
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 1/2 (103) 2020

6

many research questions, such as MV maintenance, includ-
ing incremental update and maintaining strategies, using
MV to answer queries and optimization in different fields, in
traditional ones such as data warehouse, data streaming, web
and semantic web, distributed system and concern future

1. Introduction

Materialized views (MV) are special tables where the
query execution results are stored, which can be used to an-
swer other queries that appear later. MV is critical and raises

INFORMATION TECHNOLOGY

Copyright © 2020, Nguyen Tran Quoc Vinh, Le Van Khanh, Tran Trong Nhan,

Tran Dang Hung, PW Chandana Prasad, Abeer Alsadoon, Pham Duong Thu Hang

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)

A NEW SOLUTION
FOR ASYNCHRONOUS

INCREMENTAL
MAINTENANCE OF

MATERIALIZED VIEWS

N g u y e n T r a n Q u o c V i n h
PhD*

Е-mail:	ntquocvinh@ued.udn.vn
T r a n T r o n g N h a n

Master	of	Science	in	Computer	Science*
Е-mail:	trongnhan.tran93@gmail.com

L e V a n K h a n h
Master	of	Computer	Science*

Е-mail:	khanhlv@lekhanhtech.com
T r a n D a n g H u n g
PhD,	Associate	Professor

Faculty	of	Information	Technology
Hanoi	National	University	of	Education

Xuan	Thuy	str.,	136,	Cau	Giay	District,	Hanoi,	Vietnam,	110000
Email:	hungtd@hnue.edu.vn	

A b e e r A l s a d o o n
PhD,	Associate	Professor**

Email:	AAlsadoon@studygroup.com
P W C h a n d a n a P r a s a d

PhD,	Associate	Professor**
Email:	CWithana@studygroup.com

P h a m D u o n g T h u H a n g
PhD	student*

Е-mail:	ntquocvinh@ued.udn.vn
*Faculty	of	Information	Technology

The	University	of	Da	Nang	–		
University	of	Science	and	Education

Ton	Duc	Thang,	459,	Lien	Chieu	Dist.,		
Da	Nang	city,	Vietnam,	550000

**School	of	Computing	and	Mathematics,	Sydney	Campus
Charles	Sturt	University

Level	1,	Oxford	str.,	63,	Darlinghurst	NSW	2010,	Australia

Матерiалiзованi представлення можуть знач-
но пiдвищити швидкiсть виконання запитiв, вико-
ристовуючи всi або частину збережених попередньо
обчислених результатiв запитiв. При iнкремент-
ному обслуговуваннi матерiалiзованi представлен-
ня оновлюються вiдповiдно до змiн у вiдповiдних
базових таблицях. Часто це бiльш ефективно, нiж
повне оновлення, що замiнює таблицi матерiалi-
зованих уявлень новим результатом виконання
запиту. Асинхронне обслуговування, що приво-
дить матерiалiзованi представлення до фактич-
ного стану, не є складовою частиною транзакцiї,
що вносить змiни в базовi таблицi. Бiльшiсть опу-
блiкованих робiт присвячено синхронному iнкре-
ментному оновленню представлень, алгорит-
ми якого вимагають доступу до стану базових
таблиць перед оновленням i не можуть застосо-
вуватися безпосередньо до асинхронним оновлень,
якi виконуються в станi пiсля оновлення. Кiлька
робiт присвячено асинхронному обслуговуванню
представлень, або обмежують змiни тiльки в однiй
з базових таблиць, або передбачають наявнiсть
лише однiєї базової таблицi, що недоцiльно, або
невiрно, або надає занадто високий рiвень i склад-
нi алгоритми iнкрементного оновлення, або може
бути реалiзовано, тiльки якщо система управ-
лiння базами даних пiдтримує управлiння версiя-
ми даних на рiвнi таблиць i рядкiв. У данiй роботi
запропоноване рiшення для асинхронного iнкре-
ментного оновлення представлень, яке може бути
реалiзовано з будь-якими системами управлiння
базами даних. Ми збираємо змiни в базових табли-
цях, отримуємо доступ до стану перед оновленням
базових таблиць, використовуючи процес ущiль-
нення, i застосовуємо алгоритми iнкрементного
обслуговування перед оновленням для асинхронно-
го обслуговування до стану базових таблиць пiсля
оновлення, враховуючи особливостi асинхронного
обслуговування. Це може бути застосовано для
запитiв SPJ з внутрiшнiми з'єднаннями, запитiв з
внутрiшнiми з'єднаннями i агрегатами. Створено
прототип та наведено експерименти з автома-
тичної генерацiї вихiдних кодiв на мовi Сi для збору
змiн в базових таблицях i виконання асинхронного
iнкрементного оновлення матерiалiзованих пред-
ставлень в PostgreSQL

Ключовi слова: матерiалiзоване представ-
лення, стан перед оновленням, асинхронне iнкре-
ментне обслуговування, синтез вихiдного коду,
PostgreSQL

UDC 004.65
DOI: 10.15587/1729-4061.2020.193715

Received date 22.12.2019

Accepted date 24.01.2020

Published date 28.02.2020

Information technology

7

directions such as IoT, business intelligence and analysis,
emergent web application [1].

