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Abstract

In the paper some unusual processes are considered during quenching such as self-regulated thermal process when metallic 

probe is covered by insulating polymeric layer, oscillation of temperature in surface layers of probe, creation a “shoulder” when 

quenching in polymer solution, possibility to perform austempering process just in cold liquids. Above mentioned processes build 

a basis for the new intensive quenching technologies and can bring a great benefit for heat treating industry when further carefully 
investigated. It is shown that initial temperature gradients, which cannot be governed by classical law of Fourier, can be tested by 

Liscic/Petrofer probe, etc. The paper discusses how organize such international investigation to satisfy contemporary practical needs 

and solve unsolved problems of science in the field of quenching. Also, the results of investigations can be used for software design-

ing and cooling recipes development during quenching steel parts in liquid media. It makes a great progress because at preset time 

only cooling curves and cooling rates are available that are used for comparable purpose and cannot be used for recipes development.
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1. Introduction

For the first time Liscic/Nanmac probe and intensive quenching processes were discussed to-

gether at the international conference on Heat Treating Processes held in Kiev in 1988. Prof. Liscic 

introduced to the audience his Liscic/Nanmac probe with three tiny thermocouples which were 
instrumented on the surface of 50 mm probe made of AISI 304 stainless steel, at the distance 

1.5 mm below surface and in the center of probe which was 200 mm long. The probe was produced 

in collaboration with the American company Nanmac Corp., Holliston, MA [1]. Investigators deal-
ing with intensive quenching processes were exited by Liscic/Nanmac probe since they realized 
that the probe was an excellent tool for careful IQ processes investigations. At present time simi-

lar Liscic/Petrofer probe is available [2]. The matter is that alloy and high alloy steels are quenched 
in oils without interruption the cooling process. Furthermore, research institutes and universities 

are developing new expensive alloy steels to be slowly quenched in oils to prevent crack formation 

and decrease distortion.

Due to enthusiastic work of two companies IQ Technologies Inc., Akron, USA and Intensive 

Technologies Ltd, Kyiv, Ukraine, it has been established and introduced into the practice the next 

three main achievements of intensive quenching phenomena which are [3]:
− an Intensive Quenching (IQ) reduces significantly distortion and prevents crack formation 

during hardening of steels;

− decreasing alloy elements in steel increases service life of steel components when they are 

intensively quenched;

− alloy and high alloy steel can be intensively quenched by plain water or water solution of 

optimal concentration if cooling is interrupted at proper time. 
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Due to these discoveries, situation in heat treating industry cardinally changed.  Standard 

Inconel 600 probe is not more useful for controlling and maintaining quality of IQ processes [3–7]. 
The most suitable, at present time, is Liscic/Petrofer probe [2] which has to be widely used in heat 
treating industry. The aim of the current investigation is to show the possibility of using Liscic/Pet-

rofer probe for liquid quenchants database development and accurate experimental review of dis-

covered self-regulated thermal processes.

2. Conventional quenching versus IQ-2 and IQ-3 processes

As known, alloy and high alloy steels are quenched in oils or high concentration of polymers 

to prevent crack formation and distortion. As a rule, cooling in oils continues to bath temperature 

that is why heat transfer coefficients are not a big problem and standard Inconel 600 probe is a good 
tool to obtain cooling characteristics for maintaining oils within the specks quality [4]. Low distor-
tion and elimination crack formation can be achieved by applying intensive quenching too [3]. The 
matter is that during intensive quenching, a martensitic structure forms quickly and uniformly in 

the part surface layer creating high current surface compressive stresses which act as a die mini-

mizing part distortion and preventing part cracking [3].
Two IQ processes are currently used in heat treating practice: a batch IQ process and a 

single-part processing IQ method. When using the batch IQ process, known as IQ-2 method, parts 

are quenched in batches in IQ water tanks. When using the single-part processing IQ technique 

(known as IQ-3 method), parts are quenched one by one in high-velocity IQ units. Note that the 
IQ-2 process is a two- or three-step quenching method. The first step of cooling takes place in agi-
tated water solution and is interrupted at a certain moment of time when the core of the parts being 

quenched is still hot. The parts are then cooled in the air during the second step of quenching. The 

part’s martensitic layer is self-tempered by the heat coming from the part core. If necessary, the 

load can be brought back into the quench tank for the completion of the quench. This technology 

needs special recipes development where heat transfer coefficients are used to calculate correctly 
time of interruption. The essence of IQ-3 process consists in interruption intensive cooling when 

at the surface of steel parts maximal compressive stresses appear and optimal quenched layer is 

formed. To investigate properly both intensive quenching processes, Liscic/Petrofer probes can be 

successfully used. 

