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Abstract

The results of theoretical studies of a semiconductor structure are presented which, upon irradiation with a particle stream 

or light, transforms into a superconducting phase state.

The work is carried out:

– analysis of ion-acoustic oscillations in non-degenerate and degenerate plasma;

– analysis of the possibility of using the jelly model to describe the weak coupling and strong coupling;

– determination of the value of the order parameter when the equilibrium distribution is replaced by a non-equilibrium 

distribution function;

– analysis of the dispersion properties of the medium for a non-equilibrium stationary distribution of charged particle;

– determination of the critical temperature of a superconducting transition when using the plasma mechanism for describ-

ing superconductivity.

The aim of research: determination of the frequency of oscillations of the "ion sound" type with sufficiently large mobility 
of the sites of the absence of electrons (holes); determination of the method for calculating the damping of ion-acoustic oscilla-

tions, which are determined by the imaginary part of the dielectric constant (decrement damping); numerically solution of the 

equation for the width of the energy gap; determination of the method of estimating the critical temperature of a superconductor 

in the plasma description of the process of the onset of superconductivity.
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1. Introduction

Many characteristics of matter (for example, matrix elements of quasi-particle interac-

tion, distribution functions, etc.) on which superconducting properties depend, can be highly 

modified under the influence of external fields and sources and sinks of particles. Most types 
of phase transitions are associated with collective effects. Collective effects are very sensi-

tive to the deviation of the system from equilibrium and the distribution of quasi-particles in 

the energy space. The influence of external sources just leads to a change in the number of 
quasi-particles (their density) in comparison with the equilibrium and the change in their dis-

tribution in the energy space. At the same time, let’s emphasize that not only quantitative char-

acteristics can change, but also the form of the distribution function can change qualitatively. 

New parameters appear that affect the characteristics of the phase transition. Non-equilibrium 

stationary distributions of charged particles can significantly change the dispersion properties 
of the medium and, consequently, can lead to a significant change in the temperature of the 
superconductor phase transition [1]. The magnitude of the order parameter in non-equilibri-

um conditions can often be expressed by the usual relations, but with the replacement of the 

equilibrium distribution by a non-equilibrium distribution function. The kinetic equation for 

the distribution function, as a rule, [2–5], also depends on the order parameter and, therefore, 

the analysis of the phase transition under non-equilibrium conditions is a complex non-linear 

problem. Therefore, the analysis of the effect of the non-equilibrium of the system on super-

conducting properties of semiconductor systems with a possible plasma mechanism of super-

conductivity is relevant [1, 3].
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2. Materials and methods of research

2. 1. Ionic-sound oscillations in a degenerate plasma

In rarefied non-isothermal ion-electron plasma, when e iT T  (where eT , iT  –the tempera-

ture of electrons and ions, respectively), there exists, as is well known [4], a low-frequency branch 

of weakly damped ion-acoustic oscillations with a frequency:
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bye-Hückel electron screening radius; n  – concentration of charged particles, and because of the 

neutrality of the plasma e in n Zn= =  (in what follows let’s assume that Z 1= ). The damping of 

these oscillations is due, in the main, to their interaction with resonant particles (Landau damping).

An analogous branch of longitudinal collective oscillations can also exist in a dense isother-

mal plasma e iT T T= =  with degenerate electrons, where FT E  (where FE  – the Fermi energy, 
2 1/3

Fp (3 n)= π  – the Fermi momentum of electrons, em  – their mass; 1= ), and, in particular, in 

the degenerate electron-hole plasma of some semiconductors (semimetals) with significantly dif-
ferent effective masses and sufficiently large mobilities of free carriers. Let’s first consider the case 
of ion-electron plasma.

Let’s assume that the ions are non-degenerate and assume that the plasma density satisfies 
the following conditions: 1,=  so that the energy of the Coulomb interaction between the particles 

is small in comparison with their average energy. The longitudinal dielectric constant of such “al-

most ideal” plasma has the form [1–3]:
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In the region of phase velocities i ev q v<< ω <<
 
let’s use (3) to obtain the dispersion equa-

tion for the longitudinal collective oscillations of the plasma:
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Hence, for the oscillation frequency, an expression analogous to (1) follows:
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where ( )1 2

s Fe e iu m 3m= ν  – phase velocity of ion sound, and 

1 2
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 – the electron  

 
Debye screening radius in degenerate plasma. An analogous branch of longitudinal oscillations for 

a strongly compressed substance was considered in [3].