It is necessary to make MV actual to the base tables after
data changes on them. Incremental update of MV calculates
the part of records needed to be removed or inserted into
MV according to the changed records in the base tables.
The updating process can be done in a synchronous or asyn-
chronous manner. Synchronous (eager, immediate) update
is performed within the transaction which changes data in
the base tables. In opposite, asynchronous (deferred, lazy) is
done outside of those transactions, by user requests, on-de-
mand when a query that uses the MV appears, periodically
or by some schedule. Synchronous maintenance of MV can
be performed before (more often) or after the base tables are
updated, i. e. on the pre-update or post-update states of the
base tables and often after changes in each base table. On
the opposite, asynchronous one is done on the post-update
state of base tables and often after data changes in more
than one table.

Asynchronous incremental maintenance of MV is im-
portant. There are a number of works dedicated to the asyn-
chronous incremental update of views, which either restrict
changes in only one of base tables or assume the query uses
only one base table, which is impractical, either is wrong,
either provides too high level and complicated incremental
update algorithms or can be implemented only if the database
management system supports data versioning at the table and
row levels. Most of database management systems don’t sup-
port data versioning at the table and row levels and access to
full system transaction log is not always available. Therefore,
it is necessary to develop a new technique to incrementally
maintain MV in asynchronous manner that can be applied
and implemented to any database management system.

2. Literature review and problem statement

Most of the works are devoted to the synchronous incre-
mental update [2–7], a little number of them are dedicated
to the asynchronous incremental update of MV [8–10]. The
works [5, 11] build and provide experiments on triggers in
programming languages PL/pgSQL and C, implementing
the same incremental update algorithms in a synchronous
manner on the same MV based on the same query with
the same base tables with the clustered indices on primary
keys and foreign keys. It is shown that triggers written in
C are more effective by about 13 %. The work [5] suggests
a sequence of optimizations to the incremental update al-
gorithm relative to [11]. The work [2] proposes a solution
for synchronous incremental of recursive materialized view
based on SQL query. Although it may be more effective if the
incremental update code is embedded into a database man-
agement system, solution using triggers has its advantages
because it is almost independent of database management
system versions and has higher mobility.

It is clear that data in base tables are different at the
two states that lead to the necessity of different incremen-
tal update algorithms, at least the calculations of the sets
of records need to be removed from and/or inserted to the
MV according to the data changes made in the base tables.
However, most of the published researches didn’t care about
those different states, which leads to state bug, so that the
incremental update algorithms proposed by those works may
be wrong [9]. The work [9] develops a new algorithm espe-

cially for asynchronous maintenance with different update
strategies for helping to reduce the time the MV tables and
base tables are locked, which may affect other applications
that use the tables negatively. The solution proposed by this
paper seems to be very complicated and very difficult to im-
plement. It also doesn’t show how to access the pre-update
state of the base table to calculate the delta stream for MV.

After the work [8], almost asynchronous incremental
maintenance is studied for warehousing and distributed
environment [12–16] employing a versioning mechanism of
the database management systems. The work [12] delivers
that in the very large scale distributed shared-nothing data
storage systems, remote view tables are better for index,
equijoin, and selection MV, while local ones are more useful
for MV with aggregations so that those two types of MV
implementation can provide a good tradeoff between system
throughput and minimizing view staleness. The work [13]
shows the effectiveness of combining eager and lazy MV
maintenance policies for social networking applications on
a database management system using a distributed memory
cache, but there is a tradeoff between accuracy and freshness
of the MV. The work [14] tends to find the cost metric which
helps to balance the accuracy, the latency, and the source
utilization effectively for updating policies of MV with joins
on continuous queries over data stream and linked data.

The work [16] utilizes the versions store and deferred
maintaining mechanism of the work [8] and approach
proposed by the work [17] to build an incremental update
algorithm using version store in a warehousing environment.
The work [8] exploits the ability of Microsoft SQL Server
(from ver. 2005) that supports data versioning at the table
level down to record level to access the pre-update state of
base tables. That paper also provides condense operators
to “compress” the record sets x

idT removing intermediate
operations on a base table x

iT record as an optimization,
which can help to dramatically reduce the size of the sets
of changed record sets in base tables to be processed in
deferred maintaining mode. It improves performance. The
experiments provided by the paper show that asynchronous
maintenance is more effective than synchronous one even
in on-demand mode, i. e. the asynchronous update is per-
formed when there is a query that uses the MV appears. The
work [15] states the same. In fact, if the data changes in base
tables are accumulated too much, the incremental update
process may take too much time and system resources, the
query owner has to wait longer and there may be also a neg-
ative effect on other applications executing parallelly.

According to optimizations suggested by the work [5],
the positive effects are gained from condense operators that
may be not so high as obtained in the work [8]. The reason
is that changes in base tables on attributes participating in
GROUP BY clause but not in WHERE clause and are not
parameters of an aggregate function can be applied directly
to the MV without any relational algebra expression calcu-
lation. Anyway, the solution can be applied only to the da-
tabase management systems which support data versioning
to the table and record levels with the ability to access full
system transaction log as needed.

