
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 1/9 (103) 2020

6

1. Introduction

Region Growing offers several advantages over classic
segmentation techniques. Unlike the gradient and Laplacian
methods, the edges of the regions that are found by the grow-
ing region are perfectly thin and connected. The algorithm is
also very stable concerning noise [1–3].

The main objective of image segmentation is to obtain
the independent division of the domain of an image and con-
vert it into a set of disjoint regions that are visually different

concerning some characteristics or properties calculated as
the level of grey, texture or colour, with them, it is possible
to perform simple image analysis [4].

Segmentation, in concept, is a straightforward idea [5].
Only by looking at an image, one can say which regions are
contained in an image [6].

The relevance of our work here presented is to apply the
classic parallel processing techniques used to the growing
region techniques to process large and high-quality images
with the biggest number of pixels.

INFORMATION AND CONTROLLING SYSTEM

IMPLEMENTATION
OF A PARALLEL

ALGORITHM
OF IMAGE

SEGMENTATION
BASED ON REGION

GROWING

J e s ú s A n t o n i o Á l v a r e z - C e d i l l o
PhD. Advance Technology*

E-mail: jaalvarez@ipn.mx
M a r i o A g u i l a r - F e r n á n d e z

PhD. Industrial Engineering*
E-mail: maguilarfer@ipn.mx

T e o d o r o Á l v a r e z - S á n c h e z
PhD Informatic Sciences

Section of postgraduate studies
and research- IPN

Instituto Politécnico Nacional – CITEDI
Av. Instituto Politécnico Nacional No. 131O, Nueva

Tijuana, Tijuana, Baja California, 22435
E-mail: talvarezs@citedi.mx

R a ú l J u n i o r S a n d o v a l - G ó m e z
PhD Public relations*

E-mail: rsandova@ipn.mx
*Section of postgraduate studies and research of
the interdisciplinary professional unit of social and

administrative sciences of the IPN
Instituto Politécnico Nacional – UPIICSA, México
Av. Te 950, Col. Granjas México, Iztacalco, 08400

В областi комп'ютерного зору i обробки зображень
сегментацiя зображень залишається актуальною
областю дослiджень, в якiй мiститься багато част-
ково вирiшених питань. Одна з найбiльш значущих
областей в цифровiй обробцi зображень вiдноситься
до сегментацiї, процесу, який розбиває зображення на
рiзнi складовi компоненти. Метод, який широко вико-
ристовується в лiтературi, називається нарощуван-
ням областей. Однак вiн має високий рiвень обчислю-
вальної складностi. Традицiйнi методи нарощування
областей заснованi на порiвняннi рiвнiв сiрого сусiд-
нiх пiкселiв i зазвичай непридатнi, коли сегментова-
на область мiстить iнтенсивностi, подiбнi до сусiднiх
областей. Однак, якщо в порогових значеннях вказа-
но широкий допуск, то виявленi межi перевищувати-
муть область iдентифiкацiї; i навпаки, якщо граничний
допуск занадто сильно зменшується, то iдентифiко-
вана область буде менше бажаної. При аналiзi тек-
стур кiлька сцен можна розглядати як композицiю
рiзних текстур. Вiзуальна текстура вiдноситься до
враження шорсткостi або гладкостi, яке створюють
деякi поверхнi шляхом змiни вiдтiнкiв або повторення
вiзуальних вiзерункiв. Методи аналiзу текстур засно-
ванi на призначеннi одного або декiлькох параметрiв,
що вказують на характеристики текстури кожнiй
областi зображення. В данiй статтi показано, як був
реалiзований паралельний алгоритм для вирiшення вiд-
критих проблем в областi дослiдження сегментацiї
зображень. Нарощування областей – це вдосконале-
ний пiдхiд до сегментацiї зображень, при якому сусiд-
нi пiкселi дослiджуються один за iншим i додаються
до вiдповiдного класу областей, якщо межа не вияв-
лена. Цей процес є iтерацiйним для кожного пiксе-
ля в межах областi. Якщо виявленi сумiжнi областi,
то використовується алгоритм злиття областей, в
якому слабкi краї розчиняються, а твердi залишають-
ся недоторканими, що вимагає багато часу обробки на
комп'ютерi, щоб уможливити паралельну реалiзацiю.

