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Abstract

The conducted researches served as the basis for obtaining difference scheme for numerical realization of the two-dimen-

sional model of mass transfer of a pollutant in the aeration zone of the soil of the agrolandscape with a piecewise smooth surface 

under the condition of instantaneous deposition of the pollutant onto the surface (as an example, Cs137 was taken as a pollutant 

on the basis of its passive behavior in the ground and the availability in the considered ground areas of agricultural uses due to 

the Chernobyl accident). 

The properties of differential operators of the model and their difference analogues were studied, which allowed to sub-

stantiate the cost-effective difference scheme for the numerical solution of the problem of pollutant migration for given agroland-

scape. The correctness and efficiency of the constructed two-layer implicit difference scheme is shown. This allowed to switch 
to the use of a chain of one-dimensional implicit tasks, in which the transition from one layer to another occurs in two steps. 

Obtained general computing costs allowed to assert that the proposed schemes are cost-effective difference schemes.
In turn, the use of an economical difference scheme made it possible to construct a method for the practical determination 

of the presence of a process of water erosion in the system of hydraulic rampart-terrace.
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1. Introduction

The study of dissemination of anthropogenic pollution in the environment is an important 
scientific and applied task. Different approaches and methods are used to solve the problems of 
mass transfer of pollutants in the soil. The most popular in practical research are those that use 
as mathematical models of the regression equation and differential equations based on the use of 
physical laws related to the movement of moisture and heat flows.

The first class of models determines the existence of a large number of experimental data 
and has the limitations inherent in all regression models. Such models provide solutions with some 
reliability only at a certain interval [1, 2]. Moreover, the required amount of data can not always 
be obtained. But the simplicity of computations in comparison with the calculations of models in 
which the differential equations are numerically solved and some formulation of tasks in the re-
search make possible the widespread use of such models.

Physically justified differential models are based on the use of the laws of continuity and 
transfer. The flow of substances associated with diffusion, convection and dispersion movements, 
sorption and written as evolutionary differential equations [1, 3]. Such models can be used in wid-
er ranges, they give short and medium-term forecasts for different boundary conditions but it is 
necessary to apply numerical methods for their realizations. To simplify the calculations are often 
limited to the consideration of the formulation of such statements of tasks that suggest the existence 
of an analytical solution. This is a rather narrow class of tasks. Moreover, with a view to simplify-
ing numerical implementations in such models, it is quite often considered moving of substances 
with soil moisture in only one profile using general theoretical equations with an exact analytical 
solution. 

Given the relevance of studying the movement of pollutants in the aquatic environment, 
soil or air and the complexity of numerical implementation of the corresponding models, which 
including the analysis of the correctness and stability of the received difference schemes, studies 
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related to the construction of economic schemes for numerical analysis of surface pollution are 
very important.

2. Literature review and problem statement 

Determining the spread of anthropogenic pollution in the environment is an actual prob-
lems, therefore various tasks of mass transfer processes describing in several scientific publica-
tions. Among all publications should highlight research in agriculture and ecology, such as in [3–5]. 
Processes considered in these publications mostly are one-dimensional for horizontal or vertical 
profile and researchers use different methods to solve the problems of mass transfer. In these pa-
pers, the authors mainly use models derived from regression dependencies and models described 
by exact solutions of differential equations. For example, in [3, 5] various regression models, based 
on experimental findings, are shown. Methods using precise analytical solutions are proposed in 
[4] for various applications. 

In [6] authors discuss the masstransfer problem of landscape for understanding the evolution 
of pollution distribution and soil erosion. In this paper examines the problem of horizontal land-
scape mass transfer within the vegetation in inhomogenous boundary surface. The paper points out 
that usually in the tasks of pollution transfer across soil objects, most of the researchers are consid-
ering the influence of the environment on the transfer process. The authors of the work aren’t taken 
into consideration mechanical influence of boundary surface on the transfer process.

Important to practice tasks are tasks that take into account the vegetation in natural land-
scapes, as the results may allow to investigate pollution distribution soil erosion. A similar problem 
was considered in [7], but simplified boundary conditions were used to solve it.

The solutions used here are analytic, as in [8]. Moreover, these applied studies did not con-
sider the numerical solution of tasks in the absence of analytical solutions.

Of course, to date, many different models of mass transfer of pollutants have been developed 
and used. This allows researchers to obtain answers for many tasks. Empirical models, also called 
data-driven models, have as its basis the experimental measurements of the transport of matter in a 
particular situation, which limits the class of problems for solution, since it makes it possible to only 
predict the development of the situation (for example, it occurs in numerous publications that study 
the migration of radionuclides along the vertical soil profile). The application of theoretical models 
(sciencebased models) in agricultural research tends to use the analytical solution of the convective 
diffusion equation for the vertical profile. But with this approach the predictive possibilities of 
solutions are also limited [1]. 

Due to the complexity of the processes occurring in the soil system, there is no single model 
of mass transfer processes. When constructing models of physico-chemical processes in soils, an 
approach based on the use of various modifications of mathematical models of moisture transport 
in the soil and the theoretically derived equations expressing the fundamental properties of the soil 
was widely used. Based on this approach, a general conceptual scheme was developed that is wide-
ly used in modern works and underlies the computer implementations of these processes.

Models of mass transfer of matter and heat in the ground based on the equation of convective 
diffusion in conjunction with the equations of hydromechanics and kinetic equations are common 
in theoretical studies. Such models try to simplify by reducing their dimension, averaging the de-
sired value by one or two spatial coordinates. Due to the fact that the redistribution of pollutants in 
the soil is associated with the redistribution of moisture in it, often the focus is on the forecast of the 
groundwater regime, and the evaporation and movement of moisture in the aeration zone are taken 
into account by introducing the respective members. 

Researchers are also using equations for describing the movement of various forms of mois-
ture in the zone of soil aeration to study the propagation of soluble substances at small time inter-
vals. Partly avoids such problem of the equation of mass transfer in the soil, in which it is difficult 
to obtain only the values of an effective diffusion coefficient [2, 9, 10].

