUDA by Example: An Introduction to General-Purpose GPU Programming. NVIDIA
Corporation, 311.

Pratx, G., Xing, L. (2011). GPU computing in medical physics: A review. Medical Physics, 38 (5), 2685-2697. doi: https://doi.org/
10.1118/1.3578605

Sengupta, S., Harris, M., Zhang, Y., Owens, J. D. (2007). Scan primitives for GPU computing. Proceedings of the SIGGRAPH/
Eurographics Workshop on Graphics Hardware, 97-106.

Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W.,, Skadron, K. (2008). A performance study of general-purpose applications
on graphics processors using CUDA. Journal of Parallel and Distributed Computing, 68 (10), 1370-1380. doi: https://doi.org/
10.1016/j,jpdc.2008.05.014

Power, J., Hestness, J., Orr, M. S., Hill, M. D., Wood, D. A. (2015). gem5-gpu: A Heterogeneous CPU-GPU Simulator. IEEE
Computer Architecture Letters, 14 (1), 34—36. doi: https://doi.org/10.1109/1ca.2014.2299539

Feng, W, Xiao, S. (2010). To GPU synchronize or not GPU synchronize? Proceedings of 2010 IEEE International Symposium on
Circuits and Systems. doi: https://doi.org/10.1109 /iscas.2010.5537722

Lee, V. W,, Hammarlund, P, Singhal, R., Dubey, P, Kim, C., Chhugani, J. et. al. (2010). Debunking the 100X GPU vs. CPU
myth. Proceedings of the 37th Annual International Symposium on Computer Architecture - ISCA ’10. doi: https://doi.org/
10.1145/1815961.1816021

Zhou, Y., Tan, Y. (2009). GPU-based parallel particle swarm optimization. 2009 IEEE Congress on Evolutionary Computation. doi:
https://doi.org/10.1109/cec.2009.4983119

Shah, S., Bull, M. (2006). OpenMP---OpenMP. Proceedings of the 2006 ACM/IEEE Conference on Supercomputing - SC *06.
doi: https://doi.org/10.1145/1188455.1188469

Hermanns, M. (2002). Parallel programming in Fortran 95 using OpenMP. School of Aeronautical Engineering.

Chapman, B., Jost, G., Van Der Pas, R. (2008). Using OpenMP. Cluster Computing.