Ключовi слова: комп'ютерний зiр, обробка зобра-
жень, методи сегментацiї, нарощування областей,
паралельна обробка, паралельнi алгоритми, графiч-
ний процесор, ОКМД, аналiз текстур, цифрова оброб-
ка зображень

UDC 004.932
DOI: 10.15587/1729-4061.2020.197095

Copyright © 2020, Jesús Antonio Álvarez-Cedillo, Mario Aguilar-Fernández,

Teodoro Álvarez-Sánchez, Raúl Junior Sandoval-Gómez

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)

Received date 08.01.202

Accepted date 17.02.2020

Published date 29.02.2020

Information and controlling system

7

2. Literature review and problem statement

Image segmentation based on growing regions begins
with the selection of a pixel, often referred to as a seed, that
is within the object of interest. Usually, the seed is chosen
manually. Hsiao and Tynan present the results of research
where the seed pixel (first point of the region) will begin to
extend the region by processing its neighbours and adding
them using a predefined criterion [7, 8].

Felzenszwalb showed that there were unresolved issues
related to the insertion criterion uses common character-
istics; these are the intensity, the colour, the texture of the
seed and the points that belong to the region [9, 11].

Each time a new point is inserted into the region, the
characteristic that is being used to perform the insertion
will be recalculated, for example, if the grey level is used,
the average value of the grey levels that will be recalculated
there is in the region generated so far. In this way, the region
will expand by adding neighbours until it finds one that does
not meet the insertion condition imposed by the criteria, this
approach was used in [10].

If a point has not been added to any region, it can be
added to a region near if the difference between, for example,
the grey level of this point and the average grey level of the
region does not exceed a given threshold value.

This technique is useful when the intensity of the back-
ground and the object are very similar but are separated by
an edge or another region.

The segmentation of any image would be straight-
forward if factors such as image noise and the number
of pixels in the process were not involved. In the last ten
years, the power of computing has increased with the use
of GPU.

A way to overcome these difficulties was proposed by
[10, 11]. Their research shows that the use of this type of
cards has become accessible for research, and their uses are
in different fields.

The GPU has doubled its performance every six months
on average. At present, the computing power of high-per-
formance GPUs can reach Teraflops, which is much higher
than the central processing unit of a computer [12], all
this suggests that it is advisable to conduct a study on the
architectures and behaviour of the memory and improve all
techniques of computer vision.

3. The aim and objectives of the study

The aim of the study is to implement a parallel algorithm
to solve general problems in the area of image segmentation
research. In our first approximation, the computing power is
applied to Region growing technique, which is an advanced
approach to image segmentation in which neighbouring
pixels are examined one by one and added to an appropriate
region class if no border is detected, this algorithm is viral
and very used in the literature.

However, to achieve this aim, the following objectives are
accomplished:

– understand and apply all the techniques of parallel
computing to the computer vision field;

– establish a parallel strategy to implement the Region
growing technique;

– validate the correct function of the algorithm;
– show the measures of performance and improvements.

4. GPU and their programmation

NVIDIA proposed a free CUDA (Compute Unified De-
vice Architecture) GPU program development tool in 2007,
which allowed programming any type of GPU and turned
the technology into general-purpose [13, 14].

It has contributed to high-speed scientific operations,
so the scientific fields benefited are: statistical engineering,
Monte Carlo statistical simulation, financial engineering,
global climate change simulation, 3D multimedia, biomedi-
cine, national defence science, oil exploration, civil engineer-
ing, CAM, CAE, CAD [15, 16].

From an architectural point of view, the first genera-
tions of GPUs had a relatively small number of cores, but it
quickly increased until today, when we talk about many-core
devices with hundreds of cores on a single chip [17].

This increase in the number of cores caused that in 2003
there was a significant jump in the capacity of calculation in
a floating-point of the GPUs concerning the CPUs, as shown
in Fig. 1. Fig. 1 shows the evolution of the floating-point
performance of Intel and NVIDIA based technology during
the last decade.

It can be seen that GPUs are much more ahead than
CPUs in terms of performance improvement, especially since
2009, when the ratio was approximately 10 to 1 [18, 19].

The significant differences between CPU and multi-core
GPU performance are mainly due to a design philosophy
issue. While GPUs are designed to exploit parallelism data
level with mass parallelism and relatively simple logic, the
design of a CPU is optimized for efficient sequential code
execution [20].

The CPUs use sophisticated control logic that allows in-
structional and out-of-order parallelism and use quite large
cache memories to reduce data access time in memory.