PostgreSQL is the world’s advanced open source rela-
tional database management system. It supports material-
ized view with the asynchronous full update of MV, which
re-executes the underlying query and replaces the previous
result in the MV table. As almost open source database
management systems, PostgreSQL doesn’t support data

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 1/2 (103) 2020

8

versioning on the table and record levels. So, we can’t apply
the solution proposed in the work [8] to implement support
of the asynchronous incremental update of MV.

Although spending on system resource among the sys-
tem operational time with the transactions is one of the
advantages of synchronous incremental maintenance of MV,
it always exploits system resource so can affect the system
negatively. It can lengthen the transaction execution time
too much especially when multiple MV are affected and
needed to be updated, which is not acceptable in many ap-
plications. In some cases, for example in data warehouse and
distributed systems, the base tables are not always available
for synchronous maintenance. On the opposite, asynchro-
nous maintenance may allow MV to be not actual to data in
the base tables in some period between the last update time
to the next update time. Thus, asynchronous maintenance
is very important and needs to be studied and implemented.

3. The aims and objectives of the study

This research aims to find a solution for asynchronous
incremental maintenance of MV which can be applied to any
database management system. The following objectives are
established and archived to reach the aims:

– carefully study the related published works regarding
the incremental update of MV at all and asynchronous incre-
mental update in particular;

– formally show the state bug error and propose a tech-
nique to access the pre-update state of base tables exploiting
the condensing process which avoids the state bug error;

– build the updating expressions accessing the pre-up-
date state of base tables and the mechanism of asynchronous
incremental maintenance which can be implemented with
every database management system;

– build a prototype for implementing the proposed solu-
tion with PostgreSQL.

4. Proposed method

4 .1. SQL query
It is necessary to formulate the SQL queries that are

used to create MV. Each thx SPJ query xQ which thx MV
is based on consists of:

(), , , ,x x x x xQ S T J W (1)

where:
– { }1 2, ,..,x x x x

pS S S S= – set of fields that are selected and
presented in SELECT predicates;

– { }1 2, ,..,x x x x
nT T T T= – set of base tables that participate

in FROM predicates. FROM predicate xF is the combina-
tion of xT and :xJ

1 2 1 1
1 2 ;.. ..x x x x

i n

x x x x x
i nJ J J J

F T T T T
− −

=   

– xJ – join conditions between base tables in ;xT
– xW – WHERE predicates, the conditions on each re-

cord in joining result of .xF In case of implicit joins, xJ is
empty and it is contained in .xW Otherwise, it is not empty.
Let .x x xC J W∧= Suppose that xJ and xW are converted
into a conjunctive canonical form.

Each thx query xQ with aggregate functions which thx
MV is based on consists of:

(), , , , ,x x x x x xQ S T J W G (2)

where xS now can contain aggregate functions and xG is
the set of groups by attributes.

4. 2. Incremental update of MV and state bug
The work [9] first shows examples about state bug

when the pre-update incremental maintenance algorithms
are applied to the post-update state of the database in the
asynchronous incremental update of MV. In this paper, this
problem is shown in a formal form.

The standard execution order for SPJ query is join
operations, where predicates and then selection. The
standard execution order for queries with aggregations
is join operation, where predicates, group-by operations
and aggregate functions and then selections. Incremental
update of those both MV types is based on the distribu-
tive property of inner join operation of relational algebra.
It is known that a record of a thi base table x

iT can take
participance in the result of xQ if and only if its cartesian
product with records of other tables in xT satisfies xJ
and .xW So that we will give proof that the pre-update
algorithms cannot be applied to the post-update state di-
rectly only for the case of SPJ MV defined in (1). Suppose
there is a record set x

idnewT inserted into the base table
,x

iT then,

()
1 2 1 1

1 2 1 1

1 2 1 1

1 2

1 2

1 2

.. ..

.. ..

.. ..

x x x x
i n

x x x x
i n

x x x x
i n

x

x x x x x
i i nJ J J J

x x x x
i nJ J J J

x x x x
i nJ J J J

newF

T T T dnewT T

T T T T

T T dnewT T

− −

− −

− −

=

∪ =

∪

=

∪

=

 

  

 



  





 



 (3)

and there is a record set x
idoldT deleted from the base table

,x
iT then,

()
1 2 1 1

1 2 1 1

1 2 1 1
1

1 2

1 2

2

.. ..

.. ..

\ ..

\

\

.. .

x x x x
i n

x x x x
i n

i x x x
i n

x

x x x x x
i i nJ J J J

x x x x
i nJ J J J

x x x x
i nJ J J J

oldF

T T T doldT T

T T T T

T T doldT T

− −

− −

− −

=

=

=

 



 

  

   
(4)

Now, suppose the current pre-update state (instance) of
the database is with the set of base tables .xT The execution
result of (), , ,x x x x xQ S T J W is:

(), , , .x x x x xM S T J W= (5)

The eq. (5) can be presented in the form of a relational
algebra expression as follows:

() () ()
1 2 1 1

1 2x x x xx x
i n

x x x x x
i nJ J J JS W

M T T T T
− −

= π σ   

If there is a set of records x
idnewT inserted into ,x

iT
which move the table from the pre-update state to the
new post-update state, suppose ,x x x

i i ipostT preT dnewT= ∪
{ }1 2, ,.. ,.. ,x x x x x

i ndnewT preT preT dnewT preT=

Information technology

9

{ }
(){ }

1 2

1 2

� , ,.. ,..

