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Abstract

Simulation modelling is carried out, which allows adequate describing the traffic of multiservice networks with the com-

mutation of packets with the characteristic of burstiness. One of the most effective methods for studying the traffic of telecommu-

nications systems is computer simulation modelling. By using the theory of queuing systems (QS), computer simulation modelling 
of packet flows (traffic) in modern multi-service networks is performed as a random self-similar process. Distribution laws such as 
exponential, Poisson and normal-logarithmic distributions, Pareto and Weibull distributions have been considered.

The distribution of time intervals between arrivals of packages and the service duration of service of packages at different system 
loads has been studied. The research results show that the distribution function of time intervals between packet arrivals and the service 
duration of packages is in good agreement with the Pareto and Weibull distributions, but in most cases the Pareto distribution prevails.

The queuing systems with the queues M/Pa/1 and Pa/M/1 has been studied, and the fractality of the intervals of requests ar-
riving have been compared by the properties of the estimates of the system load and the service duration. It has been found out that in 
the system Pa/M/1, with the parameter of the form a>2, the fractality of the intervals of requests arriving does not affect the average 
waiting time and load factor. However, when 𝑎≤2, as in the M/Pa/1 system, both considered statistical estimates differ.

The application of adequate mathematical models of traffic allows to correctly assess the characteristics of the quality of 
service (QoS) of the network.
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1. Introduction

Computer simulation modelling is the most effective way to study the processes taking place 
in telecommunication systems. Until 1980s the main type of services provided to subscribers was 
telephony. For modelling telephone systems of communication, the simplest flow defined by ( )iP t  

probability family of receiving i (i=0…∞) calls during the interval of time t was used for describing 
the input traffic. The probability of receiving i calls for the simplest flow during the interval of time 
t is defined by the well-known Poisson formula:

( )
i

t
i

(  t)
P t = e ,

i!
−λλ

where λ is a parameter of the flow, characterizing the intensity of receiving calls.
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Poisson formula describes, with accuracy sufficient for practice, the phone load and, there-

fore, has been successfully applied in the design and modelling of telephone communication sys-

tems. However, with the appearance of personal computers and especially multimedia services, 
the nature of traffic in telecommunication networks has fundamentally changed. In practice, while 
analyzing the load in computer networks with packet commutation, it was noted that bursts of 
packets were present in traffic and long-terms dependences were observed, therefore the traffic 
can’t already described correctly with Poisson formula. During recent years studies related to the 
analysis of network traffic shows that it has the characteristic of scaling invariance, i.e. has the 
characteristic of self-similarity [1–4]. 

2. Characteristics of self-similar traffic 
The main distinctive features of self-similar traffic are following [3]:
1. Slow decrease of the dispersion during the increase of observation period.
2. Availability of long-term dependency (aftereffects).
3. The fluctuation nature of the power spectrum.
Statistical characteristics of self-similar traffic (average values, dispersion, spectral density, 

autocorrelation function etc.) are very different from the exponential (Poisson) regularities.
Continuous stochastic process X(t) is considered as statistically self-similar with the param-

eter H (0.5<H≤1), if for any positive number a the processes X(t) and a-HX(at) will have identical 
distribution. Practically the statistical self-similarity means that the following conditions are met 
[3, 5–7]:

– average 

( ) ( )
H

E X at
E X t = ;

a

    

– dispersion 

( ) ( )ar

ar 2H

V X at
V X t = ;

a

    

– autocorrelation function 

( ) ( )
H

R at,a
R t, ,

a

t
t =

where H is Hurst exponent, a is positive number. 
Self-similarity concept is closely linked with the renowned idea of fractals and chaos theory. 

From a mathematical point of view, a fractal object, first of all, has a fractional dimension, which 
is defined as 

logN
d = ,

log1/r  

where N is number of equal parts into which the object is to be divided, and each piece will be the 
copy of integer reduced in 1/r times.

The fractal dimension can be considered as a measure of imperfection of the rugged surface 

of object dÎ[n, n+1] in the n-dimensional space, and more imperfect, “uneven” surfaces correspond 
to higher values of d.