The use of the theoretical approach to the construction of models allows to describe the dynamics 
of the process, and the application of numerical methods significantly expands the class of solved prob-
lems, but in practice the process of solving the problem is often complex. This approach is used, for ex-
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ample, in [1, 2, 9, 11]. The models used in these studies are spatially distributed dynamic models, which 
allow one to investigate mass transfer processes. Such studies suggest the use of numerical methods: 
the finite element methods, as in [12], or finite-difference schemes, as in [13–15]. But the complexity of 
the numerical realization leads to the fact that in these papers the authors also confine themselves to the 
consideration of two-dimensional domains with a piecewise smooth boundary.

In [13], the Crank-Nicolson difference scheme method is proposed to obtain a numerical 
solution, but the question of the existence of a solution of the differential problem is not considered. 
That models and numerical methods authors used only for estimating of soil pollution.

Analysis of scientific publications has shown that in almost all similar studies numerical 
solutions of problems are constructed, but the question of the existence of a solution of the problem 
and the correctness of the numerical solution for applied research is often remains open.

3. The purpose and objectives of the study

In this paper, the ways to solve the problem of mass transfer of a pollutant for agrolandscapes 
with a piecewise smooth surface where surface contamination occurred at some point are developed. 
Solution of this problem makes it possible to estimate the propagation of pollutant in the soil agro-
landscape aeration zone and to determine the presence and extent of erosion in this agrolandscape.

The objects of our research are:
– the mathematical model of mass transfer in a bounded area with a piecewise-continuous 

surface, taking into account the nature of contamination and the existence of a unique solution of 
the corresponding differential problem;

– the difference analogue of a differential operator and the construction of a cost-effective 
difference scheme for the numerical solution of the problem of pollutant migration in the aeration 
zone of a given agrolandscape.

4. The two-dimensional problem of pollutant migration under the condition of instantaneous 

contamination of the agrolandscape surface

The determination of changes in the distribution of the concentration of soil pollutants is 
important for many modern studies, which require an analysis of the state of contamination zones. 
The study of the redistribution of a long-lived, poorly soluble solid pollutant, the migration of which 
occurs exclusively with the flow of moisture, also makes it possible to estimate the degree of water 
erosion in contaminated area. 

4. 1. The mathematical model of pollutant migration and the existence of a solution of 

the differential problem

The problem of mass transfer in the zone of soil aeration in the system of rampart-terraces 
is investigated, therefore the process was considered taking into account its independence from the 
water regime of the soil. It is accepted that the vertical migration of the substance occurs convective 
with the flow of moisture through the soil profile. The fall of the pollutant on the soil surface was 
considered instantaneous. It is assumed that the profile of the soil was homogeneous with respect 
to depth and time, the filtration flow was linear, and the water saturated soil was isotropic, porous 
and not compressed. It is also admitted that the transfer process in the soil solution obeys Fick’s law, 
therefore the equation of mass transfer [10, 15] are considered, on the basis of which the two-di-
mensional model of mass transfer in a bounded domain with a complex piece-smooth surface was 
investigated. In it: the effective diffusion coefficient is described by the function D(x)  dependent 
on the spatial argument; the velocity of the directed diffusion displacement is constant V. 

Our mathematical model has the following form:

           
           

2 2

0
i 1 i 1i i i

u(x,t)
Zu Lu

t

u(x,t) u(x,t) u(x,t)
D(x) V u (x) (t 0)

t x x x= =

∂
≡ + ≡

∂
 ∂ ∂ ∂ ∂

≡ − + = −λ φ δ − ∂ ∂ ∂ ∂ ∑ ∑ , (1)
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                                                     u(x,0) 0,  x= ∈Ω,     (2)

2

0 0
i 1 i x

u
D(x) Vu k( )c q (x),    t [0,T],

x= ∈Γ

 ∂
− + = Γ ∈ ∂ ∑

                                
2

i 1 i x \

u
D(x) Vu 0,    t [0,T]

x= ∈∂Ω Γ

 ∂
− + = ∈ ∂ ∑  (3)

in a limited area Q (0 t T),= Ω × ≤ ≤  where 2RΩ ⊂  with a piecewise smooth border ∂Ω; D(x) –
the function that is continuously differentiated in ,Ω  it inalienable and limited in the relevant area; 
V  – the constant, V 0;>  λ – half-life coefficient; (x)φ  – the function that describes the surface, 
that is, the upper boundary G of W, 2 0(x) L ( ); uφ ∈ Ω  – contamination; k( ) kcos( ( )),Γ = α Γ  k  –  
conductivity coefficient for the surface, ( )α Γ  – slope of the surface of the terrace; 0q  – the function 
that describes the flow of water with atmospheric precipitation with concentration 0c ;  u(x,t)  –  
the concentration of substance at the point 1 2(x ,x )= ∈Ωõ  at the moment t.

Let’s denote D(Z)  the set of functions u(x,t)  twice continuously differentiated in x in Ω 
and continuously differentiated in t on [0,T]  which satisfy the conditions (2), (3). The set D(Z)  is 
dense in space 2L (Q),  which makes it possible to determine in space 2L (Q)  of a linear operator 
Zu  with a domain of definition D(Z) .

Let’s consider the space H with the norm 

2
2

2
tH

i 1 iQ

u
u (u dQ,

x=

 ∂
= +  ∂ ∑∫  u D(Z)∈ . 

Then for any u D(Z)∈  

                                         2H L (Q )
u c u ,≥  с const 0.= >   (4)

The proof. Given the norms above 

                                    
2

2
2

2
t tH L (Q )

i 1 iQ

u
u (u dQ u .

x=

 ∂
= + ≥ ∂ ∑∫   (5)

Since u D(Z),∈  then 
1/2t

2

0

u(t,x) T u dτ

 
≤ τ  ∫  

and 
1/2T

2
t

t [0,T]
0

max u(t,x) T u dt .
∈

 
≤   ∫

Therefore 

2 2

T
22 2

L ( ) t t L (Q )
t [0,T] 0

| max u(t,x) | T u dtd T u .Ω
∈ Ω

≤ Ω =∫ ∫

Since the space C[0,T]  is embedded in 2L [0,T], then 

                                      22
2

2

t C{0,T] L (QL (Q ) L ( )
u u c u .