, ,.. ,.. .

x x x x x
i n

x x x x x
i i n

postT preT preT postT preT

preT preT preT dnewT preT

= =

= ∪

The database now has a new instance and inferring from
eq. (3)–(5), a new execution result of xQ is then:

()
() ()

, , ,

, , , , , , ;

x x x x x

x x x x x x x x

postM S postT J W

S preT J W S dnewT J W

= =

= ∪ (6)

xpostM is in the form of a relational algebra expression
as follows:

() ()

1 2

1 1

1 2

1 1

1 2

1 2

..

..
.

..

..

x x

x x
i n

x x

x x

x x
i n

x

x x

J J

x x
i nJ J

x xS W

J J

x x
i nJ J

pre pre

pre pre

pr

postM

T T

T T

T T

dnewT

e pre

pr Te

− −

− −

=

=

 
 

∪ 
 

∪ 
 
  

π σ

  

 

  

 

(), , ,x x x x xdnewM S dnewT J W= is the set of records that
must be inserted into MV xM according to the insertion of

x
idnewT into .x

iT
Suppose an MV query has two base tables 1

xT and 2
xT

changed by insert operations between two sates, pre-update
and post-update, of the database. The record set that must be
inserted to MV with SPJ query according to data changes in
base tables is:

() ()

1 2

1 1

1 2

1 1

1 2

1 1

1 2

1 2

1 2

..

..

..

..

..

..

x x

x x
i n

x x

x x

x x
i n

x x

x x
i n

x

x x

J J

x x
i nJ J

x x

J J

x xS W
i nJ J

x x

J J

x x
i nJ J

dnewpreM

dnew pre

pre pre

pre dn

T T

T T

T T

T T

dnewT

ew

pre pre

dnew

pre

T

T preT

− −

− −

− −

 




∪
= π σ




=




∪

∪

∪

  

 

  

 

  

 

.












(7)

If the pre-update expression (7) is applied directly to the
post-update state of the database, we have:

() ()

()

()

1

2 1 1

1

2 1 1

1 2

1 1

1 2 2

1 1 2

1 2

.. ..

.. ..

..

..

x

x x x
i n

x

x x

x x x
i n

x x

x x
i n

x

x x x

J

x x
i nJ J J

x x x

J

S W x x
i nJ J J

x x

J J

x
iJ J

pre dnew

pre pre

pre dnew dnew

pre pre

dnew

pre

dnewpostM

dnewT T T

T T

T T T

T T

dnewT T

pT r

− −

− −

− −

∪

∪

∪ ∪
= π σ

∪

=

∪

 

  

 

  

  

 

.

x
nTe

 
 
 
 
 
 
 
 
 
 
  

(8)

The record set that must be inserted to MV with SPJ
query according to data changes in base tables in every case
must be identified. But the result of expression (8) is wrong
and now they are different in expressions (7) and (8):

() ()
1 2

1 1

1 2 ..
.

.

\

.

x x

x x

x x
i n

x x

x x

J J

x xS W
i nJ J

dnew

p

dnewpostM dnewpreM

dnewT T

Tre preT
− −

 
 π σ


=


=



  

 

(9)

In general, if all n base tables have changed with inser-
tions, it is not difficult to prove that:

() ()

1 2

1 1

1 2

1 1

1 2

1 1

1 2

1 2

1 2

..

..

..

..

...

..

.

\

.

x x

x x
i n

x x

x x
i n

x x

x x
i n

x x

x x

x x

J J

x x
i nJ J

x x

J J

x x
i nJ J

x x

J J

x
iJ J

S W

pre

pre pre

dnew

dnewpostM dnewpreM

dnewT T

T T

dnewT T

T T

dnew

pre pre

dnew

dnew dn

T T

T e

− −

− −

− −

∪

∪

∪

∪

π σ

=

=

  

 

  

 

  

 

1 2

1 1

1 2

1 1

1 2

1 1

1 2

1 2

1 2

...

..

..

..

..

...

..

..

x x

x x
i n

x x

x x
i n

x x

x x
i n

x
n

x x

J J

x x
i nJ J

x x

J J

x x
i nJ J

x x

J J

x x
i nJ J

w

pre pre

pre dnew

pre pre

dn

T

T T

T T

T T

T T

dnewT T

ew dnew

dnew

dnew dnewT T

− −

− −

− −

∪

∪

∪

∪

∪












∪








  

 

  

 

  

 

.
















 
 
 
 
 
 
 
 
 
 
 
 
 
 

(10)

xdnewpreM and xdnewpostM must be identical, but ex-
pressions (9) and (10) show the opposite. It means that the
expression (8) is wrong, we can’t directly apply pre-update
MV incremental maintenance algorithms to the post-update
state of the database. It is analogical for delete operations.