The damping of ion-acoustic oscillations, determined by the imaginary part of the dielectric 

constant (3), in the region x 2<  is due to electron-hole decays and is a quantum analog of Landau 

damping. The damping rate 
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In the region x 1>> , when eqD 1>>  and s iω ≈ Ω , the Landau damping on resonance ions 

becomes important, which is particularly large at qd 1≥ .

2. 2. The degenerate electron-hole plasma of semiconductors (semimetals)

Let’s consider collective low-frequency oscillations of the “ion sound” type in the degener-

ate electron-hole plasma of certain semiconductors (semimetals), when the role of ions is played by 

“heavy” holes with an effective mass pm  considerably exceeding the effective mass of the conduc-

tion electrons nm . Let’s note that degenerate electron-hole plasma in intrinsic semiconductors can 

be created by “pumping” carriers with a powerful light source (laser) [5].

Using the equations of motion and continuity
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where pv


 and pNδ  – the perturbation of the velocity and density of holes;
 pN  – their unperturbed 

concentration ( p pN N>> δ ); ϕ  – potential of the longitudinal self-consistent electric field of the os-

cillations (E = −∇ϕ


), pτ  – the characteristic time of scattering of holes by phonons and impurities, 

for the Fourier component let’s obtain the expression:
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On the other hand, neglecting the inertia of the light conduction electrons, from the equilib-

rium condition:
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where nN  – unperturbed concentration of electrons, and a nPδ  – the perturbation of the pressure 

of the degenerate electron gas, let’s have:

                                                 

( ) ( )n
n

Fn

eN3
N q q ,

2 E
δ = ϕ  (10)



Original Research Article:

full paper

(2018), «EUREKA: Physics and Engineering»

Number 5

30

Fundamental and applied physics

where 2
Fn Fn nE P 2m=  – Fermi energy of the electrons reckoned from the bottom of the conduction 

band, and ( )1 32
Fn nP 3 N= π  – their Fermi momentum.

Substituting (8) and (10) into the Poisson equation [4], let’s arrive at the following dispersion 

equation for low-frequency collective oscillations of carriers in a semiconductor (semimetal):
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tive electron screening radius, where 2
n 0 na m e= ε  – the Bohr radius of the electron. Since the 

screening radius can’t be less than the mean distance between particles 1 3
nN ,−  this expression 

for nD  is valid, generally speaking, only for sufficiently high concentrations of conduction elec-

trons, when 1 3
n na N 1,≥  so that the electron gas can be considered almost ideal , In the region of 

low concentrations, when 1 3
n na N 1,− <  it is to be supposed that 1 3

n nD N ,−  0ε  – the longitudinal 

permittivity of the crystal (far from the natural frequencies of the crystal 0ε =const).

Hence, under the condition p 1,ωτ >>  i. e. for sufficiently large hole mobility, for the fre-

quency of oscillations of the “ion sound” type, let’s obtain the expression:
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As follows from (11), the damping of the oscillations in this case is determined mainly by 

the mobility of the holes and is small under the condition p p 1Ω τ >> .

An analogous branch of collective oscillations can also exist in semiconductors with “heavy” 

and “light” carriers of one type (electrons or holes). Such oscillations arise due to additional min-

ima (valleys) in the conduction band (in the case of n-type semiconductors) or maxima in the va-

lence band (in the case of p-type semiconductors).

2. 3. The «jelly» model. The approximation of weak coupling

One of the simplest models in the theory of superconductivity, along with the BCS models 
[2–10] and Frohlich [3], is the so-called jelly model proposed by Pines [3–10]. The Pines model 

allows one to consider electron-phonon and Coulomb interaction in metals in a unified manner on 
the basis of generalized (dynamic) dielectric permittivity (q, )ε ω


 [3].

However, this model can’t claim a detailed quantitative description of the properties of 

real superconductors, since it does not take into account the features of the crystal and band 

structure of the metal, the processes of “transfer”, etc. At the same time, the jelly model can 

serve as a fairly good approximation for the study of superconductivity in such systems with 

Coulomb interaction. Such systems include: an electron-hole plasma of isotropic degenerate 

semiconductors and semimetals; two-component plasma s and d-electrons in transition metals 

and alloys. In this case, the interaction between the conduction electrons in semiconductors 

(semimetals) in the approximation of an almost ideal Fermi gas is described by the following 

vertex part
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nN  and pN  – the concentration of electrons and holes n pN N≠ ), ( )1 22
Fn nP 3 N= π  – the Fermi mo-

mentum of the conduction electrons, and iε  – the dielectric constant of the crystal (for simplicity, 

let’s assume i const¥ε ≈ ε =  in the frequency region pω Ω ). In this case, the equation for the gap 

in the electron spectrum at absolute temperature zero ( )T 0=  in approximation weak coupling has 

the form [3]:
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Fn Fn nv p m=  – Fermi-velocity of conduction electrons.