Ω
≥ ≥ñ     (6)

From (5) and (6) let’s have (4). 
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Operator 

2

i 1 i i

u
Au D(x)

x x=

 ∂ ∂
= −  ∂ ∂ ∑  

is symmetric in space 2L (Q)  but operators A and Z are not positively defined in space 2L (Q). The 
conjugate problem has the form 

2
*

t
i 1 i

v
Z v v Av V g(x,t),

x=

∂
≡ − + − =

∂∑
 

where 

v(x,T) 0,  x ,= ∈Ω  
x

v 0,   t [0,T].
∈∂Ω

= ∈

Similarly (4) can get 

*
2H L (Q )

v c v ,≥  ñ const 0= >  

for any *v D(Z )∈ , where 
2

2
2
tH

i 1 iQ

v
v (v dQ).

x=

 ∂
= +  ∂ ∑∫

Let’s introduce the negative spaces: negative space H−
 with the norm 

2L (Q )

H
u 0

H

(u,g)
g sup ,

u
−

≠
=  

2u H,g L (Q)∈ ∈

and negative space *H −  with the norm 

2

*

L (Q ) *
2H

v 0
H

(v,f)
f sup , v H , f L (Q).

v
−

≠
= ∈ ∈

The right-hand side of equation (1) is a function of space *H ,−
 2 2H (0,T) L ( ) H (Q)− −⊗ Ω ⊇ .

For any u H∈

                                          * 1H H
Zu c u ,− ≤  1с const 0= > .   (7)

The proof. Let consider 

2L (Q ) t 1 2 3

Q

(Zu,v) (u v Auv Buv)dQ I I I= + + ≤ + +∫ , 

where 
2

i 1 i

u
Bu V

x=

∂
=

∂∑ .

Taking into account (4) 

   
       

ñ *
2

2 21/2 1/2
1 t t H L (Q ) H H

Q Q Q

I u vdQ ( u dQ) ( v dQ) u v u v .= ≤ ≤ ≤∫ ∫ ∫   (8)
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As 

t t

t

Q Q 0 Q 0

d
vAudQ v Aud dQ v Aud dQ,

dt
= τ = − τ∫ ∫ ∫ ∫ ∫  

then

* * *

1/2 1/2t t T2
2 2 2 2

2 A,TH H H H
Q 0 0 0

T
І v [ A d u d ]dQ v A u dtd C v u ,

2 Ω

≤ τ τ ≤ Ω ≤∫ ∫ ∫ ∫ ∫     (9)

where А,ТС const 0.= >

*
2

1/2
2

2 2
3 VL (Q ) H H

i 1 iQ Q

u
I vBudQ 2V v ( ) dQ c v u ,

x=

∂
= ≤ ≤

∂∑∫ ∫ Vc const 0.= >       (10)

From (8)–(10) have 

*
2L (Q ) 1 H H

(Zu,v) v u .≤ñ  

Тaking into account that 

2

*

*

L (Q ) *

H
v 0

H

(Zu,v)
Zu sup , v H ,

v
−

≠
= ∈

and the density of the set D(Z)  in space Н and completeness of space *H −  (7). 
Similarly (7) have 

*

*
2 HH

Z v c v ,− ≤  2с const 0,= >

for any *v H .∈
It is proposed to consider the solution of task (1)–(3) in the following sense.
The generalized solution of the problem (1)–(3) is a function u(x,t) H∈  such that there is a 

sequence of functions u (x,t) D(Z),i 1,2,...,∈ =
³

 that satisfy the conditions (2), (3) and 

*i iH H
Zu f 0,   u u 0,   i .−− → − → → ¥

The generalized solution of the problem (1)–(3) is a function 2u(x,t) L (Q)∈  such that there 
is a sequence of functions 

u (x,t) D(Z),i 1,2,...,∈ =
³

 

that satisfy the conditions (2), (3) and 

*
2

i iH L (Q )
Zu f 0,   u u 0,   i .−− → − → → ¥

Then for any 2f L (Q)∈  there exists the unique solution of problem (1)–(3) as function u H.∈
Let’s prove this statement. For this w let’s consider the functional 

2f L (Q )l (v) (v,f)≡ . 

From the form of the function f let’s have 
2L ( )

ˆf c v(0,x)
Ω

≤  and therefore 
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*
2 2 2

f L (Q ) L (Q ) L (Q ) H
l (v) v f c v c v .≤ ≤ ≤

The functional fl (v)  is linear and continuous therefore it follows that there exists the unique 
*f H −∈  such that 

Q
l(v) v,f=  for any *v H .∈  The functional l(v)  on functions *v D(Z )∈  is 

2

*
L (Q )Q

l(v) v,f (Z v,u) .= =

Since D(Z)  is dense in H , then there exists a sequence u D(Z),  i 1,2,...,∈ =
³

 such that 

iu u 0,   i .− → → ¥
Í

 Using the fundamental sequence of u ,  i 1,2,...,=
³

 where 

i j H
u u 0,− →   i, j ,→ ¥

and taking into account the linearity of the operator Z  and inequality (7), obtain that 

Í Í Í* *i j i j 1 i jZu Zu Z(u u ) c u u .
− −

− = − ≤ −

Hence, bearing in mind the completeness of *H ,−  there exists *f̂ H −∈  such that 

*i
ˆZu f 0,  i .

−
− → → ¥

Í

 

And as for any *v D(Z )∈  

*
*i iН

QН

ˆ ˆv,Zu f v Zu f ,
−

− ≤ −

then 

i
Q

ˆ v,Zu f 0,− →  

and 

*2 2

*
i L (Q ) L (Q ) i H H

(Zu ,v) (f,v) u u Z v 0,   i .−− ≤ − → → ¥

So true 

i iQ
Q Q

ˆ ˆ v,f f v,Zu f v,Zu f 0,− ≤ − + − →  і .→ ¥  

Then for any *v D(Z )∈  have 

Q

ˆv,f f 0.− =  

And since the set of functions *v D(Z )∈  is dense in *H , the functional 
Q

ˆv,f f−  is linear 
and bounded, then 

*H

ˆf f 0.
−

− →  Taking into account (7) have 

*i H
Zu f 0,−− →  i → ¥  

and therefore function u H∈  is a unique solution of the problem (1)–(3). 
Further, for any *f H (Q)−∈  there exists the unique solution of (1)–(3) as function 2u L (Q).∈
Let’s prove this statement. The space 2L (Q)  is dense in *H (Q),−  so for any *f H −∈  there 

exists a sequence 

2f L (Q),  i 1,2,...,∈ =
³

 *if f 0,  i .−− → → ¥
Í
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And since for any ³ 2f L (Q)∈  there exists a unique solution iu H(Q)∈  for the task (1)–(3) 
(namely, there exists a subsequence 

