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Abstract

Technological processes in the energy sector and engineering require the calculation of temperature regime of functioning 

of different constructions. Mathematical model of thermal loading of constructions is reduced to a non-stationary initial-boundary 

value problem of thermal conductivity. The article examines the formulation of the non-stationary initial-boundary value problem of 

thermal conductivity in the form of a boundary integral equation, analyzes the singular equation and builds the fundamental solution. 

To build the integral representation of the solution the method of weighted residuals is used. The correctness of the obtained integral 

representation of the solution in Minkowski space is confirmed. Singularity of the fundamental solution is investigated. The bound-

ary integral equation and fundamental solution for axially symmetric domain for internal problem is built. The results of the article 

can be useful for numerical implementation of boundary element method.

Keywords: initial-boundary problem of thermal conductivity, boundary integral equation, method of weighted residuals, 

fundamental solution.

DOI: 10.21303/2461-4262.2016.00216  © Grigoriy Zrazhevsky, Vera Zrazhevska

1. Introduction

Intensive non-stationary thermal load of metal constructions can cause damage and destruc-

tion. Processes in energy and engineering provide regular and emergency changes of temperature 

regimes. Since cylindrical structures, such as pipelines, reactor vessel, constitute a substantial part 

of the production elements, calculation of critical temperature modes of their operation is import-

ant. Theory of temperature stress and engineering methods of their calculation is widely repre-

sented in the literature [1–4]. Mathematical model of thermal stress of metal constructions can be 

reduced to investigation of the non-stationary behavior of thermal fields by solving non-stationary 

initial-boundary problem of thermal conductivity and calculating of temperature stress by solving 

stationary boundary problem of elasticity [1].

Analytical solutions of basic model problems for canonical domains are obtained [1–4]. At 

the same time, calculations and control of real constructions require the development of efficient 
numerical methods that allow to evaluate the behavior of structures under the influence of intense 
thermal loads in real time. One of these methods is the boundary element method that is one of 

numerous implementations of the method of boundary integral equations [5–9].

The method of boundary integral equations is based on the transition from non-stationary 

initial-boundary problem to the equivalent integral equation. This approach has numerous advan-

tages over classical methods of potential theory because it allows to reduce the dimension of the 

problem, the solution obtained by this method is semi analytical, and so it can be used for analytical 

analysis [5, 6, 8].
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The method uses the Green function as a fundamental solution. This allows to satisfy one 

part of the boundary conditions and the condition at infinity (if the infinity is included). The flex-

ibility of the method of boundary integral equations is also evident in the possibility of building 

special boundary elements that take into account the asymptotic behavior of the solution in a neigh-

borhood of singular points of the problem [8, 9]. At the same time, the method of boundary integral 

equation leads to the need to solve singular and hypersingular integral equations, and therefore 

requires deep analytical study.

The aim of this study is to obtain an integral representation of the solution in the Min-

kowski space, that allows to get a solution in the form of the boundary integral equation for a 

boundary value problem. This representation is convenient for the development of numerical 

methods, based on the decision boundary method of solving the boundary initial value prob-

lems of this type [10].

2. Materials and methods

2. 1. Problem statement

Introduce the following notations: ( ) 3 3

1 2 3x x , x , x R , R= ∈ Ω ⊂  is a space domain with the 

lateral surface u qΓ = Γ ∪ Γ , t is time; u(x,t) is a temperature at a point x at a time moment t; c(x) is 

the heat capacity, k(x) is the thermal conductivity; (x)ρ  is the matter density, f (x, t)  is the inten-

sity of heat sources at a point x  at a time moment t.

Consider the problem for the heat equation:

                          0

u
c (x, t) div (k grad u(x, t)) f (x, t), x , t t

t

∂
ρ = + ∈Ω >

∂
 

(1)

with the boundary conditions:

                                            

u 0

q, 0

u (x, t) u (x, t), x , t t

q (x, t) q (x, t), x t t

 = ∈Γ ≥


= ∈Γ ≥
   (2)

and initial condition: 

                                                 f 0 0u (x, t ) u (x), x ,= ∈Ω   (3)

where Ω = Ω ∪ Γ, 
u

q (x, t) k
n

∂
=

∂
� , n
�

 is an external normal to the surface. 