The kernel ( ) ( )Q K ,0ω ≡ ω  is shown in Fig. 1 by a continuous curve.

Let’s note that for the jelly model, the high-density condition Fn np 1α   (where 
2

n i ne mα = ε  – the effective Bohr radius of the conduction electron) is simultaneously a condition 

for the applicability of the weak-coupling approximation Fn n1 p 1.α ≡ π α 
Let’s find the approximate (asymptotic) solution of equation (16), taking into account the 

exponential smallness of the gap. Replacing for simplicity the function ( )C ξ  under the root on the 

right-hand side of (16) by its value on the Fermi surface ( )C 0 ≡ ∆, by means of integration by parts 

let’s reduce equation (16) to the form:
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Equation (20) coincides, in fact, with the asymptotic expansion of the equation (16), ob-

tained in [3], up to terms ln∆ ∆  and .∆  Introducing a new function ( )ϕ ξ  related to ( )C ξ
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let’s obtain for it, according to (20), the following linear integral equation:
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d
K ,0 K , ln d .

d E

ξ′
 ϕ ξ = ξ − ξ ξ ϕ ξ ξ′ ′ ′ ξ′∫  (22)

A non-trivial solution of equation (16), smoothly branching from the trivial solution ( )C 0ξ ≡  

when the interaction ( )K ,ξ ξ′  on and corresponding to the appearance of superconductivity, ex-

ists only under the condition ( )0 0ϕ >  (the latter, generally speaking, can be satisfied even for 
( )K 0,0 0< ). However, the method for solving Eq. (22) is unsuitable in the case of the jelly model, 

since here, according to (19)–(17), a static interaction on the Fermi surface ( )K 0,0 0= .
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Nevertheless, in this case it is also easy to obtain an approximate solution of Eq. (22) 

(and, consequently, and (16)) if take into account that the kernel ( ) ( ) ( )K ,0 K 0, Qξ = ξ = ξ  has a 

logarithmic singularity for ( ) 1,β ξ =  i. e., in a point ( ) 1 2

p 1 2 .
−ξ = Ω ≡ Ω + α  The same feature, 

according to (22), must also have a function ( ),ϕ ξ  so that the derivative ( ) ( )d K , d ξ ξ ϕ ξ ξ′ ′   

suffers a break ( )¥  at a point ξ = Ω′  for any value .ξ  Taking the slowly varying function 

( )ln Eξ′  from under the sign of the integral at the point of discontinuity, let’s obtain an approx-

imate functional equation for ( )ϕ ξ :

                          
( ) ( ) ( ) ( ) ( ) ( )K ,0 ln K ,E E K ,0 0 ,

E

Ω
 ϕ ξ = ξ − ξ ϕ − ξ ϕ   (23)

from which simple recurrence relations follow:
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Solving the system of equations (24) with respect to, let’s obtain

            ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
1 K E,E ln E1

ln .
0 EK 0,0 1 K E,E ln E K 0,E K E,0 ln E

− Ω Ω
= −

ϕ  − Ω + Ω 
 (25)

Let’s note that the results of BCS 9 and Bogoliubov-Tolmachev [3, 5] for the gap follow im-

mediately from (25) with allowance for (21)

                                                  
( ){ }2Eexp 1 0∆ ≡ − ϕ . (26)

In the case of the jelly model, according to (17)–(19):

( ) ( ) ( ) ( ) ( )K 0,0 Q 0 0, K 0,E K E,0 Q E ,≡ = ≡ =

( ) ( )K E,E 1 2Q 2E .=

Under the condition E ,Ω  the kernel ( )Q ω  in the energy region Eω ≥  is practically 

independent of ω  and equal to its asymptotic value when ω → ¥:

                                        ( ) ( ) 2
Q ln ,

2 2

α + α ¥ ≡ −ρ α = −   − α α
 (27)

which corresponds to the screened Coulomb repulsion.

As a result, taking into account (25)–(27), let’s obtain the following approximate formula 

for the gap:

                                        
( ) ( )
( ) ( )2

2 ln E
2 exp .