{ }j j 1
u D(Z)

¥

=
∈

³

 

such that 
*ji i

H
Zu f 0,

−
− →  

ji i
H

u u 0,  j− → → ¥) and 

j j
2

i i i i
H L (Q )

u u c u u ,− ≥ −
 

then for limit at і ,→ ¥   j→ ¥  have the existence of unique solution of (1)–(3) as a function 

2u L (Q).∈

4. 2. Basic рroperties of differential operators
Let’s write equation (1) as tZu u Au Bu f≡ + + =  and consider 

2L (Q )(Zu,u) . Then

                
2 2

2 22
t L (Q ) L ( )

Q

1 1 1
(u ,u) (u )dQ u (T)d u(T) ,

2 t 2 2 Ω
Ω

∂
= = Ω =

∂∫ ∫   (11)

2 2 2

2
22 1/2

L (Q ) L (Q ) L (Q ) H H
i 1 iQ

u
(Bu,u) u ( (V ) dQ) 2V u u c(V) u ,  c(V) const 0

x=

∂
≤ ≤ ≤ = >

∂∑∫   (12)

and 

1
2 2

2

2
2

L ( ) W ( )
i 1 i L ( )

u
(Bu,u) 2V u c(V) u ,

xΩ Ω Ω
= Ω

∂
≤ ≤

∂∑

c(V) const 0= >  

for any fixed t (0,T)∈  ( 1
2W ( )Ω  – the space with norm 1

2

2
2

2

W ( )
i 1 i

u
u (u d

xΩ
=Ω

 ∂
= + Ω ∂ ∑∫ ).

For operator А: 

2

22

L (Q ) 1 22
i 1 i i iQ

D u u
(Au,u) u D(x) dQ I I

x x x=

  ∂ ∂ ∂
= − + = +  ∂ ∂ ∂  

∑∫ , 

where 

  
D2 2

1/2
2 2

2 2
2

1 max D DL (Q ) L (Q ) H H
i 1 i 1i iQ

D u
I u dQ c u u c u ,   c const 0,

x x= =

     ∂ ∂
≤ ≤ ≤ = >       ∂ ∂     

∑ ∑∫  (13)

2 2

1/2
2

22
22

2 Dmax D D2L (Q ) L (Q ) H H
i 1 iQ

u
I u 2D dQ c u u c u ,   c const 0.

x=

   ∂
≤ ≤ ≤ = >     ∂   

∑∫
  

 

(14)

From (11)–(14) 

                                     
2

2

L (Q ) H
(Zu,u) c u ,   c const 0.≤ = >     (15)

In addition, there are operator B following estimates: 
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1
2

2 22

W ( )
Bu 2cV u

Ω Ω
≤  

and  

2
2

2 22 2

Q H
i 1 iQ

u
Bu 2 V dQ 2cV u ,  c const 0.

x=

 ∂
≤ ≤ = > ∂ ∑∫

Next, let’s proceed to the expression 
2 2L (Q ) L (Q )(Zu,u) (f,u)= . It is true:

         
2 2 22 2 2

2

L (Q ) L (Q ) L (Q )L (Q ) L (Q ) L (Q )

1
(Zu,u) u (Au,u) (Bu,u) f u ,

2 t

∂
= + + ≤

∂
  (16)

          
2 2 2 2 2 2 2

L (Q ) L (Q ) L (Q ) L (Q ) L (Q ) L (Q ) L (Q )
(Zu,u) u u u Au u Bu ,

t

∂
≤ + +

∂
  (17)

where considering that u D(Z)∈  have 

2 2 2 2

2

t L (Q ) L (Q ) L (Q ) L (Q )

1
(u,u ) u u u ,

2 t t

∂ ∂
= =

∂ ∂
 

2 2

2

t L (Q ) L ( )

1
(u,u ) u(T)

2 Ω
=  

and gives that 

2L (Q )
u 0

t

∂
≥

∂
 and 

1/2

2

H
Q

u dQ u
t

 ∂
≤ ∂  

∫ . 

Then, 

2 2 2

2

L (Q ) L (Q ) L (Q )
i 1 i

(Bu,u) V u u
x=

∂
=

∂∑  

and from the above obtained 

                
2 2 2

2

D DL (Q ) L (Q ) L (Q ) H
i 1 i

u V u f C u ,   C const 0.
t x=

∂ ∂
+ ≤ + = >

∂ ∂∑   (18)

4. 3. Difference analogues of differential operators and their properties

The difference analogue was constructed for the considered problem of migration of a pol-
lutant in the soil. To do this, a difference grid for both variables in hΩ  with a steady step 1 2h ,h  was 
introduced. Let hω  be the set of internal nodes of the grid 

1 2 1 1 1 2 2 2 1 1 2 2 1 1 1 2 2 2{x x (x ,x ),x i h ,x i h ,i 1,N 1,i 1,N 1,N h L ,i h L },ω = = = = = − = − = =

and let ∂ω be the set of external nodes. The difference solution of the task at the time t is denoted by 

y(x,t),  x , t 0.∈ω ∪ ∂ω >

For the grid functions satisfying the conditions (2), (3) on ∂ω, the space Н  is defined, in 
which the scalar product and norm are: 

1 2H
x

(y, ) y h h
∈ω

ν = ν∑ , 
1 2

1/2

2
j j 1 2HH

x

y (y,y) y h h .
∈ω

 
= =   ∑
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To the operator А  on the set of functions y H∈  let’s put into conformity the difference 
operator 

i i

2

x x
i 1

А (Dy ) ,
=

= −∑  
i

i i i
x

i

y(x h ) y(x )
y ,

h

+ −
=  

i

i i i
x

i

y(x ) y(x h )
y .

h

− −
=

To the operator В  on the set of functions y H∈  let’s e put into conformity the difference 
operator 

i

2

x̂
i 1

В Vy ,
=

= ∑
 

where 
i iiˆ x xxy (y y ) / 2.= +

Let’s consider the basic properties of difference operators in space Н.  First, will take 

i

2

ˆ 1 2xH
i 1 x

(By, ) Vy (x)h h .
= ∈ω

ν = ν∑∑

On the set of grid functions in the internal nodes hω : 

1 1 1ˆ 1 2 ˆ 1 2 ˆ 1 2x x x
x x x

Vy (x)h h V(y ) h h Vy h h .
∈ω ∈ω ∈ω

ν = ν − ν∑ ∑ ∑  

The same holds for the second variable. Then for any y H∈  is executed

                                          
2

H H
(By,y) c y ,  c const 0.≤ = >     (19)

The proof. 