Another parameter that characterizes self-similarity is Hurst exponent HÎ[0; 1]. There are 
three different classifications for various Hurst exponents:

– at 0<H<0.5 – antipersistent time series, i. e. the series at which the so-called “reversion to 
the mean” takes place: if the system grows in a certain period, then the next period it is necessary 
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to expect a recession. In reality, these processes are very few. Antipersistent time series is called 
“pink noise”;

– at H=0.5 – time series is stochastic. This process is called “white noise”. The equality 
H=0.5 indicates an absence of self-similarity;

– at 0.5<H<1 – persistent time series (these processes are also called “black noise”). Time 
series is characterized by the effect of long-term memory. If the series starts to grow, it will grow 
further and if it decreases today, then will also decrease tomorrow. With regard to networks, 
this means that traffic is a fractal. Closer this parameter to 1, the fractal characteristics becomes  
more apparent.

3. Simulation modeling: results and discussion

Streams of packets (traffic) in the modern multi-service packet communication networks is 
random self-similar process and computer simulation modelling is one of the effective methods of 
modelling such processes. For solving this problem, as a rule, the theory of systems of mass service 
(SMS) is applied. SMS is a mathematical model designed for the servicing applications incoming 
at random time intervals, where the duration of servicing is also random. Main place in the general 
mathematical model of SMS takes the model of incoming stream of applications received by the 
system for servicing (traffic model). The accuracy of calculation of main characteristics of SMS, 
which characterizes the operation of the whole system, depends on the correct choice of this model.

It is not quite necessary to use expensive equipment in order to get the overall results for the 
systems servicing self-similar streams. The different software tools are used to develop simulation 
models. At the present time for carrying out scientific experiments, it is necessary and sufficient to 
use the systems of simulation modelling. A powerful tool for carrying out simulation experiments 
of systems of mass services as models of telecommunication systems is a general-purpose simula-

tion modelling system GPSS World. In this case the study of classical models is only necessary for 
verifying the adequacy of models built in the system.

In this article more acceptable mathematical models derived from the results of mea-

surements and simulation modelling of parameters of packet communication networks traffic 
are given prove.

The random process of applications (packets) coming in the system is characterized by a 
distribution law, establishing the link between the value of the random variable and the probability 
of occurrence of this value. This stream can be described by a probability distribution function of 
the time intervals between adjacent applications or probability distribution function of the number 
of applications for the standard unit of time. The following distribution laws have been consid-

ered: the exponential, Poisson and normal-logarithmic distribution, the Pareto distribution and the 
Weibull distribution.

In the Poisson stream the interval between events is described by an exponential distribu-

tion. The probability density of this distribution is as follows:

( ) tP x = e .−λλ

One of the main methods of forming self-similar stream is the method originally proposed 
by Mandelbrot. This method provides for the existence of multiple independent ON/OFF sources. 
For each source, these periods are strictly alternating. 

Duration ON (as well as OFF) periods are also independent and identically distributed, and 
the distribution of durations of ON periods may differ from the distribution of OFF periods. Each 
source generates packets only in a position of ON. The resulting value in each period of time is the 
sum of the values generated by all sources. The emergence of self-similarity is explained by the 
effect of Noah (Noah effect) in the distribution of durations of ON/OFF periods. The Pareto distri-
bution, which has the following distribution function, can be used to achieve this effect:

                                       
( )

a+1
a b

P x = ,
b x

 
  

 x > b  and a > 0.   (1)
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The parameter α is the parameter of form that defines a finiteness or infiniteness of average 
value and the dispersion for distribution, while b parameter assigns the minimum value of the ran-

dom variable x. The parameter α assigns the average value and the dispersion as follow:
1) for 0 < a 1≤  the distribution has the infinite mathematical expectation and dispersion; 
2) for 1< a 2≤  the distribution has the finite mathematical expectation and the infinite dis-

persion; 
3) for a > 2  the distribution has the finite mathematical expectation and dispersion. 
There is a connection between Hurst exponent and the parameter a: 

( )3 a
H = .

2

−

The parameter a is called the fractal indicator of time series.
During the practical generating the random variable of the time interval between events 

according to the Pareto distribution (1) it is necessary to make transition from an equal distribution 
by the inverse function method:

i

i

b
Z = ,

a U

where iZ  – i interval between events, U – random number, equally distributed at the interval [0, 1].
The Weibull distribution, which is used for modelling the self-similar traffic, has the param-

eter a (it can vary from 0 to 1) and b. Its density function is shown below: 

                                              
( ) ( ) aa 1 b xP x = a b x e .− − ∗∗ ∗ ⋅    (2)

There is the following connection between Hurst exponent and the parameter a. 

2 a
H = .

