
Reports on research

projects

(2016), «EUREKA: Physics and Engineering»

Number 4

25

Computer Sciences and Mathematics

INFORMATION TECHNOLOGY OF SOFTWARE

ARCHITECTURE STRUCTURAL SYNTHESIS OF

INFORMATION SYSTEM

Sergey Chainikov

Department of System Engineering

Kharkiv National University of Radioelectronics

14 Nauki ave., Kharkiv, Ukraine, 61166

chajnikov@kture.kharkov.ua

Andrey Solodovnikov

Department of Medical and Biological Physics and Medical Information Science

Kharkiv National Medical University

4 Nauki ave., Kharkiv, Ukraine, 61166

andreysldvnk@yandex.ru

Abstract

Information technology of information system software architecture structural synthesis is proposed. It is used for evolution-
ary models of the software lifecycle, which provides configuration and formation of software to control the realization and recovery
of computing processes in parallel and distributed computing resources structures. The technology is applied in the framework of
the software requirements analysis, design of architecture, design and integration of software.

Method of combining vertices for multilevel graph model of software architecture and automata-based method of checking
performance limitations to software are based on the advanced graph model of software architecture. These methods are proposed in
the framework of information technology and allow forming a rational structure of the program, as well as checking for compliance
with the functional and non-functional requirements of the end user.

The essence of proposed information technology is in displaying of the customer’s requirements in the current version of
the graph model of program complex structure and providing a reconfiguration of the system modules. This process is based on the
analysis and processing of the graph model, software module specifications, formation of software structure in accordance with the
graph model, software verification and its compilation.

Keywords: software, information system, configuring, evolutionary requirements, graph model.

DOI: 10.21303/2461-4262.2016.00125 © Sergey Chainikov, Andrey Solodovnikov

1. Introduction

Recently, such software design technology of information system (IS) like SSADM, Mer-
is, TDD, Gherkin and etc. [1–3] have become widespread. Existing technologies allow creating
component-oriented, service-oriented methods, generation method used also for the design and
configuration of software IS. Application of these methods is due to their efficiency, low labor and
time expenditures to produce quality software.

However, existing methods for software building show the effectiveness in the case of the re-
quirements set before the start of software architecture design. In the conditions of dynamically chang-
ing requirements, using the evolutionary software life cycle (LC) requires a significant amount of code,
material and labor costs to reconfigure users’ workstations, which deprives these methods are significant
advantages [1, 3]. It also is not considered application of techniques for simplify software structure based
on a graph model analysis of its architecture in order to reduce the time for design and configuration [4].

One of the new directions in the design and development are methods of automated software
synthesis with accounting of changing customer requirements, the main advantage of which is the pos-
sibility of a preliminary assessment of the architectural and functional features of the system [4–6].

In this context, it is appropriate to use the methods of formalizing flexible software architecture
with the ability to dynamically change based on the multilevel graph model of software architecture to
address the issues arising in the conditions of evolutionary requirements.

Reports on research

projects

(2016), «EUREKA: Physics and Engineering»

Number 4

26

Computer Sciences and Mathematics

Such methods allow forming a preliminary view of the system prior to its generation, pro-
viding dynamic configuration and the ability to control the implementation and back of computa-
tional processes (CP) for the tasks of system users.

Known methods for the software IS synthesis are used primarily for the formation of a
system with a component-oriented or service-oriented architecture, but the principles and models
that are the basis of the method of formalizing software architecture can be adapted to meet the
challenges that arise in the process of automated software synthesis.

It is therefore highly relevant to use information technology (IT) of software architecture
structural synthesis using the corresponding graph models.

The aim of the research is to develop models, methods and IT to improve the efficiency of
IS software architecture design for structured tasks. At the same time such objectives of the study
are formulated:

– development of multilevel graph model of IS software architecture in the multilevel form;
– development of method for combining vertices of software architecture graph model based

on an assessment of indicators of complexity and connectivity of software modules;
– development of IT of software architecture structural synthesis with the ability to soft-

ware configuration under evolutionary requirements.