               ( )
i

2 2
22

ˆ 1 2 i i 1 2xH H
i 1 x i 1 x i min

V V
Вy,y Vy yh h y (x h )h h y

4h 4h= ∈ω = ∈ω

= ≤ + ≤∑∑ ∑∑   (20)

and for min 1 2h min{h ,h }=  the accuracy of approximation is 2(h ).
³

Î  The fidelity of (19) follows 
from (20). 

Let’s show that for any y H∈
 
is true 

2 2

H H
Вy с y ,  c const 0.≤ = > 

         
i i j j1 2

22 2
2 22 2 2 2

x x 1 2 1 22 2H H
i 1 x i 1 x i min

1 1 8V
Вy 2V [y y ] h h 8V y h h y .

4 h h= ∈ω = ∈ω

≤ + ≤ ≤∑∑ ∑∑    (21)

From (21) wit is possible to obtain the required. 
Moreover, for any y H∈

                                         
2

H H
(Ay,y) c y ,  c const 0.≤ = >     (22)

The proof. 

i i i i

i i 1 2

2
j 1 j j j 1

j 1 j j j 1 2H
i 1 x i i

y y y y
(Ay,y) a a y h h

h h

+ −
+

= ∈ω

− − 
= − −  

∑∑ .

The coefficients 
1 2j ja  are chosen from the conditions of the second order of approximation 

from the decomposition of 
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i i

i

j j 1 2
j i

a a
D O(h ),

2

++
= +  i i

i

j 1 j 2
x i

i

a a
D O(h ),

h

+ −
= +  

i. e. 

i i

i

j j 1

j

D D
a ,

2

++
=  

i j i i
j 1 2 i ix j h

D D(x ,x ) ,   j 1,N 1,  i 1,2.
=

= = − =

Therefore

                   
i i 1 2

2
22

j 1 j j j 1 2H H
i 1 x i

1
(Ay,y) (a a )y h h c y ,  c const 0,

h +
= ∈ω

≤ + ≤ = >∑∑  (23)

where 

i i

2 2
i max max

j 1 j
i 1 x i 1i i min

2(N 1)D 4(N 1)D1
(a a ) ,

h h h+
= ∈ω =

− −
+ ≤ ≤∑∑ ∑  

1 2N max{N ,N },=  { }max j
j

D max D , 1,2.
α

α

= α =  

From (23) the fidelity of inequality (22) follows. 
Let’s show that for any y H∈  is true 

2 2

H H
Ay c y ,  c const 0.≤ = > 

( ) ( )( ) ( )
i i i i i 1 2

22 22 22 22 2 max
j 1 x j x 1 2 j j j 1 22 2H H

x i 1 x i 1 i min

D1
Аy 4 a y a y h h 64 D y h h 64 y .

h h+
∈ω = ∈ω =

  
≤ + ≤ ≤      ∑ ∑ ∑ ∑    (24)

From (24) it is possible to obtain the required.

4. 4. Difference scheme for the model

As a result of discretization let’s obtain the operator-difference scheme, which is the differ-
ence analog of differential problem with the order of approximation 2O( h ).τ +

Let (k)y  be a differenсe solution at the time kt k ,= τ  where 0.τ >  The two-layer difference 
scheme with weights has the form:

( ) ( )
(k 1) (k)

(k 1) (k) (k 1) (k) k
1 1 2 2

y y
A y 1 y B y 1 y ,

+
+ +−    + σ + − σ + σ + − σ = φ   τ

 

                                                     x ,   k 0,1,... ∈ω =  (25) 

with initial conditions 

(0)y (x) 0,   x .= ∈ω

Let’s write the scheme in canonical form for 1 2σ = σ = σ  

(k 1) (k)
(k) (k)y y

B Ay ,  x ,   k 0,1,...,
+ −

+ = φ ∈ω =
τ

                                               B E A,  A A B.= + στ = +     (26)

The operators A,B  are non-self-adjoint and non-sign-valued.
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Let’s prove that the inhomogeneous difference scheme is stable:
– the condition 

1 2j j i i

V
a ,  j 1,N ,  i 1,2

2
> = = , 

for 

( )( )
1 2

1

j j

1 2

1 1
V 2D ;

h h

− 
τ + < σ −  

– under the condition 

1 2j j i i

V
a ,  j 1,N ,  i 1,2,

2
< = =

for 

( )( ) 1

max

1 2

1 1
2 D 0,25V .

h h

− 
τ + < σ −  

The proof. 

*
B E A,  A A B, A A= + στ = + ≠

and

( )
2

2 2 2 2 2max
1 12 2H H H H H

min min

64D 8V
Ay 2 Ay By 2 y M y , M const 0.

h h

 
≤ + ≤ + = = >  

        (27)

And consequently 

2 2

H H
By M y ,≤  M const 0.= >

One of the conditions of stability is В 0.>  Let’s consider what σ  and τ  will happen 
to E (A B) 0.+ στ + >  Using positiveity of non-self-injected locally one-dimensional operators 

ii x̂B y , i 1,2,= =  let’s obtain the following. 
Under the condition 

1 2j j i i

V
a ,  j 1,N ,  i 1,2,

2
> = =

let’s have 

        
1 2 1 2 i 1 2

2

j j j j x j j 1 2H
x i 11 2

1 1 1
([E (A B)]y,y) (2D V)y Vy y h h ,

h h∈ω =

   
+ στ + ≥ στ + + − +   στ    

∑ ∑    (28)

than Â 0>  for 

( )( )
1 2

1

j j

1 2

1 1
V 2D .

h h

− 
τ + < σ −  

Under the condition 
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1 2j j i i

