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Abstract 

A research report has been submitted. It deals with implementing a method for a mathematical description of the 

nonlinear dynamics of rotors in magnetic bearings of different types (passive and active). The method is based on 

Lagrange-Maxwell differential equations in a form similar to that of Routh equations in mechanics. The mathemat-

ical models account for such nonlinearities as the nonlinear dependencies of magnetic forces on gaps in passive and 

active magnetic bearings and on currents in the windings of electromagnets; nonlinearities related to the inductances 

in coils; the geometric link between the electromagnets in one AMB and the link between all AMBs in one rotor, which 

results in relatedness of processes in orthogonal directions, and other factors. The suggested approach made it possible 

to detect and investigate different phenomena in nonlinear rotor dynamics. The method adequacy has been confirmed 
experimentally on a laboratory setup, which is a prototype of a complete combined magnetic-electromagnetic suspen-

sion in small-size rotor machinery. Different variants of linearizing the equations of motion have been considered. 

They provide for both linearization of restoring magnetic or electromagnetic forces in passive and active magnetic 

bearings, and exclusion of nonlinear motion equation terms. Calculation results for several linearization variants 

have been obtained. An appraisal of results identified the drawbacks of linearized mathematical models and allowed 
drawing a conclusion on the necessity of applying nonlinear models for a well-defined description of the dynamics of 
rotor systems with magnetic bearings.

Keywords: rotor dynamics, magnetic bearings, mathematical model, linearization of equations of motion, 

nonlinear vibrations.
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1. Introduction

A magnetic bearing (MB) is one of the variants of elastic-damping bearings. Its feature 

is the use of magnetic fields to provide stable rotor levitation. These fields create bearing force 
responses to rotor displacement in order to ensure automatic alignment of its bearing areas in the 

MB stator elements and a required level of bearing stiffness. MBs that are the most applicable from 

the practical viewpoint are active magnetic bearings (AMBs) [1–5] and passive magnetic bearings 

(PMBs) [6]. Some MB design options are shown in Fig. 1. It shows radial and axial AMBs with 

electromagnets (Fig. 1, a, b) and a radial PMB with permanent annular magnets (Fig. 1, c, d), and 

the following notations are introduced: 1 – rotor; 2 – stators; 3 – AMB windings; 4 – AMB position 

sensors; 5 – comparator in AMB control system; 6 – AMB control device; 7 – amplifiers feeding 
control voltages to AMB windings, which are formed according to the accepted control algorithm; 

8 and 9 – movable and stationary annular permanent magnets.

Based on the possibilities of practical implementation of complete magnetic bearings of 

rotors, this study considers the options of using either radial or axial AMBs for stabilising a rotor 

over all five degrees of freedom or one AMB jointly with several PMBs in different design versions. 
The most practical approach would be to use a combination of magnetic bearings of different types 

in medium-sized high-speed rotor machinery, e. g., turbo-expanders, expander-generator, and ex-

pander-compressor units [4]. They can use two radial PMBs and one axial AMB arranged in the 

centre or at one end of the shaft. This is due to the design features such as the presence of one or 

two discs arranged on the rotor cantilevers [7].
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      a                                    b                              c                     d

Fig. 1. MB design options: a – radial AMB; b – axial AMB; c, d – radial PMB

In considering the problem of describing the dynamics of rotors in different power machinery 

in which magnetic bearings are used as rotor bearing assemblies, a conclusion can be made on the need 

to develop special approaches to mathematical modelling with account for all specific features that this 
kind of elastic damping bearing introduces into rotor systems. Presently, there is a large variety of stud-

ies on this subject. However, they offer a simplified linear approach to mathematical modelling of rotor 
dynamics. However, rotor systems with nonlinear bearings, including magnetic ones, are known to ex-

hibit nonlinear effects [8, 9]. Therefore, building refined mathematical models will enable increasing the 
accuracy of numerical computation of required dynamic parameters of rotors, magnetic bearings and 

control systems for active magnetic bearings. This will dramatically reduce the amount of experimental 

investigations and increase the effectiveness of research and development efforts.