Consider the initial boundary problem (1)–(3) as a boundary problem in Minkowski space 

(x, t), where x is a point of three-dimensional space, t is time. Obviously, we get the boundary prob-

lem for cylinder ( )0x , t t∈Ω >  with boundary conditions: (2) on the lateral surface of the cylinder 

( )u q 0x , t t∈Γ ∪ Γ ≥  and (3) on the cylinder base.

2. 2. Application of the method of weighted residuals for building the integral repre-

sentation of the solution 

We use the method of weighted residuals to build the integral representation of the solution. 

For this problem the equation of weighted residuals [10] takes the form:

0

x

t

u
dt div (k grad u) c f u *d

t

∞

Ω

∂ - ρ + Ω = ∂ ∫ ∫

                                
o q 0 u

x x

t t

dt (q q) u *d dt (u u)q *d ,

∞ ∞

Γ Γ

= - Γ + - Γ∫ ∫ ∫ ∫  (4)

,
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where 
*

* u
q k.

n

∂
=

∂  

In this case, *u  and *q  are the weight functions in Ω  and Γ  respectively. According to the poten-

tial theory [1, 2], the solution of the boundary problem can be represented as the integral represen-

tation by capacity (volume, simple and double layer). Therefore, *u  and *q  have to depend on 

continual vector of parameters that belongs to Minkowski space.

Make transformations in the left side of (4): twice integrate by parts by x  and once by t, use 

Ostrogradsky-Gauss theorem and equality div(a b) diva b agrad b.⋅ = ⋅ +
� � �

 If u  is the solution of the 

problem (1)–(3) then integrals on the right side of (4) are equal 0. So, we get the integral equivalent 

of our problem:

0 0

*
* * * *

x x

0t t

u
dt div(k grad u ) c ud dt u q u q d c u u d

tt

∞ ∞

Ω Γ Ω

∞ ∂  - ρ Ω + - Γ - ρ Ω +   ∂ 
∫ ∫ ∫ ∫ ∫

                                                   0

*

x

t

dt f u d 0.

∞

Ω

+ Ω =∫ ∫
    

(5)

Further we consider that c, , k constρ = . We take *u  as the fundamental solution of the heat 

equation:

                                    

*
*

x

u
k u ( , x; , t) c ( , x) ( , t),

t

∂
∆ ξ τ - ρ = δ ξ δ τ

∂
  

(6)

where ( )δ ⋅  is the Dirac delta – function. Physical solution of (6) that satisfies the principle of cau-

sality and is limited at infinity for four – dimensional Minkowski space has the form [10]:

                             
( )

21/2

3/2

x c( c)
u* exp H( t),

4k( t)4 k( t)

 ξ - ρρ
= - - τ - 

τ -π τ -  
 (7)

where H  is the Heaviside function. Then (5) can be written as:

( )
0

0

( , t t ) x

t

( , ) u ( , ) dt (u * x, t q(x, t) u (x, t)q *(x , t))d

τ

Ω >
Γ

χ ξ τ ⋅ ξ τ + ξ - τ - - - ξ τ - Γ =∫ ∫

                  
0

0 0 x x

t

c u (x) u *( x, t )d dt f (x, t) u *( x, t)d ,

τ

Ω Ω

= ρ ξ - τ - Ω - ξ - τ - Ω∫ ∫ ∫  
(8)

where 

0

0

( , t t )

0

1, ( , t) ( , t t )
( , t)

0, ( , t) ( , t t )
Ω >

ξ ∈ Ω >
χ ξ =  ξ ∉ Ω >

is the area function (indicator). 

It is clear that (8) is the quasi equation. If we know values of functions u(x, t)  and q(x, t)  

on Γ , (8) allows to determine u(x, t)  at any point inside the area 0(x , t t )∈Ω > . So, the problem is 

to determine u(x, t)  on qΓ  and q(x, t)  on uΓ .

To prove the correctness of constructing of the integral representation of the solution in the 

form (8), we show that:
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0

ˆlim u *( x, t)dt u ( , x),

τ

τ->∞
ξ - τ - = ξ∫  (9)

where û ( , x)ξ  is up to a constant a fundamental solution of the Laplace operator

 
2 2 2

x 2 2 2

1 2 3

u u u

x x x

 ∂ ∂ ∂
∆ = + + ∂ ∂ ∂ 

. 