2. Materials and methods

2. 1. Graph multilevel model of IS software architecture

Graph model is a set of vertices, which compares the basic software modules executed se-
quentially or independently of each other. Focused arcs between them determine the type of com-
munications of data and are described by a couple of sets of software modules characteristics.
Graph model is formed with functionality that excess for a given subject area (SA) and provides a
flexible configuration of the system in terms of evolutionary requirements.

The data about requirements specification to the final software product [7], information
obtained at the stages of pre-research, existing architectural solution and patterns are required to
build the model. The final form of the graph model is defined by expression in the form:

 G=F (G
in
), (1)

where G=F(G
in
) – defines a set of operations on the initial graph model, which allows to reduce it to

the multilevel form with supervertices, and G
in
 is an initial graph model in the form:

 G
in
=(V

in
, X

in
), (2)

where the V
in
 – set of vertices v, which matched software modules (or, in a general sense, СP) and

X
in
 – set of directed arcs ij i jx (v ,v)= of the G

in
 graph determining data dependencies between soft-

ware modules. Formation a plurality of vertices and edges of the graph (2) takes place on the basis
of selection of prelevant functional subsystems of investigated object in SA and the establishment
of data flow between them. For each i-th vertex of the model (1) two vector data are highlighted:

{ }in in in in

i 1 2 kD d ,d ,...d ,= (3)

vector of input data invariable during operation and

{ }out out out out

i 1 2 k
D d ,d ,...d ,= (4)

vector of output data that had been modified in the process of the program module operation.
In the case of evolutionary requirements, defining a modification of the architecture and

functionality expansion, graph model (1) is supplemented by a subset of new software modules

Reports on research

projects

(2016), «EUREKA: Physics and Engineering»

Number 4

27

Computer Sciences and Mathematics

M m
iV {v }= and a subset of modified modules M m

iV {v }= that allow configuring the software struc-
ture for the new version of the requirements. For the new version of program structure a subset of
vertices EV V⊆ are excluded from the graph (1), which are replaced by a subset MV , that is, re-
moved an older version of the software modules. The same operation is done with the arcs MX X⊆ .
This allows defining the constant portion of the graph G:

()C C C C
G V ,X ,G G= ⊆ ,

where C MV V \ V= and C MX X \ X= . The resulting graph model has the following main features.
It hasn’t pendant vertices, for which there are following condition:

 i iv V,{V V : V 1: v V : deg (v) 0}.−
∀ ∈ ⊆ > ∃ ∈ =′ ′ ′ (5)

There are no isolated vertices, for which there are following condition:

 i i iv V,{ v V deg (v) deg (v) 0}.+ −
∀ ∈ ∃ ∈ = = (6)

There are no paired arcs

 i j iji, j ,{v ,v V | !x X}.∀ ∈Ν ∈ ∃ ∈ (7)

And there are no vertices with loops

 i iii ,{v V | x X}.∀ ∈Ν ∈ ∉ (8)

In addition, all vertices for the acyclic graph model, for which is set the number based on the
topological sorting and satisfying condition

i j i j i i

i 1 i 1 j j

i, j ,i j,{ v ,v V : [v ,v] | deg (v) deg (v)

deg (v) deg (v) ... deg (v) deg (v) 1},

− +

− + − +

+ +

∀ ∈Ν < ∃ ∈ µ = =

= = = = = =

(9)

where i j[v ,v]µ – the route from the vertex iv to the vertex jv , combined into one supervertex.
The purpose of the proposed graph model is description of software architecture. This description
allows evaluating software to the direct aggregation and provide dynamic configuration of user
workstations, which is an advantage of the proposed graph model. Reducing graph model to the
form (2) to ensure the feasibility of the properties (5)–(9) is based on the proposed method of com-
bining graph vertices of graph multilevel model of IS software architecture on the basis of estima-
tion of complexity and connectivity of software modules [8].

