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Abstract

The problem is considered for constructing a minimax control for a linear stationary controlled dynamical almost conser-

vative system (a conservative system with a weakly perturbed coefficient matrix) on which an unknown perturbation with bounded 
energy acts.

To find the solution of the Riccati equation, an approach is proposed according to which the matrix-solution is represented 
as a series expansion in a small parameter and the unknown components of this matrix are determined from an infinite system of 
matrix equations.

A necessary condition for the existence of a solution of the Riccati equation is formulated, as well as theorems on additive 

operations on definite parametric matrices. A condition is derived for estimating the parameter appearing in the Riccati equation.
An example of a solution of the minimax control problem for a gyroscopic system is given. The system of differential equa-

tions, which describes the motion of a rotor rotating at a constant angular velocity, is chosen as the basis.
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1. Introduction

In solving practical problems of mechanics, gyroscopy and navigation, models of almost 

conservative systems, in particular controlled ones, are traditionally used, which characteristics 

can be substantially improved by means of optimal control methods. Using the specificity of the 
coefficient matrix in the equations of almost conservative systems, namely, the presence of a large 
non-degenerate skew-symmetric matrix and a small parameter in the perturbation matrix, the pro-

cess of solving optimal control problems can be greatly simplified.
Let an unknown perturbation f (t)  with bounded energy act on a controlled linear station-

ary almost conservative system [1, 2]. The model will look like

                                           0 1x (A A )x Bu f ,= + ε + ε + εΨɺ    (1)

where T

1 2nx [x ,..., x ] 2n= −  – dimensional state vector, T

1 mu [u ,..., u ] m= −  – dimensional control 
vector, ε  – small parameter; 0 1 2n 2nA ,A ×∈ℜ , where T

0 0A A= −
 
and 0det(A ) 0≠ , 2n mB ×∈ℜ

 
– the 

matrix under control, 2n k×Ψ ∈ℜ  – the matrix under perturbation.
The problem of minimax control [3–5] is to find a control u(t) that minimizes the functional

                                             

T T 2 T

0

J (x Qx u u f f )dt,

∞

= + − γ∫
  

(2)
           

and the influence of perturbation f (t).

The required optimal control will find in the form

                                                         Tu B Sx= −ε
  

(3)

and the worst perturbation 

                                               ff K x= , 2 T

fK S.−= εγ Ψ     (4)
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Here S  – a positive definite matrix-solution of the matrix Riccati equation of the following form

                 
T 2 T 2 2 T

0 1 0 1S(A A ) (A A ) S SBB S S S Q 0.−+ ε + + ε − ε + γ ε ΨΨ + =  (5)

If suppose

                                                              P S= ε  (6)

the matrix equation (5) can be rewritten as follows

                 
T T 2 T

0 1 0 1P(A A ) (A A ) P PBB P P P Q 0.−+ ε + + ε − ε + γ ε ΨΨ + ε =   (7)

It is known [3] that there exists a minimal value minγ = γ
 
such that for all values min[ , )γ ∈ γ ∞

the matrix P  – positive definite, and for minγ < γ  the matrix P  is alternating.

Thus, in order to find the minimax control, it is required to perform an estimation of the parame-

ter γ
 
and to indicate a method for finding the matrix-solution P  of the matrix Riccati equation.

2. Materials and methods of research

To find the matrix solution P  of equation (7), the approach proposed for solving the problem 

of optimal control of almost conservative systems is applied [6–8]. The matrix-solution is repre-

sented as a series expansion in powers of a small parameter. As a result of equating the coefficients 
for the same powers, an infinite system of matrix equations is obtained. A consistent solution of a 
certain number of equations of this system gives the desired approximation of the solution.

To estimate the parameter γ
 
and to fulfill the condition of non-negative definiteness of the 

matrix included in the Riccati equation, a number of theorems are formulated, the proofs of which 

are based on the fundamental concepts of matrix theory [9–11]. In particular, the dependencies 
between the ranks of matrices and the dimensions of their zero spaces are used, as well as the 

properties of the ranks of matrices under transpose. Some properties of the eigenvalues of the 
matrix are used, in particular, the property of the continuous dependence of the eigenvalues of the 

matrix on its elements.