4. 3. Proposed technique
Suppose we have a base table x

iT with the pre-update
state .x

ioldT There is a record set x
idT which moves x

iT from
the pre-update state x

ipreT to the post-update state .x
ipostT

Certainly, records in x
idT are with action information (in-

serted, deleted) and are ordered ascendingly by the time of
the operations.

It is necessary to access the pre-update state of base tables
to do incremental maintenance of MV. In this paper, we exploit
the idea of condensing process mainly to access the pre-update
state of the base tables, so that the state bug error is avoided and
the pre-update expressions can be used to do the asynchronous
incremental update of MV at the post-update state of base
tables. Certainly, we use the condensing process to “compress”
the record set x

idT omitting intermediate changes of records
which are deleted from/updated in/inserted into base tables
and then separate it to x

idoldT and x
idnewT to access the

pre-update state of x
iT from its post-update state.

4. 3. 1. Condense processing
Update operation is divided to delete operation following

by insert operation. Each originating base table record can
have one from 6 updating scenarios between the pre-update
and post-update states of the database. Each originating record

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 1/2 (103) 2020

10

may have many versions between the two states of a base table.
For the base table ,x

iT x
idT contains the set of records that are

deleted from and/or inserted to ,x
iT which moves x

iT from
the pre-update state x

ipreT to the post-update state .x
ipostT

Scenario 1.
There is only one inserted record with one insertion op-

eration, i. e. it is inserted and isn’t changed between the two
states of a base table. There is nothing to omit here.

Scenario 2.
There is only one deleted record by one deletion action.

There is nothing to omit here.
Scenario 3.
First: Inserted.
Intermediate: Deleted…. Inserted (new record with the

same key values).
Last: Deleted.
For this scenario, it is clear that all the operations do not

have any influence on the ‘final’ post-update state of the base
table although they can affect the intermediate states of the
base table between the pre-update and post-update states. Since
we are interested in the post-update state of ,x

iT so we can omit
all the operations removing all the related records from .x

idT
Scenario 4.
First: Inserted.
Intermediate: Deleted…Inserted…Deleted…
Last: Inserted (new record with the same key values).
For this scenario, only the last operation influences the

post-update state of .x
iT So we remove all those records

from x
idT relating to first and intermediate operations,

keeping only the last one.
Scenario 5.
First: Deleted.
Intermediate: Inserted (new record with the same key

values)…
Last: Deleted.
The first deleted record was already in the pre-state of

the base table ,x
iT removing it may affect the post-update

state of .x
iT All the intermediately inserted records are

deleted between the pre-update and post-updates of ,x
iT

the operations are self-compensated each to other. We can
remove all those records from x

idT keeping only the first
one relating to the first deletion. In this case, the work [8]
suggests keeping the last deletion instead of the first one.

Scenario 6.
First: Deleted.
Intermediate: Inserted…. Deleted…
Last: Inserted (new record with the same key values).
The first deleted record was already in pre-state of base

table ,x
iT removing it may affect the post-update state of

.x
iT Once the last inserted record is not duplicate of the first

deleted one, the two records with the same key values have
different values for other attributes. In this case, we must
keep the first deleted and the last inserted records, removing
all records relating to intermediate operations.

4. 3. 2. Accessing the pre-update state of base tables
Before the condensing process, there may be many records

in x
idT corresponding to a base table record with concrete

key values, we can’t re-order them within a scenario because it
can lead to another scenario and yield another result. For ex-
ample, within a scenario, we can’t do all the delete operations
and then insertions, because there may be nothing to delete
since the records are not inserted and inserted records need
to be removed respectively to a deletion still are kept in .x

idT

Without generality, after condensing process, there are
three cases of record from x

idT must be considered:
– an originating record is inserted into x

iT represented by ;i
jt

– an originating record is deleted from x
iT represented by ;d

jt
– an originating record is deleted from x

iT and then
another one is inserted into x

iT represented by ud
jt and ui

jt
respectively.

Note that those records ,d
jt i

jt and the pair of ud
jt plus

ui
jt are independent of each other. Because relational algeb-

ra doesn’t care about the order of the records in a set, till
now, we can re-order them randomly keeping the order of

ud
jt and .ui

jt

It is clear that we can’t re-order ud

jt and ,ui
jt

which can lead to wrong post-update state of .x
iT If we di-

vide x
idT into the set of deleted records x

idoldT and the set of
inserted records ,x

idnewT i. e. we have { | 1.. },d
j

x
idoldT t j k= =

{ | 1.. },i
j

x
idnewT t j l= = ,i

ud
j

xdoldTt ∈ i
ui
j

xdnewTt ∈ and x
idoldT

is following by ,x
idnewT , then the order of the records within

each set is not important. This time,

()\ ,x x x x
i i i ipre dpostT T old dnewT T= ∪ (11)

and

()\ .x x x x
i i i ipost dnew doldpreT T T T= ∪ (12)

At the post-update state of ,x
iT x

ipostT is already in the
database.

4. 3. 3. Update expressions
It is not difficult to refer from expression (7) and we

adopt the update expression xdnewM from [8] ignoring
the order of records in x

idT in case of all n base tables are
updated. The expressions (14) and (13) show xdoldM and

xdnewM – the set of records to be deleted and then inserted
into the MV table for SPJ query based MV according to the
changes made moving base tables from the pre-update state
to the post-update one.