There are also other issues, such as power consumption
or memory access bandwidth. Current GPUs have memory
bandwidths around ten times higher than those of CPUs,
among other things because CPUs must meet requirements
inherited from operating systems, applications or output-in-
put devices.

There has also been a very rapid evolution from GPU
programming that has changed the purpose of these devices.
GPUs in the early 2000s used programmable arithmetic
units (shaders) to return the colour of each pixel on the
screen.

Tesla C870

GeForce 8800 GTX

G71
G70-512

G70

NV40 NV35
NV30

3.0 Ghz Pentium 4

3.0 GHz
Core2 Duo

3.0 GHz
Core2 Quad

Fig.	1.	Performance	comparison	(theoretical	peak)	between	
CPU	and	GPU	technologies,	Source:	NVIDIA	[13]

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 1/9 (103) 2020

8

Since the programmer could fully control the arithmetic
operations that were applied to the input colours and tex-
tures, the researchers observed that the input colours could
be any type of data.

Thus, if the input data were numerical data that had
some meaning beyond a colour, the programmers could
execute any of the calculations they needed on that data
through the shaders [21].

Despite the limitations that programmers had to develop
high-performance applications with arithmetic operations,
many efforts were devoted to developing general-purpose
application programming interfaces and environments for
GPUs. Some of these programming interfaces have been
widely accepted in various sectors, although their use still
requires some specialization [22].

OpenMP has been successfully implemented in small to
medium scale shared memory systems and large scale systems.
OpenMP was developed by the Architecture Review Board
(ARB) in November 2004. Its main evolution allowed the use
of the C, C++ and FORTRAN languages. As computer com-
ponents decrease in size, architects have begun to consider dif-
ferent strategies to exploit space on a chip. A recent trend is to
implement Multi-Threading Chip (CMT) in hardware [23, 24].

This term refers to the simultaneous execution of two
or more threads within a processor. It can be implemented
through several cores of physical processors on a chip, a sin-
gle-core processor with feature replication to maintain the
status of multiple threads simultaneously or the combination
of CMP and SMT. OpenMP support for these new microar-
chitectures needs to be evaluated and possibly improved [25].

5. Parallel implementation

Region-based segmentation consists of dividing an im-
age into similar and equal areas delimited by connected pix-
els through standard criteria between sets of sample pixels.
Each pixel of a region is similar in some features usually like
colour, intensity and texture.

If these criteria are not adjusted, the results will be in-
correct and undesirable. The following problems are:

1) the segmented region is smaller or larger
than the current one;

2) pseudo objects arise;
3) fragmentation.
As the main objective of segmentation is to di-

vide an image into regions, segmentation methods
such as threshold achieve this objective partially
by seeking boundaries between regions based on
discontinuities. However, region-based segmen-
tation is a technique that works well to determine
the region directly [2].

The basic formulation is defined as follows:
Image segmentation partitions the set X into the subsets

R(i), where i=1, 2, 3, …, N having the following properties:

⋃i=1 nR i=R. (1)

R i is a connected region, i=1, 2, ..., n. (2)

R i⋂R j=∅, i≠j. (3)

P(Ri) is a logical predicate defined over the points in set R i:

1) segmentation must be completed; for this to happen,
each pixel must be in a region;

2) the points in a region must always be connected;
3) regions should be disjoint;
4) the properties that pixels in a segmented region must

meet must be clearly defined;
5) indicates that regions R i are different in the sense of

predicate P.
With this information, the algorithm was developed

shown in Listing 1.
As shown in Listing 1, all the instructions within the

while statement correspond to the structure that can be
parallelized, because this block of sentence can be sent to
the different GPUs.

With the previous information, it is possible to paral-
lelize the algorithm using OpenMP. Fig. 2 shows how the
parallelization strategy is applied. Parallelization.

Listing 1. Region Growing Algorithm
WHILE (NUM) {
IF (MASK_VALUE (X, Y, Z)==255) {
IF (THRESHOLD_MASK (X, Y, Z)==255) {
MASK_VALUE (X–1, Y, Z)
THRESHOLD_MASK (X–1, Y, Z);
MASK_VALUE (X+1, Y, Z)
THRESHOLD_MASK (X+1, Y, Z);
MASK_VALUE (X, Y–1, Z)
THRESHOLD_MASK_ (X, Y–1, Z);
MASK_VALUE (X, Y+1, Z)
THRESHOLD_MASK (X, Y+1, Z);
MASK_VALUE (X, Y, Z–1)
THRESHOLD_MASK (X, Y, Z–1);
MASK_VALUE (X, Y, Z+1)
THRESHOLD_MASK (X, Y, Z+1);
THRESHOLD_MASK (X, Y, Z)=0;
NUM=NUM+1;
}}}

Fig. 2 shows the implementation strategy, using Open-
MP, the central part of the code is sent in different threads
independently.