2. 2. Method of combining the vertices of graph multilevel model of IS software

architecture

This method is designed to reduce the time required for system development by integrating
the vertices in the supervertices on the basis of the modified Kosaraju’s algorithm that further pro-
cessing graph model based on a comprehensive criterion of effectiveness evaluation for software
architecture [8]:

'

gen compl

c '
complgen

K K
K ,

KK
= ⋅

 (10)

where '
genK and '

complK – the average value of complexity index and the generalized criterion
obtained after optimization of the graph structure and complK and gen

K – the value of criteria to
optimization.

Reports on research

projects

(2016), «EUREKA: Physics and Engineering»

Number 4

28

Computer Sciences and Mathematics

The method of combining the vertices of graph model of IS software architecture includes
the following stages:

Stage 1: removal of topological inaccuracies for graph model in accordance with the
formulas (5), (6).

Stage 2: obtaining number of modules for each i-th software module, the number of ele-
ments and data structures updated by i-th module and system complexity index values.

Stage 3: calculation of the average complexity index (10).
Stage 4: calculation of the criteria complK and gen

K , and get the value of complex criterion of
evaluation of the effectiveness of software architecture (10) for a given version of the requirements
for system configuration.

Stage 5: search for strongly connected components of a given graph and condensation of
component.

Stage 6: search for a pair of vertices on the condition (7) after the graph hasn’t any
strong connection component (for any two vertices

i
v and jv no two coexisting oriented ways

i jv ,v µ   and
j i

v ,vµ ).
Stage 7: calculation of the value of the complex criteria for evaluating the effectiveness of

software architecture (14) for obtained pair of vertices.
Stage 8: combining two vertices in one supervertex if the criterion value is strictly less than

one, and repeat from stage 3 as long as the value of complex criterion (10) would not meet the con-
figuration requirements.

Complexity assessment is conducted for the proposed method. It is coincided with the Kosa-
raju’s algorithm and corresponds to the magnitude O(n). The advantage of the proposed method
is that the method can reduce the time for configuration by simplifying the structure of the graph
model, relying on its topological features and configuration requirements for the system [8].

Graph model of IS software, processed by the method of combining vertices allows describ-
ing the static aspect of the generated software. To assess the behavioral properties of the system,
to verify the non-functional requirements it is necessary to build an automata-based model of the
interaction of the software modules based on automata-based method.

2. 3. Automata-based methods of constraint checking to generated software

Automata-based methods use to design the CP realizer, simulating scenarios of interaction
of software modules and comparing the simulation results with non-functional requirements for
PC. The method uses a multilevel graph model of IS software architecture. The vertices for this
model are defined. These vertices are responsible for formation of the user dialogue and formation
of corresponding subgraphs of modules implementing related problems of the system. The method
is based on a finite automata-based model (FA), which is set by the standard set of elements [9]:

0A {S, X, Y, s , , },= δ λ

where S – the finite non-empty set of states; X – a finite non-empty set of input signals (input alphabet);
Y – a non-empty finite set of output signals (output alphabet); 0s S∈ – an initial state; : S X Sδ × → – tra-
nsition function; : S X Yλ × → – output function. At the same set of states, transitions, input and output
signals are defined graphically by transition diagram, and the structure of finite automata, relationship
between nested automata using class diagrams. For the implementation of direct tasks (AForwardSM
automaton) and reverse (recovery of results – AbackwardSM automaton) control of CP it is proposed to
use the main control FA, which provides interaction of the two nested FA. The main tasks that imple-
mented by the proposed FA are formulated on the basis of specific structure.