() ()

1 2

1 1

1 2

1 1

1 2

1 1

1 2

1 2

1 2

..

..

..

..

...

..

..

x x

x x
i n

x x

x xx x
i n

x x

x x
i n

x

x x

J J

x x
i nJ J

x x

J J

x x
i nJ JS W

x x

J J

x x
i nJ J

dnewM

d pre

pre pre

post dnew

pre pre

post post

p

newT T

T T

T T

T T

T T

Tos Tt dnew

− −

− −

− −

=




∪


∪

= π σ ∪



∪



  

 

  

 

  

 











 
 
 
 

(13)

and

() ()

1 2

1 1

1 2

1 1

1 2

1 1

1 2

1 2

1 2

..

..

..

..

...

..

..

x x

x x
i n

x x

x xx x
i n

x x

x x
i n

x x

J J

x x
i nJ J

x x

J J

x x x
i nJ JS W

x x

J J

x x
i nJ J

pre

pre pre

pre pre

pre pre

pre pre

pre dold

doldT T

T T

T T

doldM T T

T T

T T

− −

− −

− −

 













∪

∪

= π σ

 

∪

∪

  

 

  

 

  

 

.














 (14)

Information technology

11

The expressions for MV based on a query with aggrega-
tive functions are different but can be referred analogically.

4. 3. 4. Used asynchronous incremental update algo-
rithms

The incremental update algorithms used for MV based
on SPJ query and MV based on a query with aggregations
are the same and adopted from the work [5]. They are not
repeated here to reduce the length of the paper. Anyway,
the algorithms for the asynchronous maintenance must have
specifics:

– changed data is collected by triggers which are fired
on each data manipulation event for each base table with the
transaction id and the timestamp the insert/update/delete
statement started;

– the sets of changed rows in base tables must be con-
densed;

– the expression (13) is applied to one set of inserted into
base tables records instead of (7) and similarly for the set of
deleted from base table records, the expression (14) is used.
It is the main difference between synchronous and asynchro-
nous incremental update of MV;

– applied for the cases when there may be more than one
base table changed at a time;

– the pre-update and post-update states are marked for
each base table during each asynchronous update for an MV.

4. 4. System model
The system for asynchronous incremental maintenance

of MV is suggested to consist of three components (Fig. 1):
i) MV manager;
ii) asynchronous incremental update manager.
MV manager i) analyses the input MV query getting

meta-data about base tables (key, detail information about
attributes…) from the database, ii) generates triggers and
asynchronous incremental update source in C and trigger
registration code in SQL and iii) updates MV configuration
to the database and create the MV table. The generated
triggers on each of insert/update/delete events for each base
table which will gather the changed records with transac-
tion id, data manipulating statement timestamp and action
information in base tables and will save into the x

idT tables.
This process is synchronously done within the transaction
which makes changes in the base tables. It is committed or
rollbacked together with the main transaction.

The source code in C is synthesized similarly as in the
works [2, 5], will be compiled and linked, then saved in
the form of dynamic link library (.dll). The MV manager
uses generated SQL script and compiled trigger functions
code in .dll to register trigger. All the codes implementing
expressions (13) and (14) are synthesized at this stage. The
structure “…((SELECT all_columns FROM new_table EX-
CEPT SELECT all_collums FROM dnew_table) UNION
SELECT all_collums FROM dold_table) AS table…” is used
to implement expression (12) to access the pre-update state
of a base table.

The MV manager also creates the structure for the tables
that contain MV configurations and information if needed.
It also creates tables to store the changed data in the base
table during the process of trigger definition.

The code that implements the asynchronous incremental
update of MV is saved in the library and used by the update
manager. When an MV update arrived, the update manag-
er will mark the pre-update and post-update state for the

changed base tables, mark the current point of auxiliary ta-
bles corresponding to those changed base tables for current
MV, do the condensing process and then invoke the save
code to undertake incremental maintenance of MV.

5. Experiments on changes gathering and asynchronous
incremental update

PostgreSQL is chosen as a database management system
to build a prototype with. It now supports trigger for state-
ments allowing to see all the changed records in the body
of the trigger. The trigger functions can be written in PL/
pgSQL, C… There was the work showing that triggers writ-
ten in C are more effective, so C is chosen as a programming
language to generate trigger functions.

5. 1. Prototype
A high-level application programming interface is pro-

vided to simplify the process of source code synthesis. Dif-
ferent sub-modules have their own functions:

– connecting and communication director;
– definition of trigger function structures;
– trigger parameters checking;
– processing of numerical and string constants;
– data type conversions;
– short-hands for string processing;
– debug and log manager;
– SQL query executor;
– query execution result cache manager;
– query execution result data extractor;
– changed in base tables data extractor;
– query execution result validating;
– table structure creation;
– MV query analyzer;

Fig.	1.	System	model

Input MV
query

Analyzer

MV manager

Generator Manager

Triggers & update source
code

Update MV
configuration,

Create MV

Trigger
registration

Compilation

Base table
meta-data

Triggers &
update code

MV update
requests

Condensing records

Asynchronous incremental update manager

Condenser Updater

Incremental update

Library .h

.inf.sql .c

.dll

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 1/2 (103) 2020

12

– changed in base tables data condensing templates and
rules;

– incremental update templates and rules.
The prototype is realized as two standalone applications.