In the end, there is a synchronization called the barrier,
which expects the tasks to be completed and then accumu-
late the sub-results obtained.

6. Discussion of experimental results

The results presented in this work cover three critical
stages:

1) verification of algorithm operation;

#pragma omp
for

Parallel code

Parallel code

B
A
R
R
I
E
R

Parallel code

#pragma omp
paralell

Fig.	2.	The	strategy	of	the	algorithm	shown	in	Listing	1

Information and controlling system

9

2) execution and parallel performance and parallel
speedup.

6. 1. Checking the operation of the algorithm
The algorithm performed was tested by different profes-

sional tomography and x-ray images. In the image analyzed
by tomography of a slice of the brain, Fig. 3 shows the orig-
inal image, Fig. 4 and the segmented image and finally, in
Fig. 5 both overlapping images. Fig. 6 shows the resulting
histogram.

Another test was performed directly on an X-ray plate
on the side of a human head. Fig. 7 shows the original image;
Fig. 8 shows the original and segmented image, both over-
lapping images.

Two fundamental problems that were observed are the
selection of the appropriate seeds to define the regions of in-
terest; and the choice of properties that allow adding pixels.

The selection of the starting points depends on the image
to be segmented.

The selection of similarity criteria depends on the prob-
lem and the type of image available.

Another test was performed directly on a stream of 4k
video to know the real-time parameters of the parallelized
processing. Fig. 9 shows the stream images and the pro-
cessed images.

6. 2. Execution and parallel performance
The CT images from cancer imaging archive with con-

trast and patient age dataset obtained from kaggle.com is
used to perform the parallel performance tests.

The sequential program developed in C language and
its equivalent developed in OpenMP with GPU interface
NVIDIA Tegra was executed. See Fig. 9. Table 1 shows the
execution time of GPU+OpenMP time vs. Sequential time.

The speedup is defined as the linear relationship between
the execution time of serial processing over the best parallel
algorithm used to solve a problem. It is necessary to empha-
size that there will always be a serial time that cannot be
parallelized.

The equation of the speedup is defined in (4) where S is the
speedup, Ts the processed sequential time and Tp is the pro-
cessed parallel time. Using this equation is shown in Table 2.

.
Ts

S
Tp

= (4)

Fig.	3.	Brain	tomography

Fig.	4.	Segmentation	performed	of	the	image,	x=198;	
y=359,	maxdist=0.2

Fig.	5.	Complete	result	of	the	algorithm

т
Fig.	6.	Resulting	histogram

Fig.	7.	X-ray	plate	analysed

Fig.	8.	Complete	result	of	the	algorithm	application.	
Segmentation	performed	of	the	image,	x=198;	y=359,	

maxdist=0.2

Fig.	9.	Complete	result	of	the	algorithm	application	on	video	
stream.	Segmentation	performed	of	the	image,	x=4096;	

y=	2160,	maxdist=0.2

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 1/9 (103) 2020

10

Table	1

Executing	time

Image GPU+openmp time Secuential time

ID_0000_AGE_0060 0.513 16.023

ID_0001_AGE_0069 1.245 12.034

ID_0002_AGE_0074 0.876 13.234

ID_0003_AGE_0075 0.923 9.234

ID_0004_AGE_0056 1.022 10.345

ID_0005_AGE_0048 0.945 14.750

ID_0006_AGE_0075 1.023 12.345

ID_0007_AGE_0061 0.456 15.879

ID_0008_AGE_0051 0.678 13.056

ID_0009_AGE_0048 1.230 10.456

Table	2

Speedup

Image Parallel
time

Sequential
time

Speedup

ID_0000_AGE_0060 0.513 16.023 31.2339181

ID_0001_AGE_0069 1.245 12.034 9.66586345

ID_0002_AGE_0074 0.876 13.234 15.1073059

ID_0003_AGE_0075 0.923 9.234 10.0043337

ID_0004_AGE_0056 1.022 10.345 10.1223092

ID_0005_AGE_0048 0.945 14.750 15.6084656

ID_0006_AGE_0075 1.023 12.345 12.0674487

ID_0007_AGE_0061 0.456 15.879 12.0674487

ID_0008_AGE_0051 0.678 13.056 19.2566372

ID_0009_AGE_0048 1.230 10.456 8.50081301

As can be seen, in Table 1, 2, the calculation of the per-
formance limits of the parallelization is critical since it rep-
resents how the software will manifest when the hardware
is scaled. The previous performance considerations indicate
that it has many chances of success in the application with
multi-core hardware.