V
a ,  j 1,N ,  i 1,2,

2
< = =

(doesn’t exist in practice) let’s have

                   [ ]( )
i 1 2

2
2

j 1 j j 1 2H
x i 1 i

1 1 V
E (A B) y,y a y h h ,

h 2+
∈ω =

  + στ + ≥ στ − −   στ ∑ ∑  (29)

than Â 0>  for 

( )( ) 1

max

1 2

1 1
2 D 0,25V .

h h

− 
τ + < σ −  

Under the conditions when В 0,>  respectively, there exists 1
В ,

−  and it is possible to plot the 
problem on locally one-dimensional schemes. To go to another layer is executed 

1(k 1) (k) (k)
kk 1y S y B .
−+

+= + τ φ

From (26) let’s have 

( )1(k 1) (k) (k) (k)
ky y B Ay .
−+ − = −τ + τφ

Than 

( )1 1(k 1) (k) (k)
k ky B B A y B
− −+ = − τ + τ φ

and ( )1

k k kk 1S B B A .
−

+ = − τ  Considering (26) and (1) get:

1(1) (0)
(0)y 0 B ,
−= + τ φ

                               ( )1(k) (k 1) (k 1)
(k 1) (k 1) (k 1) ky B B A y 0 S y ,
− − −

− − −= − τ + =   (30)
…….

( )1(n) (n 1) (k) (1) (0)
1n n n 1 k 1 n n 1 2 n,1y S y S S ...S y S S ...S y T B ,
−−

− + −= = = = τ φ

where n,k n k 1 T S ...S += . So 

1Н
В ,≤ Μ  1

(n 1) (n 1) (n 1)n,n 1 nT S B (B A ).
−

− − −− = = − τ

From here 

1(n) (0)
(1)n,1 HH HH

y T B ,
−≤ τ φ ≤ τΜ

which gives the required. 
Let’s write locally one-dimensional scheme as follows:

 ( )
(k 1/2) (k)
ij ij (k 1/2) (k) (k)

1 ij ij ij

y y 1
 y 1 y ,

2

+
+

−
 = Λ σ + − σ + φ τ

                               (31)

                  ( )
(k 1) (k 1/2)
ij ij (k 1) (k 1/2) (k 1/2)

2 ij ij ij

y y 1
 y 1 y ,

2

+ +
+ + +

−
 = Λ σ + − σ + φ τ

  (32)

                                           
(0)y (x) 0,   x ,  k 0,1,...,= ∈ω =     (33)



Original Research Article:

full paper
(2018), «EUREKA: Physics and Engineering»

Number 5

51

Mathematical Sciences

where 

1 1 11 x x ˆ 1 1xy (Dy ) Vy (A B )y,Λ = − + = +  
2 2 22 x x ˆ 2 2xy (Dy ) Vy (A B )y.Λ = − + = +

Really, 
 

  
 
                            

(k 1) (k) (k)
1 2 ij 1 ij ij

(k 1/2) (k)
ij ij(k) (k 1/2) 2

2 ij ij 2

2 (k) (k) (k 1/2) 2
1 2 ij ij ij

(E )(E )y (E (1 ) )y
2

y y
(1 ) y (1 )

2

О( ) (E (1 ) ( ))y О( ).
2 2

+

+
+

+

τ
− στΛ − στΛ = + − σ τΛ + φ +

−τ
+ − σ τΛ + φ + − σ τ Λ +

τ
τ τ

+ τ = + − σ τ Λ + Λ + φ + φ + τ   (34)

Then with accuracy to the error of approximation let’s have 

(k 1) (k) (k)
1 2 ij 1 2 ij ij(E ( ))y (E (1 ) ( ))y .+− στ Λ + Λ = + − σ τ Λ + Λ + τφ

From where obtain (26). Therefore, it is possible to consider locally one-dimensional 
schemes further. 

Let’s consider the matrices 

i iB E A ,  i 1,2.= + στ =

The matrix 1B  is a three-diagonal matrix of order 1n N=  with a determinant 1nB  which 

equal to п п
1n 1 2B C C= α + β  ( 12 11 12 11

1 2

B B B B
С ,  С ,

( ) ( )

− β − − α
= =

α α − β β α − β
 ,α β  – the roots of the equa- 

 
tion 2x px q 0− − =  and both of them can not be negative, since the coordinate of the tops 

Bx p / 2 0,= >  
( )i i 1

2
1

a a
p 1 ,

h
+στ +

= +  i i 1
2 2

1 11 1

a aV V
q

2h 2hh h
+   στ στστ στ

= + − +      
). If 0, 0,  α > β ≥ α > β  

 

then q 0,− ≥  what happens when i
1

2a
h

V
≤  for any 1i 0,N 1= +  (i. e. 1 i

i
h 2min{a } / V≤ ). The case  

 
0,  0α > β <  under conditions 1 i

i
h 2min{a } / V≤  is not possible. 

Let’s consider the condition of the positivity for 2p 4q.+  Let’s obtain 

( )( )
22

1
i i 1 i 1 1

h
2D 2a Vh 2a Vh 0,+

 
+ ≥ + − > στ 

which is performed for 

1 i
i

h 2min{a } / V,≤  1і 0,N 1.= +  

Then 

{ }
2
1

i
i

h
2D 2 2 max D+ ≥

στ ³

 

for 

jі 0,N 1= +  and 1
i2 i

1

(2 max{D }) .
h

−τ
≤ σ  

Then 

п 1 п 1 2
п п

1n 1 2

p
B C C p q 0.

( ) 4

− −  α + β
= α + β > + > α − β  
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Similar results are obtained for the spatial variable 2x .
Consequently, nj j B E 0= + στΛ >  for locally one-dimensional schemes under conditions 