2. Research objective and tasks

Paper [10] describes a method for interrelated modelling of nonlinear dynamics of rigid 

rotors in passive and active magnetic bearings. Its distinctive features are approach generality and 

completeness of accounting for the nonlinear interrelations of process occurring in such a system – 

electric, magnetic, and mechanical.

The objective of this study is a practical implementation of the method for substantiating the 
need to use nonlinear mathematical models for describing the dynamics of rotor systems with MB. 

In so doing, different methods of linearizing equations for streamlining mathematical models are 

discussed and analysed.

3. Mathematical model of rotor dynamics in a laboratory setup

The dynamic behaviour of a rotor in an MB was analysed for a laboratory setup of a rotor 

in a complete combined passive-active magnetic suspension, which was a prototype of the mag-

netic suspension for a rotor in an expander compressor unit (ECU). The setup is shown in Fig. 2. 

A schematic diagram of a complete magnetic suspension of a rotor, including two radial PMB1,2 

and one axial AMB3, is shown in Fig. 3. Here, a PMB (Fig. 1, с) is used as PMB1 and PMB2, and 

an AMB is used as AMB3 (Fig. 1, b). A rigid rotor is considered because the vibrations caused 

by dynamic unbalance induce motion of the cylindrical and conical precession type. They are the 

most common ones in practice and are distinguished by excessive amplitudes, which make them 

especially dangerous.

Fig. 2. Laboratory setup
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                                                         a                                                          b

Fig. 3. Complete suspension for a laboratory setup rotor in an MB: a – schematic diagram; 

 b – restoring magnetic forces in PMB1 and 2 vs. rotor displacements

If the energy of the AMB3 magnetic field is W=W(x
1
, y

1
, x

2
, y

2
, z

3
, Ψ

c1
, Ψ

c2
), then the cur-

rents in the windings of its coils i
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 and i
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 are linked to total magnetic fluxes through the circuits 
of coils Ψ
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, Ψ

c2
 (flux linkage in windings of respective AMB3 electromagnets) by the following 

expressions:

               

∂ Ψ Ψ ∂ Ψ Ψ
= =

∂Ψ ∂Ψ
1 1 2 2 3 c1 c2 1 1 2 2 3 c1 c2

c1 c2

c1 c2

W(x ,y ,x ,y ,z , , ) W(x ,y ,x ,y ,z , , )
i , i .

 
(1)
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ness. Then, with account for this assumption on smallness of generalised coordinates and their 

derivatives, the nonlinear addends of equations of motion can be considered small as compared 

to the linear terms. By excluding from consideration the addends of the equations of motion, 

with an order of smallness higher than three, we derive a completely coupled system of seven 

nonlinear differential equations describing the dynamics of this electromagnetic mechanical 

system:
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where f′′
qr
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,...,z
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) and f′′′

qr
(x

1
,...,z

3
) are nonlinear terms of the equations of motion due to inertia 

forces and the second and third-order potential field; b
x1,...,z3

 are viscosity coefficients; r
c 1,...,N

 are 

active resistances in winding circuits; u
c 1,…,N

 are control voltages applied across AMB windings 

whose magnitude is formed according to the accepted control law depending on the rotor current 

position; m
ks

, j are inertial and gyroscopic coefficients with the following values:
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Addenda –F
Mqr

 are potential forces that depend only on the generalized coordinates. In this 

case, these are the magnetic forces in PMB1,2 (Fig. 3, b). The magnetic forces dependencies were 

 



Reports on research 

projects

(2016), «EUREKA: Physics and Engineering»

Number 3

6

Mechanical Engineering

obtained using the Maxwell tension tensor by solving a series of magnetic statics problems in the 

finite element statement for a fixed number of rotor magnet positions corresponding to certain 
discrete values of its displacement, though they can be described by analytical expressions as 

in [11]. Terms –∂W/∂q
r
 are ponderomotive forces, i. e. the electromagnetic responses of AMB3. 