3. Results of the investigation of the matrix Riccati equation of a special form
3. 1. A necessary condition for the existence of a solution of equation
Let’s write equation (7) in a form convenient for further investigation

                  
( )T T 2 T

0 1 0 1P(A A ) (A A ) P P BB P Q 0.−+ ε + + ε − ε − γ ΨΨ + ε =   (8)

Based on the minimax control problem formulation, it is evident that the non-zero elements 
of the matrix Ψ  can be placed only in those rows in which there are non-zero elements of the ma-

trix B. It should be a necessary condition for the existence of solutions of the equation (8), namely,

                                                    
rang(B) rang( ).≥ Ψ     (9)

It is known [9] that Trang(AA ) rang(A)= . Then condition (9) can be rewritten in the form

                                               
T Trang(BB ) rang( ).≥ ΨΨ   (10)

In this case, the matrix

                                                       
T 2 TBB −− γ ΨΨ   (11)

must be non-negative definite.
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3. 2. Additive operations on definite parametric matrices.
Theorem 1. Let identically defined matrices n nA,B ×∈ℜ , n rang(A) rang(B) 1> ≥ ≥  are given.

A matrix A B− δ , 0δ >  is identically defined with A,B  and if and only if the following 

conditions are satisfied:

                                       
rang(A) rang[A,B]= , min0 ,< δ ≤ δ  (12)

where minδ – the minimum among the positive eigenvalues of matrix pencil A B− δ .

Proof. Let’s carry out the proof for non-negative definite matrices A,B. In the case of their 

non-positive definiteness, it can consider a non-negative definite matrix of the form ( )A B− − δ .

Necessity. If the first condition (12) is not satisfied, i. e. rang(A) rang[A,B]< , then the ze-

ro-space of the matrix A  will be of greater dimension than the zero-space of the matrix [A, B]. 

And this means that there is a vector x 0≠  for which the following is true:

                                            
( )T Tx A B x x Bx 0.− δ = −δ <  (13)

Thus, it follows from (13) that if the first condition (12) is not satisfied, the matrix A B− δ  is 

not a non-negative definite matrix for an arbitrary 0δ > .

Let’s suppose that equality rang(A) rang[A,B]=  holds. Then for an arbitrary vector x  of 

zero-space of the matrix A  the following is true: T Tx Ax x Bx 0= = . Let’s consider a matrix pencil 

A Bµ −  having, for a parameter 1δ = µ, the range of values that is the same as a pencil A B− δ . 

For sufficiently large values 0µ > , let’s obtain ( )Ty A B y 0µ − ≥  for all vectors. It is known [11] 
that the eigenvalues of the matrix depend continuously on its elements, so that the eigenvalues of 

the matrix A Bµ −
 
do not pass through zero to the first eigenvalue of the matrix pencil A Bµ −  

on the right of the axis µ. Let’s denote this maximum eigenvalue as maxµ . It is positive, otherwise

maxA Bµ −  will be a non-positive matrix, which violates the principle of continuous dependence of 

eigenvalues on matrix elements.

There is a vector nx ∈ℜ  such that ( )T

maxx A B x 0µ − =  and Tx Ax 0≠  (rang(A) ra>
max(A) rang[ A B])> µ −  and Tx Bx 0≠ . Then for max0 < µ < µ  ( )Tx A B x 0µ − <  and the matrix A Bµ −

 
  

 

is not non-negative definite. Hence T T1
x A B x x (A B)x 0

 
− = − δ < µ 

 

for max

1
0 < µ = < µ

δ
. Con- 

 

sequently, the matrix A B− δ  is not non-negative definite if min max1δ > δ = µ .

Sufficiency. If the first condition (12) is satisfied, then, as was shown above, the matrix 
A Bµ −

 
is non-negative definite, when maxµ ≥ µ . Therefore, the matrix A B− δ  is non-negative 

definite if 
min0 < δ ≤ δ .

Consequence 1. Let’s suppose that the identically defined matrices n nA,B ×∈ℜ  are given.

A parametric matrix A B+ δ  can be identically and oppositely defined with respect to matri-
ces A,B  if and only if the following conditions are satisfied:

                                          
rang(A) rang(B) rang[A,B],= =   (14)

                                                        max ,δ ≤ δ < +∞   (15)

                                                        min ,−∞ < δ ≤ δ   (16)

and condition (15) gives the same definiteness, and condition (16) – the opposite. min max,δ δ
 
– re-

spectively, the minimum and maximum eigenvalues of the matrix pencil A B+ δ .