( ) i

1

1 j

2
j

2max{D }
с ,

h

−

−  σ
τ ≤ σ =  

 
  

j j ji
i

h h 2min{a } V,   j 1,2,≤ = =  jі 0,N 1.= +

In addition, operators jB ,  j 1,2,=  keep the basic properties of the operator B.
Two-layered locally one-dimensional schemes (31), (32) with initial conditions (33) and 

boundary conditions 

j1 x,0 j 0 1 j 0a y (V 0,5h V)y 0,5h g ,− + + = µ +

                      j j j j jN 1 x,N j N 1 2 j N 1a y (V 0,5h V)y 0,5h g ,   j 1,2+ + +− + + = µ + =   (35)

are correct: at sufficiently small j jh h ,   j 1,2≤ =  and τ ≤ τ  its solution exists on the input data 0y H∈  
and the schemes are stable (i.e. for all k 1,2,...=  satisfies 1(n) (0)

jn,1 HH HH
y T B

−≤ τ φ ≤ τΜ).
The schemes (31), (32) are systems of linear inhomogeneous equations with a three-diag-

onal matrix, for solution of which the tridiagonal matrix algorithm can be used. The condition of 
correctness and stability of this method is the diagonal superiority of the elements. Then from the 
requirement of j ih 2a V,<  for all ji 0,N 1,  j 1,2,= + =  it follows that in matrices 1 2 B ,  B  at each 
step 2

j i i 1h a a ,−στ + ≥  ji 0,N 1,  j 1,2.= + =  Let’s write it in the form 

2
j

i i 1 i 1

h
a a 2a ,  j 1,2.− −+ + ≥ =

στ

The left-hand side of this inequality must exceed the i2D  by the condition of the positivity 
for 2p 4q+ , so the inequality is valid, which ensures that the tridiagonal matrix algorithm is correct 
and stable.

Let’s estimate the computational cost. The number of arithmetic operations at each step k, 
that is required for the tridiagonal matrix algorithm is, as is known, 

O(3(n 1) 2n 1 3(n 1)) O(8n).− + − + − =  

The use of the method requires not more than 

1 2 1 2O(8N ) O(8N ) O(N N )+ = +  

arithmetic operations at each step. As a result, total computing costs are 1 2O(N N ),+  which indi-
cates that the proposed scheme is the economical difference scheme.

5. Resource characteristic of the implementation of the difference scheme

Implicit schemes (31), (32) for 1/ 2σ =  give a chain of one-dimensional problems in which 
the transition from the layer k  to k 1+  is carried out in two steps using the intermediate layer 
k 1/ 2+  (with the order of approximation 2О( h )τ + ).

It should be noted that in the case of numerical implementation it is necessary to make the 
following number of generalized operations before performing the triadiagonal matrix algorithm. 
To calculate the elements ijjb ,  j 1,N ,  i 1,2,= =  at least 6 operations are performed. To calculate the 
elements jj 1 ib ,  j 1,N 1+ = −  and ij 1jb ,  j 2,N ,  i 1,2,− = =  at least 7 operations are performed. There-
fore, to calculate all elements of the three-diagonal matrix of size n n,×  it is necessary to make 
6n 14(n 1)+ −  operations. To calculate the right parts, 6n 14(n 1) 3n+ − +  operations in the initial 
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layer and 6n 14(n 1)+ −  operations in subsequent layers are performed. As a result, for a transition 
from the layer k  to the next layer k 1,+  at least 1 2 1 296N N 35(N N )− +  operations are performed. 
Important for the practical application of the method is also the need to keep the solutions accord-
ing to the scheme (31), (32) for some layers k  (as a matrix of size 1 2N N× ).

The solution of the set of the above-mentioned discrete tasks is an integral part of the prac-
tical method for the analysis of the availability of water erosion in the agro-landscape (Fig. 1) [15]. 
When implementing the method (keeping in mind the proportions of terraces T1-T6 and estimates 
of resource costs), it is expedient to have a ratio of 1 2N 5N .=

Fig. 1. Scheme of agro-landscape

To analyze the presence of water erosion in our landscape, for cascades of six rampart-ter-
races on the left and on the right side of the ravine, it is necessary to distinguish three sections on 
each terrace, which are distributed throughout the length of the terrace. For each of the selected 
cross-sections, the given difference problem is solved. As a result, for the cascade of rampart-ter-
races, it is necessary to solve 18 tasks and store 18 matrix-results with values of the concentration 
of the pollutant for all layers with a pair number (or multiples of 3). A comparative analysis of the 
values of the concentration from matrices and control measurements at the appropriate time allows 
to determine the presence of water erosion for this landscape.

6. Discussion of the method for the practical identification of the process of water erosion in 
the agricultural system of rampart -terraces 

According to the results of the research for the analysis of water erosion process in the 
landscape for all selected sections of the rampart-terraces, the difference task is solved using the 
proposed economic difference scheme for a given number of steps for time. As a result, let’s solve 
36 tasks and save for each of the selected number of layers (k corresponds to the number of the day) 
36 matrix-results (size 1 2N N× ) with the values of concentration. 

It should also be noted that the comparative analysis of the concentration values for stored 
matrices and control measurements on the terraces at the appropriate time allows not only to iden-
tify degree of water erosion for this agricultural landscape. Using these measurements opens up 
the possibility of controlling the growth of computational errors over time. Since the purpose of the 
method is to detect the presence of water erosion, and the value of the distribution of the pollutant 
is only an auxiliary, then the effect of the error with a further increase of k  can be eliminated by 
adjusting the values of the matrices by the results of the control measurements. 

The properties of the selected pollutant in the soil moisture, its passivity and soil cultivation 
without turning over the layers allow to state [10], that the difference in the values of the concen-
trations of the pollutant in the preserved matrices and the practical measurements indicate the 
presence of water erosion in the system. This corresponds to the practical results published in [10] 
and allows to consider not a single point of the rampart-terrace using the analytical solution of the 
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vertical migration model, but to move to a more precise, two-dimensional analysis of the process 
with the proposed effective algorithm. Moreover, the presented approach stands for a given land-
scape as a simplified analogue of a general three-dimensional problem, for which it is problematic 
to realize the economic difference scheme. 

From the theoretical point of view for the corresponding mathematical problem the exis-
tence of the solution is proved, and the properties of differential operators and their difference an-
alogues are investigated, stability of the difference scheme is shown. Such results allow reasonably 
to approach the determination of the concentration of the pollutant according to the constructed 
model. However, the use of difference schemes in accordance with the order of approximation 
imposes certain limitations on the accuracy of the obtained results. Searching for ways to increase 
accuracy in the construction of efficient computational algorithms for complex landscapes is an 
important direction for further research. Successful results will reduce the number of corrections, 
which will increase the sensitivity of the method.

7. Conclusions

1. As a result of the performed investigations, the properties of differential operators for the 
two-dimensional problem of migrating the pollutant in the aeration zone of the soil in the condi-
tions of instantaneous initial surface contamination are determined, and the existence of the solu-
tion of the problem is substantiated. The differential analog of a differential problem is constructed, 
properties of difference operators are studied and their limitations are established. This allowed to 
obtain a two-layer difference scheme and show its stability. 