2 ln E

 + ρ α Ω ∆ = Ω − 
ρ α Ω  

 (28)

It follows, in particular, that in the framework of the jelly model, there always exists a 

non-trivial solution of equation (16) corresponding to the superconducting state. In other words, 

on the basis of this model, a criterion for the superconductivity of metals can’t be obtained [2–4]. 

Formally, in the limit E → ¥  and 0α →  from (28) let’s obtain a simpler expression:

                                             
( )p

1
2 exp ,

ln 1

  ∆ = Ω − α α  
 (29)
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( )1 2

n FnQ E 16 3 1,≡ α <

which qualitatively agrees with Abrikosov’s general conclusion about an almost exponential de-

crease in the gap with increasing density.

However, because of the strong decay of elementary excitations, the Coulomb interaction in 

the energy region nω ≥ Ω  is cut off (where ( )1 22
n n i n4 e N mΩ = π ε  – the electron plasma frequen-

cy), so that it is natural to choose the upper limit { }Fn nE min E ,Q=  in (28)/ (Relation at 0.2α <

( )1 2

n FnQ E 16 3 1.≡ α <

It is interesting to note that from (21) and (25), as a special case, follows the formula for the 

gap obtained [3]. Indeed, setting in (26)
 

( ) ( ) ( )K E,E Q E ,= ≅ −ρ α  with F iE E ,= Ω = ω  and 1,α  

let’s obtain:

                               
( ) ( ) ( )

( ) ( ) ( )

2

F i1 g
i

F i

2 ln 1 ln E
2 e ; g .

1 2 ln 1 ln E
−

 α α ω ∆ = ω =
+ α α ω

 (30)

It is easy to show that expression (30) corresponds to an approximate solution of equation 

(16) with a kernel ( )K ,ξ ξ′  having the form of a “rectangular well”

                          ( )
( ) i F

i, F

1
2 ln ; , E ;

K ,

0; , , E .

  − α ω ≤ ξ ξ ≤′   αξ ξ =′ 
 ξ ξ < ω ξ ξ >′ ′

 (31)

As we’ll see below, the formulas (28) and (30), which are the most interesting from the prac-

tical point of view, give very low values of the gap, compared with the numerical solution (which, 

by the way, depends weakly on the upper limit E ).

2. 4. The method of numerical solution of the equation for a gap

In this section let’s briefly outline the main idea of the method used in the paper for the nu-

merical solution of the non-linear integral Fredholm equation of the first kind, which is the equation 
for the gap (16):

                                         
( )

( )

L

2 2
0

y x
y(x) dx K(x,x ) ,

x y x

′
= ′ ′

+′ ′
∫  (32)

where dimensionless quantities are introduced ( ) ( )Fn Fnx E ,y x C E= ξ = ξ  and FnL E E .=
The mathematical difficulties arising in the numerical solution of an equation of the 

form (32) are mainly due to the fact that it is, firstly, homogeneous (and therefore additional 
complications arise with the allocation of a non-trivial solution) and, secondly, essentially 

non-linear. Zubarev and Garland [3] independently proposed a method of “quasi-lineariza-

tion” of Eq. (32), which simultaneously allows to bypass both these difficulties and ensure a 
sufficiently rapid convergence. With the help of the appropriate normalization of the kernel

 ( ) ( ) ( )I x,x K x,x / K 0,0=′ ′  and the gap ( ) ( ) ( )x y x y 0 ,Φ =  and taking into account the bound-

ary conditions on the Fermi surface ( ) ( )I 0,0 0,0 1,= Φ =  Eq. (32) reduces to an inhomogeneous 

integral equation (Fredholm of the second kind) with a weak non-linearity, the solution of 

which can be easily obtained by iteration.

However, in the case of the jelly model, the Zubarev-Garland method is inapplicable, since 

here ( )K 0,0 0.=  Therefore, we partition the domain of integration[0,L]  into (32) into intervals 

( )i i 1x ,x +  with a constant step δ  (usually, L 1=  and 0.05δ =  were chosen). Approximating ( )y x  

by a step function, let’s obtain instead of the integral equation (32) a system of homogeneous 

non-linear algebraic equations of the n-th order:
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Since the kernel ( )K x,x′  has logarithmic singularities (27), (28), in order to improve the 

accuracy of calculating the coefficients, an additional partition of the interval ( )j j 1x ,x +  into small 

intervals with a step h δ  was carried out.