2

−

During the practical generating the random variable of the time interval between events ac-

cording to the Weibull distribution (2) it is necessary to make transition from an equal distribution 
by the inverse function method: 

1

a

i i

1
Z = lnU .

b

− 
  

Mathematically to achieve the Noah effect one can also use the log-normal distribution, 
which is also often referred to as heavy-tailed distributions. At the log-normal distribution not 
the variable itself, but its logarithmic value is subject to the normal law, i. e. in the dependence 
Z=log(X), Z – normally distributed random variable, and X – a random variable distributed accord-

ing to the log-normal law, which has the following form:

                                         ( )
( )( )2

2

log x m

2
1

P x e ,
x 2

− −

σ=
πσ

 x 0.>     (3)

Here, σ – the mean square deviation of the random variable Z, and m – mathematical expecl-
tation. These parameters can be determined on the basis of experimental data using the following 
formulas:

n

ii 1

1
m log(x );

n =
= ∑  

n 2
ii 1

1
(log(x ) m) .

n =
σ = −∑
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During the practical generating the random variable of the time interval between events ac-

cording to the Weibull distribution (3) it is necessary to make transition from an equal distribution 
by the inverse function method:

iU

iZ = e .

In studies on the distribution of the number of applications during the time interval and on 
the distribution of the time interval between applications and so on, correspondence between the 
observed and theoretical values of the variables are checked by the relevant graphs, or by eye. In 
fact, one needs to perform a quantitative evaluation of statistical hypothesis testing. To do this, 
there are certain criteria, among which a special place belongs to the criteria x2 – of Pearson and 
Kolmogorov [8–10].

The adequacy of the experimental and theoretical distributions can be judged by Pearson’s 
criterion of consent, which value is calculated according to the following expression:

2j
2 i i

i=1 i

n m
x = .

m

 −
  ∑

Here n
i
 – experimental data, m

i
 – theoretical data, calculated according to a specific dis-

tribution function. Based on the obtained x2 and degrees of freedom k = j 1 l,− −  where j – the 
intervals number of breakdown, and l – the quantity of distribution parameters, one can find the 
probability that when the received level of significance is 5 %, the experimental data are in agree-

ment with theoretical one.
Kolmogorov’s criterion is based on a comparison of the integral curves of distributions:

max f F
,

N

−
λ =  

where f – the accumulated experimental frequency of distribution, F – the accumulated theoretical 
frequency of distribution calculated according to a specific distribution function.

Based on the statistical data on number and size of transmitted packets, on the time in-

tervals between the packets during the established connection (communication session), on the 
data on durations of the established connections, etc., one can create a mathematical model of 
the real traffic [3].

The preliminary analysis of simulation modelling results showed that the traffic has self-sim-

ilar property, and the Hurst parameter is not lower than 0.8. These data testify that the multi-service 
traffic is characterized by a strong irregularity of the intensity of receiving applications and pack-

ets. The applications and packets are not smoothly spread across the various time intervals, and are 
grouped into “bursts” in certain intervals, and are completely absent or are very few in other time 
intervals [3]. Because of this, in the burst traffic at a relatively small average value of the packet 
arrival intensity (traffic intensity) there is a sufficient quantity of relatively large emissions.

To study the distribution of time intervals between arrivals of packets and the length of 
packet service at different loads of the system and at different values of Hurst parameter, the statis-

tical data are agreed by the above-mentioned distribution laws. The research results showed that the 
distribution function of time intervals between arrivals of packets and the length of packet service 
are well agreed with the Pareto distribution with parameters a=0.316, 4b = 3.02610−  (Fig. 1) and 
the Weibull distribution with parameters a=0.836, 5b =1.28510−  (Fig. 2).

Testing of the statistical hypotheses is made by the Pearson criterion of consent. In the  
Table 1, the results of corresponding the experimental data to the Pareto distributions and the 

Weibull distributions with degrees of freedom k=12 are shown, under the different loads of system 
and the different values of Hurst parameter. As this Table 1 shows, the Pareto distribution (with a 
higher probability) and the Weibull distribution adequately describe the experimental data, but the 
Pareto distribution prevails in most cases.
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Let’s consider the Pareto distribution properties at a 1≤  or a 2,≤  which are most relevant 
to the current researches of the network traffic. One can derive the following formula from (6) for 
determining the m-th order of the start time:

                            

( ) ( )
( )

m

m m

0

ab
, a > m;

M x = x P x dx = a m

, a m, m =1,2,... .