2. The conducted researches substantiated the decomposition of the constructed difference 
scheme on locally one-dimensional schemes. Their correctness and stability are established. This 
allows to switch to the use of a chain of one-dimensional implicit tasks, in which the transition 
from one layer to another occurs using the introduced intermediate layer in two steps with the with 
approximation order 2О( h ).τ +  For the solution of such locally-one-dimensional schemes, the 
triadiagonal matrix algorithm can be used. To confirm this fact, the fulfillment of the condition of 
correctness and stability of the method for three-diagonal matrixes of the schemes has been con-
firmed. The resulting general computing costs of the order 1 2O(N N )+  allowed to assert that the 
proposed schemes are economic difference schemes.

3. It can be argued that the proposed approach provides a practical method for determining 
the presence of water erosion in a complex landscape of agricultural use in real time ( 1 2О(N N )× )  
and allowable other resource costs. An important feature of the method is the use of a series 
of two-dimensional space discrete tasks, which serves as a simplified analogue of the general 
three-dimensional problem and therefore allows obtaining the general state of water erosion for 
the whole system.

References

[1] Kundas, S. P., Gishkelyuk, I. A., Kovalenko, V. I., Hil’ko, O. S.; Kundas, S. P. (Ed.) (2011). 
Komp’yuternoe modelirovanie migracii zagryaznyayushchih veshchestv v prirodnyh dispersnyh sredah. 

Minsk: MGEHU im. A. D. Saharova, 212.

[2] Shein, E. V., Ryzhova, I. M. (2016). Matematicheskoe modelirovanie v pochvovedenii. Moscow: 

«IP Marakushev A.B.», 377.

[3] Ting, K. C., Fleisher, D. H., Rodriguez, L. F. (Eds.) (2009). Systems Analysis and Modeling in 

Food and Agriculture. EOLSS Publications, 488.
[4] Danilov, V. G., Maslov, V. P., Volosov, K. A. (2012). Mathematical Modelling of Heat and Mass 

Transfer Processes. Springer Science & Business Media, 323.

[5] Hossain, M. (Ed.) (2011). Heat and Mass Transfer – Modeling and Simulation. InTech, 226. 

[6] Romanchuck, L. D., Fedonyuk, T. P., Fedonyuk, R. G. (2017). Model of influence of landscape veg-

etation on mass transfer processes. Biosystems Diversity, 25 (3), 203–209. doi: http://doi.org/10.15421/011731 

[7] Barabanov, А. T. (2016). Principles of adaptive-landscape generation and development 
of soil protection agricultural systems. Geography and Natural Resources, 37 (2), 106–113. doi: http:// 

doi.org/10.1134/s1875372816020037 



Original Research Article:

full paper
(2018), «EUREKA: Physics and Engineering»

Number 5

55

Mathematical Sciences

[8] Vlasyuk, A., Zhukovskyy, V. (2017). Mathematical and computer modeling of intraparticle ra-

dionuclides mass transfer in catalytic porous media under isothermal conditions. Mathematical Modeling and 

Computing, 4 (2), 117–125. doi: http://doi.org/10.23939/mmc2017.02.117 

[9] Kundas, S. P., Gishkelyuk, I. A., Grinchik, N. N. (2008). Chislennoe modelirovanie migratsii 

primesey v pochve. Prirodopol’zovanie i okruzhayushhaya sreda. Minsk: BelNITS «Ekologiya», 56–60.

[10] Vergunov, V. A., Vergunova, I. N., Oncsik, M. B., Dombovary, J. (2000). 137Cs Felhasznalasa 

masodlagos radioactiv szennyezod-desu Ukran, erdossztyeppes videk erozios folyamatainak vizsgalatara. 

Fizikai szemle, 7, 229–231.

[11] Brovka, G. P., Dorozhok, I. N., Ivanov, S. N. (2010). Raschetnye skhemy protsessov konvektiv-

no-diffuzionnogo perenosa vodorastvorimykh soedineniy. Inzhenerno-fizicheskiy zhurnal, 83 (5), 866–872.
[12] Patil, S. B., Chore, H. S. (2014). Contaminant transport through porous media: An overview of 

experimental and numerical studies. Advances in Environmental Research, 3 (1), 45–69. doi: http://doi.org/ 

10.12989/aer.2014.3.1.045 

[13] Zhang, Y., Wang, Q., Zhang, S. T. (2011). Numerical Simulation of Benzene in Soil Contam-

inant Transport by Finite Difference Method. Advanced Materials Research, 414, 156–160. doi: http:// 

doi.org/10.4028/www.scientific.net/amr.414.156 
[14] Vergunova, I. (2016). Multigrids method for numerical solution of equation of mass transfer in 

the system of hydrotechnical ramparts-terraces. Problems of decision making under uncertainties” (PDMU-

2016). Brno, 121–122.

[15] Vergunov, V. A., Vergunova, I. N. (2007). Modelling of masstransfer processes of polluted sub-

stance in the complex area with the systems of hydro-technical ramparts. In Proc. of the I International conf. 

of environmental science and water management. Szarvas, 7, 747–755.

APPLICATION OF INFORMATION TECHNOLOGIES FOR 

MANAGEMENT OF LOGISTIC FLOWS

Olga Kravchenko 

Department of Information Technology Design

Cherkasy State Technological University

460 Shevchenka blvd., Cherkasy, Ukraine, 18006

kravchenko_ov@ukr.net

Elena Danchenko 

Department of Business Administration and Project Management

University of Economics and Law "  KROK"

30-32 Tabirna str., Kyiv, Ukraine, 03113 

elenadan@krok.edu.ua

Sergii Martynenko 

Department of Radio Engineering, Telecommunication and robotic systems

Cherkasy State Technological University

460 Shevchenka blvd., Cherkasy,Ukraine, 18006

smartynenko@ukr.net

Abstract

The process of managing logistics flows is one of the main factors influencing the increase of economic efficiency of 
production and sales. 

The development of logistics information systems is a broad niche in the IT field. Application of logistic information sys-

tems in the process of management allows you to save money both on wages by the number of employees, and to accelerate the 

management process in a time interval.