3. Austempering process in cold liquids 

In this paragraph an austempering process in cold liquids, developed in Ukraine, is consid-

ered [8, 9]. The idea is very simple and understandable. When quenching in optimized cold liquid, 
surface temperature of steel part drops immediately close to saturation temperature (Table 1) and 

maintains at this level relatively a long time until transient nucleate boiling process is finished 
[3, 10]. The reason of such behavior is inequity nb convα >> α  and is called self-regulated thermal 

process [10]. The duration of self-regulated thermal process is calculated from the equation (1) [11]:

                                                2

nb F

D
k

a
τ = Ω .                                                               (1)

Here nbτ  is duration of transient nucleate boiling process in sec; Ω  is parameter depending 

on Biot number during convection when initial austenitizing temperature is fixed at 850 oC; Fk
 
is 

form coefficient; D  is size of steel part in m; a  is thermal diffusivity of a material in m2/s. The es-

sence of austempering process consists in interruption of cooling at the end of boiling mode and imme-

diate transferring product to tempering at the temperature T
sf
>M

S
. Also, during transient nucleate boil-

ing process T
sf
>M

S
. There are three major approaches allowing fulfilling austempering in cold liquids:

− use high concentration of water solution to increase boiling point to martensite start tem-

perature M
S
;

− use pressure to increase boiling point of water to martensite start temperature M
S
;

− use polymer of inverse solubility which creates insulating layer on the surface of steel 

parts and maintains surface temperature at the end of nucleate boiling at the level T
sf
>M

S
. 
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The most simple and reliable austempering process in cold liquid is the third approach. Its 

disadvantage is decreasing cooling rate during nucleate boiling due to surface insulating layer.

When film boiling is absent, surface temperature of steel parts drops almost to boiling point 
of liquid (Table 1).

Table 1

Time required for the surface of steel spheres of different sizes to cool to different temperatures when 

quenched from 875 oC in 5 % NaOH-water solution at 20 oC and moving at 3 feet per second (0.914 m/s), 
according to French [12].

Average size
Time, Sec 

700 oC 600 oC 500 oC 400 oC 300 oC 250 oC 200 oC 150 oC

6.35 mm 0.027 0.037 0.043 0.051 0.09 0.15 0.29 0.69

12.7 mm 0.028 0.042 0.058 0.071 0.11 0.15 0.26 0.60

25.4 mm 0.033 0.042 0.055 0.074 0.13 0.21 0.35 0.82

63.5 mm 0.023 0.039 0.065 0.093 0.14 0.19 0.32 0.59

As seen from Table 1, surface temperature of 6.35 mm – 63.5 mm spheres drops 875 oC to 
150 oC practically for the same time that is very important when developing austempering process-

es in cold liquids. Also, Table 1 shows that film boiling is completely absent.

 

b

Fig. 1. Cooling curves measured by the Liscic/Petrofer probe quenched in liquid media:  
(a) in an accelerated mineral oil of 50 oC, without agitation; (b) in a polymer solution of 35 oC, 

with agitation [2])

a
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As seen from Fig. 1, Liscic/Petrofer probe depicted very unusual behavior of temperature 

in surface layer of the probe when quenching in polymer solution [2].  Initially temperature in this 
area drops smoothly to 500 oC and then creates a “shoulder” where temperature maintains at the 
level approximately at 450 oC. More information is provided in Table 2.