The first does the tasks of MV manager and the second –
asynchronous incremental update manager.

5. 2. Experiments
There are base tables countries, customers, sales and

costs have numbers of attributes of 10, 23, 8 and 6 with
the numbers of records of 23, 55.500, 918.843 and 822.112
respectively. A MV with the name mv_total is created
for the following query, which calculates the summary
received from each customer with their location infor-
mation: SELECT countries.country_id, countries.coun-
try_name, countries.country_region_id, countries.coun-
try_region, customers.cust_id, customers.cust_first_name,
stomers.cust_last_name, SUM(sales.quantity_sold*costs.
unit_price), COUNT(*) FROM countries JOIN custom-
ers ON countries.country_id=customers.country_id JOIN
sales ON customers.cust_id=sales.cust_id JOIN costs sales.
time_id=costs.time_id AND sales.promo_id=costs.pro-
mo_id AND sales.channel_id=costs.channel_id AND sales.
prod_id=costs.prod_id GROUP BY countries.country_id,
countries.country_name, countries.country_region_id,
countries.country_region, customers.cust_id, customers.
cust_first_name, customers.cust_last_name.

The built source code synthesizer is used to produce
i) script to create all auxiliary tables, ii) codes of triggers
on all data manipulation events for all 4 base tables and
iii) codes for the incremental update of MV mv_total. All
those source codes are identical to codes created manually
and function well. The insert/update/delete events on base
tables are now similar, almost without a difference, to the
previous case when there was not any trigger included. It
is because of that triggers are very ‘light’, they do only read
the deleted/inserted records in base tables and write to
auxiliary tables.

The experiments were provided on a personal computer
with configuration CPU Intel Core i5 3317U, RAM DDR3
4GB, HDD SATA3 5400rpm, and PostgreSQL v11.6 64bit
installed. The asynchronous maintenance policy in the
experiment is on request. Table 1 shows the execution time
measured in milliseconds. Two cases of the number of re-
cords were evaluated per updating action on each base table:
i) one record is manipulated by one SQL statement and
ii) 10 records are manipulated by 10 SQL statements. The
time is measured for each record per statement. The time
in Table 1 is cumulative in the case of synchronous mainte-
nance with 10 records changed.

Table	1

Incremental	update	time	in	milliseconds

Table
Synchronous Asynchronous

Insert
De-
lete

Up-
date

Insert
De-
lete

Up-
date

Com-
bined

1 record/1 command/action/base table
Sales 22 90 138 29 55 75 108Customers 15 56 77 28 47 71

10 records/10 commands/action/base table
Sales 211 925 1174 40 66 89 117Customers 139 612 757 28 54 77

For asynchronous maintenance, we examine not only the
general case when there is a mix of actions (insert or delete

of update) but also the case when there is only one of the ac-
tions separately. The optimization mentioned for the case of
base table customers is not applied to check the general case
of that there are more than one base table changed between
the two pre-update and post-update states.

5. 3. Discussion of experimental results
The closest to this solution is the one suggested in the

work [8]. As mentioned above, its main distinguishing
point to this research is the mechanism for accessing the
pre-update states of base tables and gathering changed re-
cords. Its disadvantages are in system resources needed to
read the right version of base tables and gathering changes
from transaction log, the performance of which is strongly
dependent on the concrete database management system.
Our solution avoids those costs, but it has a disadvantage in
system resources required to calculate the pre-update state
of the base tables following expression (12). So, the per-
formance of the two solutions may be competitive, but our
solution can be implemented with any database management
system, not only with the ones that support data versioning
at the row and table levels.

The experimental results show that the commutative
resource required for the synchronous incremental update
is grown almost with the factor of the number of invokes,
but fortunately, the cost is spread over time and is negligibly
small for each call.

It may be because of the small number of manipulated
records, the time of maintenance seems almost for code
invoking for both synchronous and asynchronous cases. For
asynchronous maintenance, the difference between updating
1 record and 10 records is different by 12 %. Opposite to syn-
chronous one, the accumulative update in an asynchronous
manner costs about 30–33 % of that when the updates are
performed separately. The total asynchronous updating time
is about 3 % (10 records/10 commands per action in each
base table) – 27 % (1 record/1 command per action in each
base table) in comparison to the synchronous incremental
update. These good results are due to the effects of condens-
ing process and smaller number of code invoking.

If we apply the optimization suggested in the work [5] for
the cases like base table customers, the update of MV accord-
ing to data changes in customers will be performed separately.

6. Conclusions

1. We formally showed the state bug when applying
the expressions for the incremental update of MV at the
pre-update state of base tables, which is used in synchronous
maintenance to the post-update state of base tables, which is
required in asynchronous one.