Their dependence on the generalised coordinates and currents in windings is suggested in this 

study to be obtained analytically by considering magnetic circuits with the use of equivalent cir-

cuits and the loop fluxes method [12]. Forces Q
qr
 are other generalized forces, in particular, the 

force of gravity, and H
qr

(t) are external time-dependent exciting forces and moments, in particular, 

caused by unbalance:
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Second-order nonlinear terms f′′
qr

(x
1
,...,z

3
) and third-order nonlinear terms f′′′

qr
(x

1
,...,z

3
) 

are not shown here due to their cumbersome notation; however, it is they that demonstrate the 

full co-relation between all generalized coordinates with the help of terms having no depen-

dence on unbalance parameters.

A detailed technique for deriving system of equations (2) and all terms and expressions 

for magnetic energy for an axial AMB3, depending on flux linkages Ψ={Ψс1,Ψс2} and general-

ized coordinates q
r
={x

1
,y

1
,x

2
,y

2
,z

3
}, is described in [10].

4. Experimental research

Research was conducted for a rotor with a mass of 2.5 kg in a complete magnetic-electro-

magnetic suspension (Fig. 2, 3), in which, for AMB3, a unique control method and an algorithm 

were used, i. e. formation of u
c k

 in (2) [13 and 14]: u
c2,1

=(u
max

–2u
min

)z
3

2/(2δ
a

2)±u
max

z
3
/(2δ

a
)+u

min
. 

The basic parameters have the following values: l
1
=0.118 m; l

2
=0.166 m; J

1
=0.00997 kg×m2; 

J
3
=0.00347 kg×m2; δ

r
=5.5×10-3 m; δ

r
=3×10-3 m; e=6×10-5 m; γ=0.003 rad; u

max
=24 V, and 

Q
Rqr

=b
qr

×∂q
r
/∂t, where b

qr
=2.325 kg/s. A laboratory setup with such parameters was developed 

as a prototype of a complete magnetic suspension for an ECU rotor. It was used for experimental 

studying of possible nonlinear dynamic phenomena in the system when the angular rotational 

speed changes within 0 to 3’000 rpm.

The result of a series of experiments was the amplitude-frequency response (AFR) 

shown in Fig. 4. It allows evaluating the presence of resonant modes in the area being inves-

tigated and the kind of rotor motion corresponding to different rotational speeds. Thus, the 

following was found:

– bifurcation of the first (~10.5 and ~12 Hz) and the second (~22.5 and ~31 Hz) reso-

nances due to different PMB stiffness in the horizontal and vertical directions (anisotropy of 

bearings) due to different static equilibrium positions (x
1st

=x
2st

=0, y
1st

 and y
2st

≠0) with respect 
to centres of bearings that occur owing to the force of gravity;

– direct (~10.5 Hz) and reverse (~12 Hz) cylindrical precessions as well as direct 
(~22.5 Hz) and reverse (~36 Hz) conical precessions (Fig. 4, a shows vibration modes corre-

sponding to these motions);

– loss of vibrations with transition from one stable mode to another stable mode (in 

Fig. 4, the crosshatched area within ~31–38 Hz is that of unstable motion, in which the vibra-

tion amplitudes, without introducing extra mechanical damping, exceed the PMB radial gap).

Besides, our analysis of the results detected in the system concerned the following: har-

monic vibrations with an excitation (rotational) frequency, subharmonic and superharmonic 

vibrations, multiple sub and super resonances, and a link between radial and axial vibrations. 

A detailed description of the results is given in the following in comparison with the results of 

numerical modelling.
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           a                                                                              b

Fig. 4. Experimental AFR response of the rotor and amplitude vs. rotational frequency response: 

a – subharmonics; b – superharmonics

5. Numerical research

During numerical modelling, the system of equations (2) was solved with the 4th-5th-order 

Runge-Kutta method for discrete angular speed values. The many-valuedness of the solution was 

checked and excluded by multiple computations for each frequency and different initial conditions. 

In doing so, stationary areas were searched for, whereas time intervals corresponding to transient 

processes were excluded from consideration. Hence, the results of the numerical analysis of forced 
vibrations are solutions for stationary areas and generalised coordinates x

1
, y

1
, x

2
, and y

2
 in the an-

gular speed range of 0–100π rad/s. They are shown in Fig. 5 as harmonics amplitudes A obtained 

by using the fast Fourier transform versus the driving force angular frequency ω
0
 caused by the 

rotor’s own unbalance. This frequency relates to the rotor angular speed as ω
0
=ω.