Consequence 2. Let’s suppose that matrices n mB ×∈ℜ , n l×Ψ ∈ℜ , n rang(B) m ra> = ≥
 

m rang( ) 1≥ Ψ ≥  are given and

                                                  BH,Ψ =  m lH .×∈ℜ     (17)
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A parametric matrix T T

2

1
BB − ΨΨ

γ
is non-negative definite if and only if when the next 

condition is satisfied

                                                     T

max (HH ).γ ≥ λ
  

(18)       

Consequence 3. Let a convergent series of equally definite matrices 1 2A A A ...,= + +  

1 in rang(A ) rang(A )> ≥ , 
i ii n nA ×∈ℜ , i 1, 2,...=  is given

For a definite matrix A, the condition 1rang(A) rang(A )=  is satisfied if and only if

                                        1 1 irang(A ) rang A ,A ,=    i 2,3,...=   (19)

In the case of an indefinite symmetric matrix B, one can also give conditions for the deter-

minacy of the matrix A B+ δ .

Theorem 2. Let a definite matrix n nA ×∈ℜ
 
and an indefinite symmetric matrix n nB ×∈ℜ  

are given, for which is satisfied

                                              
n rang(A) rang(B) 1,> ≥ ≥  (20)

                                                  
rang(A) rang[A,B].=  (21)

The matrix A B+ δ  is identically defined with A  and if and only if, when rδδ ∈ , where

                                                       max minr [ , ]− +
δ = δ δ  (22)

and max min,− +δ δ  – respectively, the maximum among the negative and the minimum among the pos-

itive eigenvalues of the matrix pencil A B+ δ .

If the matrix B  is defined and rang(A) rang(B) 1> ≥ , then there are infinite intervals 
min( , ]+−∞ δ , max[ , )−δ +∞  (it follows from theorems 1 and 2). And the first interval corresponds to a 

matrix B opposite defined with respect to the matrix A, and the second one to identically defined.
Theorem 3. Let a definite matrix n nA ×∈ℜ  and an indefinite symmetric matrix n nB ×∈ℜ , 

n rang(A) 1> ≥ , are given, for which inequality is satisfied

                                                  
rang(A) rang[A,B].≠   (23)

The matrix A B+ δ  is identically defined with a matrix A  if and only if the following con-

ditions are satisfied: for all zero-space vectors x  of the matrix A, non-zero values

                                                     T

xJ (x Bx) (A)= λ   
(24)

has a one sign

                                                

min x

max x

0, , J 0,

, 0 , J 0,

+

−

 δ ≥ δ ∈
 δ ≤ 

  (25)

where max min,− +δ δ  – respectively, the maximum among the negative and the minimum among the 
positive eigenvalues of the matrix pencil A B+ δ .

For identically and oppositely defined matrices B  with respect to the matrix A, the 

intervals (25) will be respectively: [0, )∞  and ( ,0]−∞ . If rang(A) n=  and B  is an arbitrary 

undefined symmetric matrix, let’s obtain an interval max min[ , ]− +δ δ  (it follows from theorems 2 

and 3; xJ 0= ).
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Let’s propose one more criterion of identical determinacy of matrices A  and A B− δ , less 

convenient for practice, and based on the theorem of simultaneous (by one non-degenerate trans-

formation) reduction to diagonal form of two definite matrices [12].
Theorem 4. Let’s suppose defined matrices n nA,B ×∈ℜ , n rang(A) rang(B) 1> ≥ ≥

 
for which 

equality is satisfied:

                                                  
rang(A) rang[A,B].=   (26)

Matrix T

A BA B T (D D )T− δ = − δ , a a

A 1 nD diag{d ,...,d }= , b b

B 1 nD diag{d ,...,d }=  is identically 

defined with A  if and only if when

                                   

a b

k k

a b

k k

( , d d ], if (A) (B) 0,

[ d d , ), if (A) (B) 0,

 −∞ − λ λ ≤δ = 
− +∞ λ λ ≥

  (27)

where

                                  
{ }a b

i i
i

k arg min d d ,=  { }i 1, n∈ , a b

i id d 0.≠    (28)

3. 3. Finding a solution of the Riccati equation of a special kind for almost conservative 
systems