Really

21/2

3/2 3/2

0 0

x c( c) 1
u *( x, t)dt exp dt

4k( t)(4 k) ( t)

τ τ  ξ - ρρ
ξ - τ - = - - 

τ -π τ -  
∫ ∫ =

2
x c

s
4k( t)

 ξ - ρ
 =

τ -  
=

1/2 s

3/2

a

1
s e ds

4k x

∞
- -= -

π ξ - ∫ 3/2

(1/ 2,a)
,

4k x

Γ
=

π ξ -

where 

2
x c

a ,
4k

ξ - ρ
=

τ
 ( , )Γ ⋅ ⋅  is an incomplete gamma function.

If τ → ∞, then a 0→  and 1/2(1/ 2,a) (1/ 2)Γ → Γ = π . So, *

0

1
u dt

4k x

τ

→
π ξ -∫ , and the 

function 
1

û ( , x)
4k x

ξ =
π ξ -

 is the solution of the equation x
ˆk u( x) ( , x)∆ ξ - = δ ξ .

2. 3. Construction of a boundary integral equation of the problem

To get a boundary integral equation we take the limit in (8) as ξ → ξ ∈Γ. Since the integral 

0

*

x

t

dt u ( x, t)q(x, t)d

τ

Γ

ξ - τ - Γ∫ ∫  

is not special, we consider only the singular integral 

0

*

x

t

dt u(x, t)q (x , t)d .

τ

Γ

- ξ τ - Γ∫ ∫  

We will determine this integral in the sense of Cauchy principal value (v.p.) in four- dimen-

sional space (x, t).

Complement Γ  with the spherical surface εΓ  with center in ξ  and radius 1.ε <<  Throw-

ing the part of Γ  which is inside εΓ , we get a new border εΓ , so that εΓ → Γ  when 0ε → . Then

0 0

* *

x x0
t t \

0

*

x

dt u(x, t)q (x , t)d lim dt u(x, t)q (x , t)d

dt u(x, t)q (x , t)d ,

ε ε

ε

τ-χτ

ε→
Γ Γ Γχ→

τ

τ-χ Γ


- ξ τ - Γ = - ξ τ - Γ +




+ - ξ τ - Γ 



∫ ∫ ∫ ∫

∫ ∫

where 

0 0

* *

x x0
t \ t

0

lim dt u(x, t)q (x , t)d v.p. dt u(x, t)q (x , t)d

ε ε

τ-χ τ

ε→
Γ Γ Γχ→

- ξ τ - Γ = - ξ τ - Γ∫ ∫ ∫ ∫  (v.p. hereinafter 

we will miss). For 1χ << , 1ε << , to integral 
*

, xI ( , ) dt u(x, t)q (x , t)d

ε

τ

ε χ
τ-χ Γ

ξ τ = - ξ τ - Γ∫ ∫  we use the 

average theorem (u( , )ξ τ  is limited):
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*

, xI ( , ) u( , ) dt q (x , t)d

ε

τ

ε χ
τ-χ Γ

ξ τ = ξ τ - ξ τ - Γ∫ ∫ɶ ɶ , 

where εξ ∈Γ , [ ],τ ∈ τ - χ τɶ .

Using (7) and taking into account that in the spherical coordinate system centered at ξ  at 

each point on the surface εΓ  n r
εΓ =

� �

, we have:

      

1/2 2
2

, 3/2 3/2

( c) ( 1) c 2 k c
I ( , ) u( , )( 1) exp Sdt,

4k( t) 4k( t)(4 k) ( t)

τ

ε χ
τ-χ

 ρ - ρ ε ε ρ
ξ τ = ξ τ - - ε τ - τ -π τ -  ∫ɶ ɶ  (10)

where S is the square of segment of unit radius sphere outside of Ω  that is cutting off by Γ . If ξ   

 
is a regular point, then S 2= π  and for variable 

2 c
v

4k( t)

ε ρ
=

τ -
 (10) can be written as: 

3/2 2
2 5/2 v

, 3/2 2

a

( c) 2 c
I ( , ) u( , ) Sk v e dv

(4 k) 4k kv

∞
-

ε χ

ρ ε ε ρ
ξ τ = ξ τ ε

π ∫ɶ ɶ , or , 3/2

1
I ( , ) u( , )S (1/ 2,a)

4
ε χ ξ τ = ξ τ Γ

π
ɶ ɶ , 

where 
2 c

a
4k

ε ρ
=

χ
. 