Table 2

Surface and core temperature versus time when quenching in a polymer solution of 35 oC

Time, s 0 1 10 20 30 40 60 100

T
sf
, oC 855 850 470 445 445 430 412 280

T
core

, oC 855 850 840 770 675 600 500 370

Moreover, temperature within the created “shoulder” oscillates extensively at the beginning 
of it and oscillation stops at the end of “shoulder” [2]. Author [2] didn’t explain such interesting 
behavior. It can be explained by self-regulated thermal process taking place during transient nu-

cleate boiling mode [10, 11]. The matter is that during quenching in water solution of polymers on 
the surface of steel parts or probes a polymeric coating is formed as shown in Fig. 2. Transient 

nucleate boiling process in this case takes place on the surface of the coating. Since polymeric 

water solution is agitated, the thickness of the coating varies versus time. As known, cooling rate 

depends on thickness of the coating and thermal conductivity of polymer and can be calculated 

using equation (2):

 

                               

( )m

coat

aKn
v T T .

1 2 K
R

= −
 δ λ

+ λ 

                       
                           

(2)

Here v  is cooling rate in oC/s; Kn is Kondratjev number; a is thermal diffusivity in m2/s;  

δ  is thickness of insulating layer; R is radius in m; λ  is thermal conductivity of metal in W/mK; 

coatλ  is thermal conductivity of coating in W/mK; K is Kondratjev form coefficient in m2; T is cur-

rent temperature; T
m
 is bath temperature.

Varying a thickness of the polymeric coating is a reason for temperature oscillation.  

Author [13, 14] investigated effect of polymeric coatings on initial heat flux density and tem-

perature fields within the metallic section of the probe. Polymeric coating decreases initial heat 
flux density and by this way eliminates film boiling [14]. Also, as it was shown by author [14], 
coating increases the surface temperature of the probe during self-regulated thermal process 

and by this way delays martensitic transformation during transient nucleate boiling process 

(Fig. 2). Such unusual behavior can be used to perform austempering processes just using cold 

liquids [8]. It should be also noted that coating decreases temperature gradient between the 
core and surface metallic layer approaching the cooling in oils. For example, during quench-

ing in oil (Fig. 1, a)) at a time 60 seconds temperature difference between surface and core is 

100 oC when at a distance 1 mm from the surface temperature is 400 oC. The same difference is 
observed during quenching in water polymer solution (Fig. 1, b)). Thickness of the polymeric 

layer is controlled by concentration of polymer in water. The above consideration shows that 

the great possibilities of polymers are not explored for 100 % yet. Further investigations are 
needed which can be performed using Liscic/ Petrofer probe.

The summarizing differences between standard Inconel 600 and Liscic/Petrofer probes are 

provided in Table 3.

Table 3 shows that along with Inconel 600 probe the Liscic/Petrofer probe should be used 

for testing liquid quenchants.
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Table 3

Summarizing differences between standard Inconel 600 and Liscic/Petrofer probes

Inconel 600 standard probe with one 

thermocouple at the core

Liscic/Petrofer probe with three 

thermocouple 
Comments 

It is impossible to investigate self-regulated 

thermal process

The Liscic/Petrofer probe with 

accurately instrumented three ther-

mocouple provides accurate surface 

temperature behavior during boiling 

processes.

The Liscic/Petrofer probe allows deter-

mining both real HTCs and effective 
HTCs. Inconell 600 probe provides only 
effective HTCs for small diameter.

Due to small diameter, the initial heat 

flux density during immersion the Inconel 
600 probe into cold liquid is almost four 

times larger as compared with the Liscic/

Petrofer probe resulting in different kinds 

of film boiling.

In many cases film boiling is absent 
that allows generalization of experi-

mental data.

Film boiling, especially local film boiling, 
is undesirable since it is a reason for 

big distortion and non-uniform surface 

hardness.

It is impossible to investigate accurate-

ly initial processes taking place during 

immersion steel parts into liquid quenchant.

Provides initial temperature gradients 

during immersion probe into liquid 

quenchant.

The initial phase of cooling in liquid 

quenchants is the most important since it 

dictates the future history of cooling.

Many big companies provide cooling 
curves and cooling rates of standard probe 

obtained during its testing in their liquid 

quenchants. It is nothing to do with such 

data since in many cases they are far from 

real steel parts quenching. 

In average it provides realistic data 

taking place during quenching in 

liquid quenchants. 