2. We proposed a solution for the asynchronous incre-
mental update of MV with the new technique for accessing
pre-state of base tables. So that the state bug is avoided and
the expressions for calculation of changes to MV which is
often used in the synchronous incremental update can be
correctly applied to the asynchronous update. We exploited
the idea of condensing operators and described them detailly
to prove the correctness of the suggested accessing pre-state
of base tables technique. The incremental update algorithm
is adopted from other our published works applying the
updating expressions and specifics for asynchronous mainte-
nance. It is the main contribution to the field of this research.

Information technology

13

3. We built a prototype which can synthesize the source
code in an automatic manner for supporting the asynchro-
nous incremental update and provided experiments to en-
sure the correctness of the solution. The total time of asyn-

chronous update is 4–33 times smaller than synchronous
ones. The accumulative update in an asynchronous manner
reduces the cost by about 67–70 % of that when the updates
are performed separately.

References

1. Sebaa, A., Tari, A. (2019). Materialized View Maintenance: Issues, Classification, and Open Challenges. International Journal of

Cooperative Information Systems, 28 (01), 1930001. doi: https://doi.org/10.1142/s0218843019300018

2. Vinh, N. T. Q., Hao, D. T., Hang, P. D. T., Alsadoon, A., Prasad, P. C., Anh, N. V. (2019). A solution for synchronous incremental

maintenance of materialized views based on SQL recursive query. Eastern-European Journal of Enterprise Technologies, 5 (2 (101)),

6–17. doi: https://doi.org/10.15587/1729-4061.2019.180226

3. Duan, H., Hu, H., Qian, W., Ma, H., Wang, X., Zhou, A. (2018). Incremental Materialized View Maintenance on Distributed

Log-Structured Merge-Tree. Lecture Notes in Computer Science, 682–700. doi: https://doi.org/10.1007/978-3-319-91458-9_42

4. Yang, Y., Golab, L., Tamer Ozsu, M. (2017). ViewDF: Declarative incremental view maintenance for streaming data. Information

Systems, 71, 55–67. doi: https://doi.org/10.1016/j.is.2017.07.002

5. Quoc Vinh, N. T. (2016). Synchronous incremental update of materialized views for PostgreSQL. Programming and Computer

Software, 42 (5), 307–315. doi: https://doi.org/10.1134/s0361768816050066

6. O’Gorman, K., Agrawal, D., El Abbadi, A. (2000). On the Importance of Tuning in Incremental View Maintenance: An Experience

Case Study. Lecture Notes in Computer Science, 77–82. doi: https://doi.org/10.1007/3-540-44466-1_8

7. Nica, A. (2012). Incremental maintenance of materialized views with outerjoins. Information Systems, 37 (5), 430–442. doi: https://

doi.org/10.1016/j.is.2011.06.001

8. Zhou, J., Larson, P.-A., Elmongui, H. G. (2007). Lazy maintenance of materialized views. Proceedings of the 33rd international

conference on Very large data bases’ (VLDB Endowment, 2007, edn.), 231–242.

9. Colby, L. S., Griffin, T., Libkin, L., Mumick, I. S., Trickey, H. (1996). Algorithms for deferred view maintenance. ACM SIGMOD

Record, 25 (2), 469–480. doi: https://doi.org/10.1145/235968.233364

10. Yan, W. P., Larson, P.-A. (1995). Eager Aggregation and Lazy Aggregation. Proceedings of the 21th International Conference on

Very Large Data Bases, 345–357.

11. Nguyen, T. Q. V., Tran, T. N. (2014). Automatic generating C-languague-triggers modul for synchronized incremental updating

materialized views in PostgreSQL. Proc. National Conference on Fundamental and Applied IT Research (FAIR).

12. Agrawal, P., Silberstein, A., Cooper, B. F., Srivastava, U., Ramakrishnan, R. (2009). Asynchronous view maintenance for VLSD da-

tabases. Proceedings of the 35th SIGMOD International Conference on Management of Data - SIGMOD ’09. doi: https://doi.org/

10.1145/1559845.1559866

13. Mikami, K., Morishita, S., Onizuka, M. (2010). Lazy View Maintenance for Social Networking Applications. Lecture Notes in Com-

puter Science, 347–358. doi: https://doi.org/10.1007/978-3-642-12098-5_29

14. Chun, S., Jung, J., Lee, K.-H. (2019). Proactive Policy for Efficiently Updating Join Views on Continuous Queries Over Data

Streams and Linked Data. IEEE Access, 7, 86226–86241. doi: https://doi.org/10.1109/access.2019.2923414

15. Phani, A., Tekur, C., Sai Krishna, R. K. N. (2019). Commit Time Materialized View Maintenance for Bulk Load Operations in Terada-

ta. 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT). doi: https://doi.org/

10.1109/icecct.2019.8869100

16. Almazyad, A. S., Siddiqui, M. K., Ahmad, Y., Khan, Z. I. (2009). An Incremental View Maintenance Approach Using Version Store in

Warehousing Environment. 2009 Second International Workshop on Computer Science and Engineering. doi: https://doi.org/10.1109/

wcse.2009.624

17. Zhuge, Y., García-Molina, H., Hammer, J., Widom, J. (1995). View maintenance in a warehousing environment. ACM SIGMOD

Record, 24 (2), 316–327. doi: https://doi.org/10.1145/568271.223848