If 0ε →  and 0χ → , then 2( / ) 0ε χ → , a 0→ . In this case 

0,

0

S
I ( , ) u( , ).

4
ε→ε χ
χ→

ξ τ → ξ τ
π

 

Thus, the dimensionless radius of the sphere in four-dimensional space is 2 /ε χ. So, the 

boundary integral equation of the problem takes form:

( ) ( ) ( )
0

x

t

C u , dt u *( x, t)q (x, t) u(x, t)q *( x, t) d

τ

Γ

ξ ε τ + ξ - τ - - ξ - τ - Γ =∫ ∫

              0

0 0 x x

t

c u (x) u *( x, t )d dt f (x, t) u *( x, t)d ,

τ

Ω Ω

= ρ ξ - τ - Ω - ξ - τ - Ω∫ ∫ ∫
 

(11)

where 
1

C( ) (4 S)
4

ξ = π -
π

 (if ξ  is regular then 
1

C( )
2

ξ = ) and the second integral in the left side is  
 

taken in the sense of principal value.

Thus, the original problem (1)−(3) is reduced to solving of the singular integral equation 
(11), that is, to finding u(x, t)  for qx ∈Γ  and q(x, t)  for ux ∈Γ . Then the integral representation 

of the solution (8) can be used to find u( , )ξ τ  for 0( , ) ( , t )ξ τ ∈ Γ τ > . It should be emphasized that 

(11) is an equation in three-dimensional space 0( , t )ξ ∈Γ τ > , and not in four-dimensional space 

0( R, t )ξ ∈ τ >  as the original problem. So, the dimension of the problem is reduced. So, the transi-

tion to the boundary integral equation allows to reduce the dimension of the problem. 

3. Results

The paper considers the initial-boundary value problem for the heat equation in the four-di-

mensional Minkowski space. The problem is reformulated as a singular boundary integral equation 

on the four-dimensional cylindrical surface. This approach is useful in the development of numer-

ical methods, because it allows to standardize the dimensions and solve the boundary problem for 

a fixed spatial region and for a region with a boundary variable in time. However, this approach 
required the additional study of the behavior of the fundamental solution, and the interpretation of 

singular integrals in the boundary integral equation. The method of weighted residuals was used to 

get the integral representation of the solution and the boundary integral. 
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The results of the study do not contrary to the classical results of the theory of the initial- 

boundary value problems for parabolic equations, they only give them a new interpretation.

The obtained results can be used in the development of standardized boundary numerical 

methods.

4. Conclusions

The work is devoted to investigation of some aspects of the formulation of the non-station-

ary initial-boundary value problem of thermal conductivity in the form of a boundary integral 

equation. In particular, in the work:

– the properties of the physical fundamental solution are defined;
– the integral representation of the solution is constructed and investigated;

– the interpretation of the Cauchy principal value of integral singularity if the point of 

source approaches the boundary of the four-dimensional domain is conducted, the conditions on 

the parameters of the passage to the limit for correct interpretation of the singular integral in 

four-dimensional space are formulated;

– initial-boundary problem is reformulated as a boundary integral equation.

This article proposes a new interpretation of well-known classical results of the theory of 

partial differential equations. The strict mathematical description of the interpretation of the dy-

namic initial boundary value problem in the form of a boundary value problem in the Minkowski 

space is the theoretical value of the research. The obtained results can be extended in two main 

ways. Firstly, the approach can be applied to other non-stationary problems, for example, in the 

theory of linear dynamic elasticity. Secondly, such approach can simplify the formalization and 

solving of the initial-boundary value problems in domains with boundary varying in time, such as 

non-stationary Stefan problem, free boundary problems, and so on. The method of boundary solu-

tions that is universal for boundary value problems is the practical value of the results. The problem 

is reduced to finding the unknown functions on the boundary in the Minkowski space, so the actual 
dimension of the problem is reduced by one that is very significant in building efficient numerical 
methods, for example, the boundary element method. 
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