∞ 


−
∞ ≤

∫   (4)

Let’s generate using a random number generator in an amount of 8N =10  independent val-
ues of the random variable ( )xP b,a  for b=1 a=1.1 and calculate the mathematical expectation and 
the mean square deviation using the formula (4): 

М(х)=11 and ( )2M x .σ = = ∞  

However, processing of the statistical data generated by a random number generators, 
showed that ( )M̂ x 7.5≈  and ˆ 380,σ ≈  which differ from the true values 11 and ∞.

In comparison with the “classical cases”, we note that hundred times shorter sample of  
610  values of exponential random variable gives estimates for its mean and dispersion of more ac-

curate approximations. For a 1≤  the difference of the sample from the Pareto distribution with the 

“classic” samples markedly enhanced.
In designing, simulation modelling channels of data transmission networks and servic-

ing the fractal network, the problems caused by its “non-classical” nature are complicated. 
Let’s imagine the channel of data transmission network in the form of the system of mass 
service (SMS) channel G/G/1 [9, 10]. Using the notation Pa for the Pareto distribution, let’s 
define the type of SMS of interest to us in the form of G/Ра/1. For analytical assessment of 
the problems arising from its study we will consider the system M/Pa/1. Let’s consider the 
queue M/Pa/1, the distribution moments of which can be calculated using the known analytical 
expressions [9]. To calculate the average waiting time in the queue, one can use the Pollaczek- 
Khinchine formula:

                                                    
( )2 2M x / 2

W ,
1

λ
=

− ρ
    (5)

where λ – the intensity of the input (exponential) applications stream, ( )M xρ = λ  – the load factor.
Let’s assume the interval t  of applications arrival has the mathematical expectation 

( ) 1M = = 22−t λ  

time units and ( )x P 1,1.1 .Î  Since 

( ) ( )M x = ab / a 1 =11,−  

then 

( )M x 11/ 22 0.5,ρ = = =  

and since a=1.1<2, then ( )2M x = ∞  and according to (5) W .= ∞  These are the exact values of 
the characteristics ρ  and W of the considered SMS. And they themselves are paradoxical: the 
channel is idle half, and the queues are endless in average. In simulation modelling this system  
M/Pa/1 to GPSS World, performing experiments lasting 410 ,  510  and 610  etc. time units we get 
the “strange” sequence of estimates. After passing through the SMS of tens of millions of appli-
cations the estimate for ρ converges approximately 0.36 (but not to the true value of 0.5), and the 
estimate for W is stabilized at about the end value 250.
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Fig. 1. Bar chart of measurements of packets arrival duration

Fig. 2. Bar chart of measurements of packets service duration

Tаble 1
Results of corresponding experimental data to the Pareto distributions and the Weibull distributions

System 

load

Values of Pearson criterion

The Pareto distributions

H=0,55 H=0,6 H=0,65 H=0,7 H=0,75 H=0,8 H=0,85 H=0,9

0,1 6,324 6,414 7,326 8,325 8,386 7,328 8,553 8,333

0,2 7,500 8,670 8,598 9,501 9,511 0,504 0,509 0,543

0,3 5,611 5,754 9,611 8,698 8,664 9,620 9,659 9,900

0,4 6,673 6,779 8,673 9,683 9,731 9,829 9,027 8,454

0,5 7,703 9,732 8,783 8,861 8,982 9,184 9,514 8,024

0,6 6,847 5,925 6,031 9,182 9,393 9,719 9,188 9,000

0,7 6,144 7,281 8,467 8,705 9,019 9,466 9,180 9,540

0,8 7,714 7,928 9,184 8,513 8,929 8,539 9,603 8,588

0,9 9,787 9,081 8,435 7,888 6,511 8,381 7,391 9,700

The Weibull distributions

0,1 7,026 5,398 6,321 8,325 6,329 5,337 7,349 5,368

0,2 5,536 5,542 5,547 6,557 7,569 8,591 5,628 6,711

0,3 6,074 5,756 7,774 6,795 9,825 6,872 7,694 5,142

0,4 5,972 5,995 7,022 7,064 6,118 7,199 8,353 7,611

0,5 5,237 5,271 6,321 7,379 7,469 7,570 7,782 7,281

0,6 5,557 5,605 5,978 7,765 6,883 7,105 6,444 5,261

0,7 7,957 6,035 6,136 6,269 7,461 7,789 8,352 6,584

0,8 8,516 9,636 5,781 8,996 5,291 5,759 5,678 7,882

0,9 7,465 6,634 7,899 5,231 5,691 5,491 6,449 5,832
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Exit from the critical range of а, a 2≤  does not save the statistical characteristics of the 
system from oddities. Let’s replace in the model, for example, the value of 1.1 of the parameter 
а to 2.1. Now ( )M x =1.90909  and one must also replace the mean value of 22 with the value 

( )3.81818 2M x ,=  in order to maintain the same load 0.5.ρ =  Performing simulation modelling, 

let’s obtain the estimate for ρ, equal to 0.500 (true), but the estimate for W converges slowly to 
about 0.72, while the true meaning of W, according to (5), is equal to 1.19. The true estimate for W 
can be achieved only at a > 3.