Based on Liscic/Petrofer probes, it is pos-

sible to modify correlation between dura-

tion of transient nucleate boiling process 

and size, form and thermal properties of 

solid material and liquid. 

Due to simple approach in cooling curves 

and cooling rate obtaining, it looks like 

customers save time and money when using 

standard Inconel 600 probe.

Due to more complicated approach, 

when testing Liscic/Petrofer probe, 

it looks like customers need to invest 

some additional money for testing real 

processes. 

In fact, customers don’t use 100 % possi-
bilities of their quenchants and sometimes 

are losing money and effectiveness.

It is impossible to investigate fundamental 

initial processes during quenching of steel 

parts heated to high temperatures.

It is possible to investigate fundamen-

tal initial processes during immersion 

of steel parts into liquid quenchants. 

Classical heat conductivity law of Fourier 
doesn’t work properly during immersion 

of heated to high temperature steel parts 

into liquid quenchant.  

There are nowadays in the world sever-

al thousands of small standard Inconel 

600 probes in use. 

There is only one place (the company  

PETROFER) which has the Liscic/
Petrofer probe and uses it for own 

experiments.

Unfortunately, it is impossible to investi-

gate self-regulated thermal process using 

standard  Inconel 600 probe.

Standard Inconel 600 probe (12.5 mm in 

diameter and 60 mm long) is useful for  

laboratory tests of different oils or polymer 

solutions to compare their cooling ability, 

when testing a new delivery or  developing 

a new sort of quenchants, as well as for  

monitoring of a quenching bath in respect 

of its deterioration. 

The experimental data obtained by 

Liscic/Petrofer probe are nearer to 

industrial processes.

The probe of small diameter generates 

more easily film boiling due to higher 
initial heat flux density. As a result, the 
heat extraction dynamic from this small 

Inconel 600 probe (surface heat flux) is 
totally different from those at quenching 

real parts. 

No information on temperature field 
through the section of a probe. 

Ability to measure and record the 

quenching intensity of all different 

kinds of liquid quenching media 

(including salt-baths at elevated 

temperatures), in different quenching 

conditions and at different quenching 

techniques (conventional quenching, 

intensive quenching, delayed quench-

ing, martempering and austempering). 

The Inconel 600 probe cannot be used for 

investigating martempering and austem-

pering processes.
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                                            a                                                                   b

Fig. 2. Section of a coated cylindrical probe and typical temperature distribution  

during quenching in polymer water solution [14]:  
a is section of a cylinder; b is temperature distribution in cylinder; 1 – heated metal,  

2 – coating, 3 – temperature gradient in metal, 4 – temperature gradient in  
polymeric surface layer

4. Fundamentals to be widely and carefully investigated during initial process of quenching

It is generally assumed that during quenching of heated to 800−1000 oC steel parts, the three 
heat transfer modes always take place: film boiling, nucleate boiling and convection. This belief 
is based on classical Fourier’s law which predicts an infinity heat flux density during immersion 
heated to high temperatures steel parts into the cold liquid. In fact, initial stage of quenching is 

governed by the modified Fourier law [15] which is written as:

    

     r

T
q T

∂
= −λ∇ − τ

∂τ
.                                                            (3)

Here q is heat flux density in W/m2; λ  is thermal conductivity in W/mK; T∇  is temperature 

gradient; rτ  is constant of a time in sec; T is temperature in oC or K.
The modified Fourier law generates hyperbolic heat conductivity differential equation 

which was widely considered and solved by authors [16–19]. According to hyperbolic equation, 
initial heat flux density is finite value which can be less than the first critical heat flux density 
and that means absence of film boiling at all. This is a theoretical conclusion. Practically, prior 
to start boiling process in cold liquids, a boundary layer heated to saturation temperature must 

be formed first. During this short time of forming boundary layer the surface temperature of 
probe or steel part drops immediately almost to saturation temperature and then maintains 

relatively a long time at this level. Experimental evidences of such phenomena were provided 

by French in 1928 (Table 1).