The following notations are used in Fig. 5: A
(1)

 is the first harmonic amplitude (Fig. 5), A
(1/n)

 

is the subharmonic amplitude (Fig. 5, a, c) and A
(n)

 is the superharmonic amplitude (Fig. 5, b, d), 

where the number in parentheses is the multiplicity of the harmonic frequency with respect to the 

fundamental frequency ω
0
, with the dashed lines showing the skeleton curves.

The natural frequencies of a nonrotating rotor that were calculated by using a linearized 

system of equations without account for damping [2π rad/s] are as follows: p
1x

=10.55; p
1y

=11.90; 

p
2x

=22.30; p
2y

=30.90. The curves in Fig. 5 show the dynamic behaviour of a rotor in the investigat-

ed range and, in essence, they are the projections of 3-dimensional spectra on the coordinate planes 
OωA. Thereat, the dependence of the amplitude of the first harmonic of forced vibrations А

(1)
 on 

the frequency of the harmonic driving force is the amplitude-frequency response, and the graphic 

representation of this dependence (Fig. 5) is the resonance curve. Analysis of these responses has 

shown that the first resonant mode (ω
1z

) corresponds to axial vibrations.

Next, analysis of the results (Fig. 5) has demonstrated the following: superharmonic vi-

brations in the area of the second resonant mode (I); bifurcation of the second resonance due to 

anisotropy of PMB stiffness in the horizontal and vertical directions when at ω<ω
1x

 and ω>ω
1y

 the 

rotor’s motion is of the direct cylindrical precession type, and in the range between these critical 

speeds ω
1x

<ω<ω
1y

 the motion is of the reverse cylindrical precession type (II); super-resonant vi-

brations ω
2x(2)

, which coincide also with the inner resonance ω
2x(2)

=ω
1y

 (III); bifurcation of the third 

resonance due to anisotropy of PMB stiffness when at ω<ω
2x

 and ω>ω
2y

 rotor motion is the direct 

conical precession type, and in the range between these critical speeds (ω
2x

<ω<ω
2y

) when the mo-

tion is the reverse conical precession type (IV); external resonance ω
1x

+ω
1y

≈ω
0
 (V); subresonance 

vibrations ω
1y(1/2)

 amplified by inner resonance ω
1y(1/2)

=2ω
1y

=2ω
2x(2)

 (Fig. 5), with these subharmonic 

vibrations occurring at relatively big excitation frequencies and their amplitudes significantly ex-

ceeding the amplitudes of the first harmonic (VI); the form of resonance curves in the area of the 
third resonant mode (ω

2x
 and ω

2y
) is specific to systems with rigid characteristics of the restoring 

force, which is true for PMB (VII); the third resonant mode is more dangerous than the second 

one because it is accompanied by a significant amplitude increase as during motion of the conical 
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precession type (angular vibrations) the flatness of gaps in the axial AMB is disturbed, resulting in 
a moment coinciding in the direction with the angular deflection of the rotor (VIII); in the area of 
frequencies, wherein two stable forced vibration modes with two different amplitudes are possible, 

a failure of vibrations is observed (IX); the fundamental and the superharmonic resonant vibrations 

in the axial direction are excited by a load acting in the radial direction (by the rotor’s own unbal-

ance), with the peaks of super-resonant axial vibrations coinciding with the peaks of the fundamen-

tal radial vibrations (Fig. 5, a – b), which is the result of accounting for the interrelation between 

radial and axial generalised coordinates with nonlinear terms in the equations of motion (2) (X).

a                                                                            b

c                                                                                d