To solve equation (8), let’s apply the approach presented in [6, 7], proposed for solving the 
problem of optimal control of almost conservative systems with a small parameter. Let’s find a 
matrix-solution in the form of an expansion in the small parameter

                                          

2 i

0 1 2 i

i 0

P P P P ... P .
∞

=

= + ε + ε + = ε∑   
(29)

In the same form let’s represent the matrix Q

                                        
2 i

0 1 2 i

i 0

Q Q Q Q ... Q .
∞

=

= + ε + ε + = ε∑  
(30)

Substituting (29) and (30) in (8), and equating the coefficients for the same powers ε, let’s 

obtain an infinite system of algebraic equations of Riccati type:

                                                     0 0 0 0A P P A 0,− =      (31)

       

i 1
T T 2 T

0 i i 0 i 1 1 1 i 1 k i 1 k i 1

k 0

A P P A P A A P P (BB ) P Q ,
−

−
− − − − −

=

− = + − ⋅ − γ ΨΨ ⋅ +∑ i 1, 2,...=  
(32)

 

To find the desired approximation of the matrix solution P, it is necessary to solve succes-

sively the corresponding number of equations of the given system.

4. An example of solving the minimax control problem for a gyroscopic system

Let’s consider a system of differential equations describing the motion of a rotor rotating at 

a constant angular velocity [13]

                                       

2

1 1 1 1

2

2 2

x x k x y b u f

y y k y y b u .

+ α + + αω = ε + εψ
+ α + − αω = ε

ɺɺ ɺ

ɺɺ ɺ

,  

(33) 

After applying the transformation T diag{k,1,k,1}=  and taking into account the replace-

ment 1x x= , 2x x= ɺ , 3x y= , 4x y= ɺ , the model (33) will fully correspond to the form (1)
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 (34)

1 1

2 2

3 3

4 4

1 1 1

1

2

2

x x0 k 0 0 0 0 0 0

x xk 0 0 0 0 k 0

x x0 0 0 k 0 0 0 0

x x0 0 k 0 k 0 0

0 0 0

b 0 u
f .

0 0 u 0

0 b 0

       
       − −α − αω       = + ⋅ +
       
       − αω −α       

   
   ψ    +ε ⋅ + ε ⋅           

  

ɺ

ɺ

ɺ

ɺ

To simplify the further solution, let’s set 1b 1= , 2b 1= , 1 1ψ =  and 1 kε = .

Taking into account condition (18) and taking into account that the matrices TBB  and  

 T T

2

1
BB − ΨΨ

γ
 should have identical ranks, let’s obtain: a positive definite matrix P  is the solution 

of equation (8) will exist when 1γ > .

Let’s set in (30) 0 01 02 03 04Q diag{q ,q ,q ,q }= , iQ 0,i 1, 2,...= =  and find the matrix P  up to 

the first order of smallness with respect to ε, i. e., as 0 1P P P= + ε . Solving equation (31) and equa-

tion (32) at i 1, 2=  there is:

              

2

01 02 01

2

2

01 01 02

2

03

03 04

03

03 04

(q q ) q k
k 0 0

21

q k (q q )
k 0 0

2 1P .

q k
0 0 k q q

2

q k
0 0 k q q

2

 γ +
 

γ − 
 

γ + 
 γ −=  
 

+ 
 
 +  

 
(35)

Taking into account (6), the desired control will have the form

                                        

01 01 02

1 22

03

3 03 04 4

q (q q )
x x

2 1
u

q
x q q x

2

 γ +
 − −

γ − =
 
 − − +
  

   (36)

and the worst perturbation

                                           

01 01 02

1 22 2 2

q q q
f x x .

2 ( 1)

 +
= + 

γ γ γ −  
   (37)

5. Conclusions

The minimax control problem for almost conservative systems with a small parameter is 

investigated.

A necessary condition for the existence of a solution of the Riccati equation of a special form 

is formulated.

Theorems on additive operations on definite matrices are formulated.
A condition is obtained for estimating the parameter appearing in the Riccati equation.
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A possible approach is proposed for finding a solution of the Riccati equation of a special 
form for almost conservative systems.

An example of the application of the proposed algorithms to the model of a rotor rotating at 

a constant angular velocity is given.

In the applied plan, the studies presented in this article are effective for the development of 

gyroscopic and navigation systems that are stable to perturbations.
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