And now let’s consider the system Ра/M/1, where with the infinite dispersion of the duration 
of t  arrival intervals the average length of the queue W is finite (if 1ρ < ).

The comparison of the results of simulation modelling the system Ра/M/1 and exact solu-

tions (in order to determine the exact solutions of ρ and W it is necessary to solve, by the numerical 
method, the equation obtained from the Laplace transform of the Pareto integral density) is shown 
in the Table 2.

Тable 2
Comparison of estimates ℑρ  and Wℑ  with exact values ρ and W

ρ
a=2.1, M(t)=1.90909 a=1.1, M(t)=11

ℑρ W Wℑ ℑρ W Wℑ

0.1 0.100 0.0001 0.0001 0.136 0.035 0.047

0.2 0.200 0.0067 0.007 0.275 0.369 0.505

0.3 0.300 0.0364 0.036 0.402 2.037 2.733

0.4 0.400 0.1106 0.111 0.532 10.75 14.409

0.5 0.500 0.2635 0.264 0.673 49.81 98.139

0.6 0.600 0.5640 0.564 0.831 251.2 859.316

As it is seen from the Table 2, in the system Ра/M/1 at a>2 the fractality of intervals of ap-

plications arrivals does not have an effect on the properties of estimates imρ  and imW  for ρ  and 

W  – they converge to the exact values. However, at a 2≤  as in the system M/Ра/1 both considered 
statistical estimates diverge.

Let’s briefly discuss the results and preconditions of the research. So, by using the theo-

ry of queuing systems (QS), computer simulation modelling of packet flows (traffic) in modern 
multi-service networks was performed as a random self-similar process. It is shown, that a quanti-
tative estimation of the degree of self-similarity of traffic flow is the Hurst parameter, which has a 
value of not lower than 0.8. This testifies that the multi-service traffic is characterized by a strong 
irregularity in the intensity of incoming requests and packages. The research results showed that 
the distribution function of the time intervals between the arrivals of packages and the service du-

ration of the packages are in good agreement with the Pareto and Weibull distributions. The numer-
ical characteristic of the distribution, which can serve as its measure of uncertainty, is the entropy 
of distribution law. Knowing the entropy, it is possible to calculate the characteristics of the service 
quality of a queuing system with a queue for the case of servicing traffic that has a self-similarity 
effect. To calculate the average waiting time in the queue, one can use the Pollaczek-Khinchin for-
mula. Having determined the average number of requests in the system, it is possible to calculate 
the remaining QoS characteristics (Q, W and T) from known ratios. Therefore, it becomes possible 
to calculate the QoS characteristics in the QS model with self-similar traffic for any distribution 
law of the service duration. The obtained results are the development of research in the field of frac-

tal traffic and can be successfully used to solve practical problems of designing telecommunication 
systems in the fractal traffic conditions.

The fractal QS are practically not amenable to purely analytical research methods. 
Therefore, for studying the fractal traffic it is necessary to use analytical and simulation meth-

ods together.
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It is worth mentioning that in simulation modeling, estimates of the mathematical expecta-

tion of fractal random variables may converge to true averages for too long (millions, billions of 
years or more). If the random variable has infinite dispersion, then it is extremely difficult to esti-
mate the mathematical expectation of this random variable by means of simulation modeling. This 
problem is a matter of the future and requires its own scientific and technical solution.

4. Conclusions

The systems of mass service with the queues M/Ра/1 and Ра/M/1 have been studied and 
the fractalities of intervals of applications arrivals on the properties of estimates of system loads 
and service duration have been compared. Simulation modelling results have shown that a more 
appropriate model of streams in the multi-service networks with the packet commutations are 
the probability functions of the Pareto and the Weibull distributions. The use of adequate math-

ematical models of traffic allows to assess correctly the characteristics of service quality (QoS) 
of the network.
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