Along with (33) let’s consider the system of inhomogeneous equations

                                            ( )
n

1 2
2 2

i i ij j j j
j 1

f y K y y x ,
−

=

= − +∑  (34)

which is equivalent to the system (33) for ( )if 0 i 1,...,n .≡ =  Thus, if considered if  as a function of 

a vector [ ]1 nY y ,...,y=  in an n-dimensional Euclidean space, then the search for a solution of the 

homogeneous system of equations (32) reduces to the selection of such set of values iy ∗  for which 

all ( )if Y∗  in (34) would tend to zero. For this purpose let’s introduce a function

                    ( ) ( )
2

n n n n n
ij j2 2 2

i i i i2 2
i 1 i 1 i 1 j 1 i 1j j

K y
F Y f Y y y y .

y x= = = = =

  = ≡ − 
+  

∑ ∑ ∑ ∑ ∑  (35)

The denominator here is introduced in order to get rid of the trivial solution iy 0≡
 
of sys-

tem (33). In the case when there exists at least one non-trivial solution iy 0∗ ≠  of system (33), the 

corresponding value ( )F Y 0.∗ ≡  As a result, let’s arrive at the problem of minimizing a non-nega-

tive function ( )F Y  in the space of vectors Y.
As it is known, the main difficulty of any method of minimization is choosing the step. In 

this respect, methods are convenient in which the step is not an external parameter of the task al-

gorithm, but is selected automatically during the computation process. Such methods include, for 

example, the method of steepest descent. However, the rate of convergence of this method essen-

tially depends on the relief of the function being minimized, and, in particular, for functions of the 

“ravine” type can be very small. The analysis shows that near the minimum ( )F Y  the function has 

strongly elongated level lines resembling the “ravine” in form. This leads to the fact that the angle 

between the direction of the maximum gradient and the direction of the bottom (channel) of the 

“ravine” is close to and the method of steepest descent becomes ineffective. Therefore, in order to 

increase the rate of convergence of the process of minimizing the function ( )F Y  (by the method 

of steepest descent), the space Y  was “stretched” in the direction of maximum gradients in order 

to reduce the local “ravine” coefficients (i. e. local curvature of the level line), which led to a signif-
icant reduce the counting time ( ( ){ } 15 16min F Y 10 10− −− ÷ ).

It should be noted that the original equation (32) is true when using the weak-coupling mech-

anism. Similarly, a solution of the gap equation in the tight-binding approximation can be obtained, 

and the additional non-linearity of the kernel, which can be taken into account by the method of 

successive approximations, leads only to insignificant corrections for a sufficiently small ( )C .ξ

2. 5. Critical temperature

To determine the critical temperature of a superconducting transition cT , it is necessary to 

generalize the equation for the gap (28) to the case of finite temperatures T 0≠ . To this end, in 

accordance with the method presented in [3, 10], let’s perform the following procedure: the denom-

inators of the form 
1

q

−
 ω ω Ω′    in the kernel of equation (28) are multiplied by the sum of the 

distribution functions of the electrons 
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( ) { } 1
f exp T 1

−
 ω = ω +′ ′    

and plasmons 

( ) { } 1

q qN exp T 1 ,
−

 ±Ω = ±Ω −   

and the term corresponding to the Coulomb repulsion is ( )1 2 . − ω′   As a result, the expression 

in curly braces is given in the form:

            

( ) ( )( )

( ) ( )( )

( ) ( )( )

( ) ( )( ) ( )

q

q

q q

q

q q

q

q

q q

q

q q

1 1
[ N f

2

1 1
N f ]

1 1
[ N f

2

1 1
N f ] 2 1 2f .

  Ω Ω + −ω + −′  ω − ω + Ω ω + ω + Ω′ ′ 
 

− Ω + ω + −′  −ω − ω + Ω −ω + ω + Ω′ ′ 

 Ω
− −Ω + −ω + −′  ω − ω − Ω ω + ω − Ω′ ′ 

   − −Ω + ω + − − ω′ ′    −ω − ω − Ω −ω + ω − Ω′ ′  
 (36)

Similarly, it is possible to transform the kernel of the equation for the function ( )0f .ω  How-

ever, as was shown above, up to terms ( )2ρ α  the renormalization of the interaction can be ne-

glected. And so in the sequel let’s omit the terms containing ( )0f .ω  At the same time, to determine 

the damping of the excitations, it is necessary to take the imaginary part ( ) ( ){ }1 nf Im fω ≡ ω  into 

account. Thus, the equation for the gap at T 0≠  takes the form:

 

 

  

   

                     

( ) ( ) ( )

( )
( )

Fn2p

2 2 2 2
n0 T

q q

q q

q

q q

C ,Tqdq
C ,T d Re

2 q q C ,T

1 1
[ th cth

2 2T 2T

1 1
th cth ] 2th .