Our studio is limited to 4K images with maximum modifi-
cations of 4,096×2,160. However, it is possible to use pictures
and video with more resolution by scaling the proposed hard-
ware architecture. Our method is necessary to remember that
it is local and does not take into account the global vision of
the problem. It is necessary to emphasize that the algorithm is
sensitive to noise, for this it is necessary to apply a threshold
function to the image, there can also be a continuous route of
points related to colour, which connects any of the two points
of the image which allow affecting the performance.

7. Conclusions

1. Understand and apply all the techniques of parallel
computing to the computer vision field: In past times, the
supercomputers were the most significant system that used
precious resources and the parallel computing only could be
processed in a computer cluster. Now, using a GPU system
to do computing parallel the image analysis to the most
significant image can be processed using a sophisticated
algorithm. In our experience, 256-core Maxwell in 4 CPU
core arm Cortex A57 was used and each process was pro-
cessed in 20ns.

2. Establish a parallel strategy to implement the Region
growing technique: The proposed study showed that the im-
provement of technologies and mechanisms for obtaining data
from images has led to the obtaining of more detailed raster
information and with a higher level of resolution and spatial
precision, which has generated a gradual growth in the vol-
ume of the models. However, each model in their analysis has
the most significant computational complexity, and with this,
the processing time could be computable or hard computable.
Our strategy works fine, and it is possible to reach scalability
for the application of the algorithm in clusters.

3. Validate the correct function of the algorithm: The
Complete result of the algorithm applied in the segmentation
applied was performed of the image, x=198; y=359, max-
dist=0.2 in an image kind DICOM in the first algorithm and
excellent result was obtained in grey images and colour image,
but the algorithm is robust to be implemented in satellite
images and ecological images of most significant dimensions.

4. Show the measures of performance and improvements:
Table 2 shows the excellent results of the functionality test
of the proposed algorithm. The number of cores 256 was suf-
ficient for executing the images of any size, and it is possible
to use the hardware architecture proposed for another al-
gorithm more complexes in all the fields of computer vision.

Acknowledgements

We appreciate the facilities granted to carry out this work
to the INSTITUTO POLITECNICO NACIONAL through
the Secretary of Research and Postgraduate with the SIP
project 20180023. To the Interdisciplinary Unit of Engineering
and Social and Administrative Sciences, Center for Research
and Development of Digital Technology. Likewise, the Pro-
gram for Stimulating the Performance of Researchers (EDI)
and the Program for Stimulating Teaching Performance.

(EDD) and COFAA.

References

1. Keely, C. C., Hale, J. M., Heard, G. W., Parris, K. M., Sumner, J., Hamer, A. J., Melville, J. (2015). Genetic structure and diversity of

the endangered growling grass frog in a rapidly urbanizing region. Royal Society Open Science, 2 (8), 140255. doi: https://doi.org/

10.1098/rsos.140255

2. Ashburner, J., Friston, K. J. (2005). Unified segmentation. NeuroImage, 26 (3), 839–851. doi: https://doi.org/10.1016/

j.neuroimage.2005.02.018

3. Bandler, R., Tork, I. (1987). Midbrain periaqueductal grey region in the cat has afferent and efferent connections with solitary tract

nuclei. Neuroscience Letters, 74 (1), 1–6. doi: https://doi.org/10.1016/0304-3940(87)90041-3

4. Patel, N. H., Liu, P. Z. (2009). Segmentation. Encyclopedia of Insects, 909–912. doi: https://doi.org/10.1016/b978-0-12-374144-

8.00240-x

5. Taylor, J. R. A., deVries, M. S., Elias, D. O. (2019). Growling from the gut: co-option of the gastric mill for acoustic communication in

ghost crabs. Proceedings of the Royal Society B: Biological Sciences, 286 (1910), 20191161. doi: https://doi.org/10.1098/rspb.2019.1161

Information and controlling system

11

6. Chen, D. (2008). Image Segmentation. User Centered Design for Medical Visualization, 258–279. doi: https://doi.org/10.4018/978-