For control FA there are:
1) forming a subgraph of tasks;
2) checking the status of the problem;
3) checking the results for correctness;
4) change in the task status.
For AForwardSM automaton there are:
1) CP running;

Reports on research

projects

(2016), «EUREKA: Physics and Engineering»

Number 4

29

Computer Sciences and Mathematics

2) CP data archiving.
For ABackwardSM automaton it is archive data recovery for each vertex of corresponding levels.
The proposed method includes the following stages:
Stage 1: selection of basic software states and conditions of transition on the basis of input and

output vertices of graph model.
Stage 2: formation of control FA structure and its nested sub-automata realizing the behavior of

the system, taking into account the specifications of the data of graph model vertices.
Stage 3: defining the principles of FA interaction with software modules based on architectural

patterns of object-oriented programming for organizing distributed or parallel execution of the program.
Stage 4: formation of initial information required for FA organization, such as an adjacency ma-

trix of graph multilevel model of IS software architecture and the transposed adjacency matrix to control
forward and reverse FA process.

Stage 5: development of architecture for the future IS software, taking into account the relation-
ship between graph model and control FA.

Stage 6: software generation on the basis of obtained structure.
The proposed automata-based models have the following required properties.
For AForwardSM automaton there are:
1) CP P(v

i
) for a given i-th vertex will be running only at the user’s request;

2) guarantee that the P(v
i
) process is necessarily ever being running if there are no calcula-

tion errors;
3) guarantee that the P(v

i
) process will be running only when the

v

i
 vertex is in a “not running”

or “made”;
4) the vertex will ever need to be in a state of “not running” or “made”;
5) data archiving process will be carried out for each required vertex of the graph model;
6) for CP sequences based on the existing multilevel graph model it can distinguish a CP that is

activated only if all the previous processes have completed their work;
7) for the entire set of software CP can identify a CP subset, which are placed on a single level of

multilevel graph model and do not have the information dependencies of each other, allowing running
them simultaneously.

For ABackwardSM automaton there are:
1) CP data recovery (backtracking) will be executed only at the user’s request;
2) CP data recovery will be executed only if there is an archive data for each vertex of CP

subgraph;
3) for each vertex of the selected subgraph will data recovery only in the state, if another user

has not been enabled the top for himself (“not running” status) and if there are no data recovery (“not
recovered” status), or the data has already been recovered earlier (“recovered” status).

On the basis of defined and designated FA states (Table 1) and the events for which FA transit in
these conditions (Table 2) properties of the model based on temporal logic LTL, which meet the require-
ments of software behavior are formalized and complemented by new features in the case of regular
versions of the non-functional requirements.

Table 1

FA transitions

Designation Description

e1 permission is received
e5 run-time error
e6 number of vertices less than the maximum for the current level
e7 number of the current level less than amount of levels
e16 CP conditions and parameters are set
e43 Data are read

e81/e82 Archive exists/no exists
e101/e102 archive data is not restored/restoring

e103 archive data are restored
e121/e122/e123 CP is not running/running/executed

Reports on research

projects

(2016), «EUREKA: Physics and Engineering»

Number 4

30

Computer Sciences and Mathematics

Table 2

FA states

Designation Description

o3.zf22 CP initialization for AForwardSM automaton
o3.zf24 transition to the next CP

o3.zf28/o3.zf31 CP running/waiting for CP completion
o3.zf35/o3.zf36 data archiving/data retrieving

o2.zf45 Data recovery for ABackwardSM automaton

For AForwardSM automaton there are:
1) (e1Uo3.zf 28);¬ ¬

2) (e5Uo3.zf 28);¬

3) ((e121 e123)Uo3.zf 28) ((e121 e123)Uo3.zf 28);¬ ¬ ∨ = ¬ ¬ ∧ ¬

4) Fo3.zf 31;

5) e43Fo3.zf 35;

6)