2T 2T 2T

¥

∆

 ω′α  ω = ω′  
+ κ ω − ω′ ′  

  Ω Ω ω′ + + −    ω − ω + Ω ω + ω + Ω′ ′   
 Ω ω ω′ ′ − − + −    ω − ω − Ω ω + ω − Ω′ ′    

∫ ∫ 



 (37)

   

Let’s note that (37) differs from the gap equation in the case of the electron-phonon in-

teraction obtained in [3] by the method of temperature Green’s functions, only by changing qω  

to qΩ  and 
2
qa  to 

2
q

2 2
i

2 e
,

(q )

π Ω

ε + χ
 and also taking into account the Coulomb repulsion. Up to terms  

 2

c

p

T
,

 
 Ω 
  equation (37) at cT T→  can be reduced to the form:

                               
c c0

c

d
C( ,T ) K ( , )C( ,T )th .

2T

¥ +ω ω′ ′
ω = ω ω ω′ ′

ω′∫  (38)

 

From the comparison of (37) and (38) it follows that even with the “plasmon” mechanism of 

superconductivity, the usual BCS ratio [10] between the gap (0)∆  at T 0=  and the critical tem-

perature cT  is preserved with great accuracy.

An approximate solution of the equation for the critical temperature takes the form [9]:

                                             

0
c

1 ( )
T 1.14 exp .

( )

− ρ α 
= Ω − ρ α 

  (39)
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Let’s note that expression (39) gives the correct order of magnitude for superconducting 

metals with electron-phonon interaction, when,
 i 0M / z m∗µ ≡  4 510 10 ,÷  0.3 0.4α ≈ ÷  and 

3
c D FT 0.1 10 E−≤ ω ≤  (z∗ – the effective valence, that is, the number of free electrons per atom. So, 

for example, for Al  let’s obtain an estimate cT 2.4.=  In the case of the “plasmon” mechanism of 

superconductivity in degenerate semiconductors (semimetals), approximate formulas lead to values 

that are underestimated by almost two orders of magnitude in comparison with the exact solution.

3. Discussion of research results

The advantage of the published studies is the obtaining of an expression for determining 

the critical temperature of a superconductor, which, with a 6 % error, corresponds to the values 

obtained in the experiment for metals and semiconductors. In addition, to calculate the width of the 

energy gap of a superconductor, the proposed numerical solution of the equation is applicable when 

using mechanisms, both with weak and strong coupling

The disadvantage of the studies is the fact that the proposed mechanisms work only 

partially for high-temperature superconductors and additional theoretical and experimental 

studies are required to verify the statement. The proposed model does not take into account the 

contacts [4], which must be introduced into the superconductor to match it with the common 

wire systems, including during the experimental electromagnetic measurements of supercon-

ducting properties.

The above studies will make it possible to determine what conditions must be created for the 

transition of metals and semiconductors to the superconducting state, and to estimate their critical 

temperature already as superconductors.

The direction of further research is the improvement of models of the superconductivity 

process for high-temperature [6, 7, 12] samples and thin films based on them. 

4. Conclusions

From the most general propositions of the theory of many-particle systems (the Goldstone 

theorem), it follows that in the degenerate ion-electron plasma (or in a two-component plasma) of 

semiconductors, a collective branch of natural oscillations of the “ion sound” type with a frequen-

cy q 0ω →  of q 0.→  And these oscillations are a consequence of the symmetry breaking of the 

Coulomb Hamiltonian due to the difference in charge masses. On the other hand, since the branch 
of normal oscillations with q

q 0
lim 0

→
ω =  can exist only in systems with a finite radius of interaction 

between particles, an “ion sound” in degenerate plasma appears as a result of the Debye screening 

of the Coulomb interaction by light carriers (electrons).

The paper proves that the superconductivity criterion for metals can’t be obtained within 

the framework of the jelly model, however, for high-temperature superconductors its application 

is possible.

To calculate the width of the energy gap of a superconductor, the proposed numeri-

cal solution of the equation is applicable when using mechanisms for both weak and strong  

coupling.
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