5. Discussion

Contemporary hardening processes require optimization liquid coolants to eliminate com-

pletely local and full film boiling processes. Optimization goes through maximizing critical heat 
flux densities. It means that DATABASE concerning different kinds of quenchants should include 
critical heat flux densities as the characteristics of a liquid. Further heat transfer coefficients should 
be evaluated depending on forms and sizes of steel parts. For this purpose Liscic/Petrofer probes 

of different sizes and forms should be prepared which is rather costly procedure. To fulfill such im-

portant task for the practice, the big companies should be as sponsors which are greatly interested 

in such DATABASE. To make simplified calculations, the DATABASE should provide Kondratjev 
numbers Kn as shown in Fig. 3.
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Fig. 3. Effective Kondratjev numbers Kn versus concentration of PAG in water:  

UE5 % is UCON E of 5 % concentration at the temperature 43 oC with agitation 0.25 m/s; 
UE10 % is UCON E of 10 % concentration at the temperature 32 oC and agitation 0.41 m/s;  
UE20 % is UCON E of 20 % concentration at the temperature 43 oC with agitation 0.51 m/s

More information on DATABASE development and testing liquid quenchants, one can find 
in publication [19, 20]. Cooling characteristics of polymers are discussed in Refs [21, 22]. It should  
be noted that experimental data obtained by testing Liscic/Petrofer probe provide accurate results 

of calculations during solving inverse problem which is currently highly developed and used in 

practice [23, 24]. Along with the database development, the Liscic/Petrofer probe can be used by 
engineers to investigate deeply and widely self – regulated thermal phenomenon which is the basis 
for performing austempering processes in cold liquids. This new direction in heat treating industry 

is very promising and can bring exceptionally benefits to big companies in the world which is cur-
rently first patented in Ukraine [8]. Authors hope that many scientists in the world will be interested 
in investigation theoretically and experimentally the discovered self-regulated thermal process. It 

makes sense to start such investigations via the EC projects to involve big companies in Europe.

6. Conclusions

1. During quenching in water polymer solution the self-regulated thermal process on the 

coated surface is observed resulting in creation a  temperature “shoulder” in the surface layers of 

a probe or quenched steel parts.

2. When carefully investigated, the polymers can be used to perform austempering process-

es with the use of cold polymeric solutions.

3. Oscillation of temperature in surface layers during quenching in polymers is explained by 
varying the thickness of a coating.  

4. Insulating coating on the surface of probe or steel part increases metallic surface temperature 

of steel part or probe delaying martensite transformation during transient nucleate boiling process. 

5. Liscic/ Petrofer probe is an excellent tool for investigation listed in 1−4 processes and can 

be used for testing the modified heat conductivity law of Fourier.
6. Liscic/Petrofer probe can be used also by engineers to investigate deeply and widely 

mentioned self-regulated thermal phenomenon during quenching in water and water salt solutions 

which is the basis for performing austempering processes in cold liquids.
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Abstract

The state of the problem of stabilizing the structure, improving the quality and properties of structural alloys is studied. To 

solve the problem, it is proposed to modify melts of low-alloyed alloys with nanodispersed compositions obtained by plasma-chemi-

cal synthesis. Process technological parameters are developed. Nanopowders of carbide and carbonitride class SiC and Ti (C, N) with 
a size of 50...100 nm are obtained. The crystallographic parameters of the nanocompositions and the specific surface are determined, 
and the dependency curves are plotted. The macro- and microstructure of structural steels and alloys was studied before and after the 

modification. A significant (in 2...3.5 times) grain refinement and stabilization of the alloy structure as a result of nanopowder modi-
fication of titanium carbonitride have been achieved. Thermodynamic calculations of the dimensions of crystalline seeds during the 
crystallization of steels and alloys are carried out. A complex criterial estimation of the efficiency of nanodispersed compositions in a 
steel melt is proposed. The features of crystallization and structure formation of modified structural steels are studied. The obtained 
results are of theoretical and practical importance for production of critical parts from structural steels and high-quality alloys.

Keywords: structural steel, aluminum alloy, nanodispersed compositions, plasma-chemical synthesis, crystallization, structure.
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1. Introduction

The field of study of nanodispersed materials is the most rapidly developing in modern 
materials science, since the production of finely dispersed structures contributes to a fundamental 