AV AV AV AV AV AV AV

ov 1 2 n 1 2 nF (F F ... F) F F ... F ,= ¬ ∧ ∧ ∧ = ¬ ∨ ¬ ∨ ∨ ¬

where AVF (e122Uo3.zf 31) (e121Uo3.zf 22)U((e16Uo3.zf 28));= ¬ ¬ ∧ ¬ ¬ ¬

7) PV PV PV PV PV PV PV

ov 1 2 n 1 2 nF (F F ... F) F F ... F ,= ¬ ∧ ∧ ∧ = ¬ ∨ ¬ ∨ ∨ ¬

where PVF ((((e6 e7)Uo3.zf 28))U((e122U(o3.zf 24 o3.zf 36))))= ¬ ¬ ¬ ¬ ∧ ¬ ¬ ∧ =

((e6 e7)Uo3.zf 28U((e122U(o3.zf 24 o3.zf 36)))).= ¬ ¬ ∨ ¬ ¬ ¬ ∧

Formalization of property 6 is due to the fact that in the case where there are n vertices, such
that k m,n;∀ = ∃

 ki k in; x (v ,v)∃ = , where m and n are integers and indegree
i

deg (v) n+
= , general log-

ical statement is that both of the properties for all n arcs. Property 7 is formalized in such a way, as
if to give a subset of vertices i r

v V∈ , where i m,n= belonging to the same level and between
which there is no focused arc, in general, the logical formula will also appear as a conjunction of
formulas correlated with the given vertices.

For ABackwardSM automaton the properties are formalized as follows:
1) (e1Uo2.zf 45);¬ ¬

2) (e82Uo2.zf 45) (e81Uo2.f 45);¬ ¬ ∨ ¬ ¬

3) ((e121 (e101 e103)Uo2.zf 45) ((e122 e102)Uo2.f 45)¬ ¬ ∧ ∨ ∨ ¬ ∧ =

((e121 e101 e103)Uo2.zf 45) ((e122 e102)Uo2.f 45).= ¬ ¬ ∨ ¬ ∧ ¬ ∨ ¬ ∧

Formulated properties are the basis for the determination of CP execution, so automaton
model, developed in accordance with the proposed method allows forming restrictions to software
structure in response to evolutionary requirements and improving its operational reliability, based
on the data of graph model of IS software architecture that distinguishes this method from BDD
technology.

2. 4. IT of IS software architecture structural synthesis

IT of IS software architecture structural synthesis in conditions of evolutionary require-
ments allows to reflect the requirements of the current version at the graph model and provide a
reconfiguration of software modules. The technology includes the following stages (Fig. 1):

Stage 1: formation of the initial graph model of IS software architecture;
Stage 2: analysis and procession of the graph model;
Stage 3: condensation and obtaining multilevel model;
Stage 4: preparing of the metafile of program modules specifications;
Stage 5: preparing of the project specification metafile;
Stage 6: composition of software architecture in accordance with graph model;
Stage 7: verification of software architecture;
Stage 8: software compile phase.
The first stage of IT is provided by information from available documents describing the

requirements of the customer: primary specifications, diagrams of static and dynamic SA model-
ing. On the basis of the functional and architectural requirements for IS software for essence of SA
model the functions of the objects that form the graph model, which is checked for topological cor-

Reports on research

projects

(2016), «EUREKA: Physics and Engineering»

Number 4

31

Computer Sciences and Mathematics

rectness in the second stage, are defined. In the third stage (Fig. 1) based on customer requirements
the method of combining vertices of graph model is carried out and rational graph structure of the
graph is formed. In the fourth stage on the basis of the obtained structure the program modules are
descripted using specification metafiles.

Fig. 1. IT stages of IS software architecture structural synthesis

In the fifth stage, using architectural patterns, metafile of software project that necessary
for software generation and dynamic configuration, which describes the principles of interaction
between modules, is generated. This file is input to the process of verification of non-functional
requirements on the basis of assessment to verify compliance with the restrictions to the generated
IS software in the seventh stage, after successful completion of which software is generated and the
alienation of the graph model for the end user of the generated system is executed. If there is a new
version of the requirements, the process is repeated from the third stage.

3. Experiments

IT enables the synthesis of the graph model of IS software architecture and dynamically
configures its architecture and functionality of the user workstations in a customer’s evolutionary
requirements. Checking the applicability of the proposed IT to synthesize of software architecture
“Automated system for pre-production of complex electronic devices” using the information about
SA, the percentage of manual system configuration required for dynamic configuration was calcu-
lated (Fig. 2).