1-59904-777-5.ch013

7. Hsiao, Y.-T., Chuang, C.-L., Jiang, J.-A., Chien, C.-C. (2005). Robust Multiple Targets Tracking Using Object Segmentation and

Trajectory Estimation in Video. 2005 IEEE International Conference on Systems, Man and Cybernetics. doi: https://doi.org/

10.1109/icsmc.2005.1571289

8. Tynan, A. C., Drayton, J. (1987). Market segmentation. Journal of Marketing Management, 2 (3), 301–335. doi: https://doi.org/

10.1080/0267257x.1987.9964020

9. Felzenszwalb, P. F., Huttenlocher, D. P. (2004). Efficient Graph-Based Image Segmentation. International Journal of Computer

Vision, 59 (2), 167–181. doi: https://doi.org/10.1023/b:visi.0000022288.19776.77

10. Hu, R., Dollar, P., He, K., Darrell, T., Girshick, R. (2018). Learning to Segment Every Thing. 2018 IEEE/CVF Conference on

Computer Vision and Pattern Recognition. doi: https://doi.org/10.1109/cvpr.2018.00445

11. Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E., Phillips, J. C. (2008). GPU Computing. Proceedings of the IEEE,

96 (5), 879–899. doi: https://doi.org/10.1109/jproc.2008.917757

12. Stuart, J. A., Owens, J. D. (2011). Multi-GPU MapReduce on GPU Clusters. 2011 IEEE International Parallel & Distributed

Processing Symposium. doi: https://doi.org/10.1109/ipdps.2011.102

13. Nickolls, J., Dally, W. J. (2010). The GPU Computing Era. IEEE Micro, 30 (2), 56–69. doi: https://doi.org/10.1109/mm.2010.41

14. Bergstra, J., Breuleux, O., Bastien, F. F., Lamblin, P., Pascanu, R., Desjardins, G. et. al. (2010). Theano: a CPU and GPU math

compiler in Python. Proceedings of the Python for Scientific Computing Conference (SciPy).

15. Sanders, J., Kandrot, E. (2010). CUDA by Example: An Introduction to General-Purpose GPU Programming. NVIDIA

Corporation, 311.

16. Pratx, G., Xing, L. (2011). GPU computing in medical physics: A review. Medical Physics, 38 (5), 2685–2697. doi: https://doi.org/

10.1118/1.3578605

17. Sengupta, S., Harris, M., Zhang, Y., Owens, J. D. (2007). Scan primitives for GPU computing. Proceedings of the SIGGRAPH/

Eurographics Workshop on Graphics Hardware, 97–106.

18. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., Skadron, K. (2008). A performance study of general-purpose applications

on graphics processors using CUDA. Journal of Parallel and Distributed Computing, 68 (10), 1370–1380. doi: https://doi.org/

10.1016/j.jpdc.2008.05.014

19. Power, J., Hestness, J., Orr, M. S., Hill, M. D., Wood, D. A. (2015). gem5-gpu: A Heterogeneous CPU-GPU Simulator. IEEE

Computer Architecture Letters, 14 (1), 34–36. doi: https://doi.org/10.1109/lca.2014.2299539

20. Feng, W., Xiao, S. (2010). To GPU synchronize or not GPU synchronize? Proceedings of 2010 IEEE International Symposium on

Circuits and Systems. doi: https://doi.org/10.1109/iscas.2010.5537722

21. Lee, V. W., Hammarlund, P., Singhal, R., Dubey, P., Kim, C., Chhugani, J. et. al. (2010). Debunking the 100X GPU vs. CPU

myth. Proceedings of the 37th Annual International Symposium on Computer Architecture - ISCA ’10. doi: https://doi.org/

10.1145/1815961.1816021

22. Zhou, Y., Tan, Y. (2009). GPU-based parallel particle swarm optimization. 2009 IEEE Congress on Evolutionary Computation. doi:

https://doi.org/10.1109/cec.2009.4983119

23. Shah, S., Bull, M. (2006). OpenMP---OpenMP. Proceedings of the 2006 ACM/IEEE Conference on Supercomputing - SC ’06.

doi: https://doi.org/10.1145/1188455.1188469

24. Hermanns, M. (2002). Parallel programming in Fortran 95 using OpenMP. School of Aeronautical Engineering.

25. Chapman, B., Jost, G., Van Der Pas, R. (2008). Using OpenMP. Cluster Computing.