Fig. 2. Percentage of manual system configuration on the change percentage of the source code

Reports on research

projects

(2016), «EUREKA: Physics and Engineering»

Number 4

32

Computer Sciences and Mathematics

The indicator calculation is based on LOC estimation and compared to the standard method
of system configuration based on the report about implementation of ERP-systems in the produc-
tion for 2015 [10].

4. Results of research

According to a report about implementation of ERP-systems [10], the majority of enterprises
(on average 44 % of enterprises in all industries, and 38 % of the enterprises of mechanical engi-
neering) require 26 % to 50 % change in the source code according to the settings and requirements
of system customers (Fig. 2). The proposed technology reduced the percentage of manual work of
staff to 10 % for the modification of source code in a conventional manner at a rate of 26 % and
to 18 % for the corresponding 50 % limits. That is, the proposed IT significantly reduces the time
required for reconfiguration of IS software by 36 %.

5. Discussion of results

IT of IS software architecture structural synthesis in terms of evolutionary requirements, which,
unlike existing technologies, is complemented by analysis and processing stages of SA model to syn-
thesize the graph model on IS software architecture, configuration of the structure to reflect the cur-
rent functional requirements and verification of non-functional requirements based on estimation of
sequences of module interaction within the requirements analysis process, architecture design, design
and aggregation of software, which provides a significant reduction in the cost of software changes.

6. Conclusions

The proposed technology allows to significantly reducing time for software configuring by
36 % and is used as an addition to existing technologies of design and development of software,
meaning its use for the evolutionary life cycle of technologies such as BDD, TDD, etc. within the re-
quirements analysis process to the software, architecture design, design and aggregation of software.

Determination of principles for control, rollback and synchronization of CP in parallel com-
puting environments, as well as methods of forming a flexible software architecture with its adap-
tation for service-oriented and cloud architectures is the subject of further research.

References

[1] Amodeo, E. (2015). Learning Behavior-driven Development with javascript + Code. Birming-
ham: Packt Publishing, 392.

[2] Bek, K. (2003). Ekstremalnoe prohrammyrovanye: razrabotka cherez testyrovanye. Byblyoteka
prohrammysta. Sankt Petersburg: Piter, 224.

[3] Smart, J. F. (2015). BDD in Action: Behavior-driven development for the whole software lifecy-
cle. Manning Publications, Shelter Island, NY, 384.

[4] Hilliard, R., Malavolta I., Muccini, H., Pelliccione, P. (2012). On the Composition and Reuse of
Viewpoints across Architecture Frameworks. Software Architecture (WICSA) and European Conference on
Software Architecture (ECSA), Helsinki, IEEE, 131–140. doi: 10.1109/wicsa-ecsa.212.21

[5] Lavryshcheva, E. M. (2008). Sborochnoe prohrammyrovanye. Osnovy yndustryy prohrammnykh
produktov. Kyiv: Naukova Dumka, 372.

[6] Lavryshcheva, E. M. (2013). Software Engineering kompiuternykh system. Paradyhmy, tekh-
nolohyy i CASE-sredstva prohrammyrovanyia. Kyiv: Naukova Dumka, 283.

[7] Coelho, K., Batista, T. (2011). From Requirements to Architecture for Software Product Lines.
9th Working IEEE/IFIP Conference on Software Architecture (WICSA), Boulder, CO: IEEE, 282–289.
doi: 10.1109/wicsa.2011.60

[8] Solodovnykov, A. S. (2014). K voprosu otsenyvanyia effektyvnosty i slozhnosty struktury
prohrammnoho sredstva. Problemy informatsiinykh tekhnolohiy, 2 (16), 125–129.

[9] Shelehov, V. I. (2014). Yazyk i tekhnolohyia avtomatnoho prohrammyrovanyia. Prohrammnaia
inzheneryia, 4, 3–15.

[10] The 2015 Manufacturing ERP Report. (2015). Panorama Consulting Solutions, Denver, Col-
orado, 13.