Fig. 5. Amplitudes of fundamental, sub- and superharmonics vs. driving force frequency:  

a, b – x
1
,y

1
,x

2
,y

2
; c, d – z

3

The same resonant modes and phenomena were found in the system also during exper-

imental research. The adequacy of the mathematical model representing a system of nonlinear 

completely mutually coupled by generalised mechanical coordinates x
1
,...,z

3
 and flux linkages Ψ

c1
 

and Ψ
c2

 equations (with account for the control law, i. e. voltages u
1,2

 also dependent on x
1
,...,z

3
) can 

be judged by the results of comparing the calculated data (Fig. 5) with experimentally obtained 

amplitude-frequency responses (Fig. 4) and dependencies of harmonic amplitudes that differ from 

the fundamental one by the driving force frequency. Thus, comparative analysis of the results has 

shown an identity for both qualitative representation of processes in the system and quantitative 
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determination of their parameters: for the amplitude, the difference is within 2–3 %, and for the 

values of resonant frequencies, the difference is within 0.2–0.5 %.

6. Methods of linearization of motion equations (dependencies of magnetic forces in bearings)

Fig. 3 shows the dependencies of restoring magnetic forces acting in a PMB on the rotor 

magnet during its displacement in the radial and axial directions. In this case, the radial forces 

are nonlinear and close to a cubic form. They can be approximated by third-degree polynomials 

depending on one variable.

Since the objective of the study is selecting the most adequate analytical model that math-

ematically describes the dynamic behaviour of rotors in magnetic bearings, comparative analysis 

was applied to results obtained using different models: #1) nonlinear – with account of nonlinear 

terms of inertia forces and nonlinear force characteristics of magnetic bearings (5); #2) nonlin-

ear – without nonlinear terms of inertial forces, but with nonlinear MB force characteristics (5); 

#3) linearized – without nonlinear terms of inertial forces and with magnetic forces linearized with 

different methods, the forces obtained being based on equality of magnetic forces (6) or stiffnesses 

(7) in the static equilibrium position. Here, the expressions for magnetic forces have the form:

                                                ρ ρ = ρ + ρ + ρ3 2
M 2 1 0F ( ) k k k ,  (5)

                                             ρ ρ = ρ + ρ + ρ2
M 1 2 st 1 st 0F ( ) (k k k ) ,  (6)

                                  
ρ

∂ ρ
ρ = ρ = ρ + ρ + ρ

∂ρ
2M st

M 2 2 st 1 st 0

F ( )
F ( ) (3k 2k k ) ,  (7)

where ρ are radial displacements x or y, ρ
st
 are displacements corresponding to the static equilib-

rium positions x
st
 or y

st
.

The dependence of the axial restoring magnetic force in the axial AMB3 is determined by 

the latter two equations for flux linkages (2) with account of the applied innovative control algo-

rithm (i. e. formation of u
c k

), and it is used in the fifth equation via term –∂W/∂z
3
.

7. Comparative analysis of solution results obtained with linearized mathematical models

The practicality of applying nonlinear model #1 when investigating the dynamics of rotor 

systems with magnetic bearings was determined by comparing the above results (Fig. 5) with data 

obtained by using linearized analytical models.

Fig. 6 shows the results of calculations by using model #2. Their analysis shows that fail-

ing to account for nonlinear inertia force terms in equations (2) makes it impossible to describe 

vibrations excited in the axial direction, though this fact was established during both experimental 

studies (Fig. 4) and analytical experiments with model #1 (Fig. 5). This is indicative of a certain 

inadequacy of linearized model #2. The values of resonance frequencies shown in Table 1 (for this 

and other variants of linearizing the analytical model) are entirely congruent, whereas the depen-

dencies of the fundamental, super and subharmonics are completely identical to those obtained 

by using nonlinear model #1. This points to the possibility of using model #2, though with certain 

assumptions and reservations.

Fig. 7, а shows the results obtained with model #3 linearized by excluding nonlinear inertia 
force terms from equations (2) and using linear dependencies of magnetic forces (6).

This mathematical model has been found to be able to describe bifurcation of resonances 

in the system due to anisotropy of stiffness of radial PMB, and to describe the motion of the direct 

and reverse, and cylindrical and conical precession. However, the resonance modes frequencies 
are found with an error of ~6–8 % (Table 1), whereas the amplitudes corresponding to the reso-

nance modes differ by ~10–30 % (Fig. 7, а). Besides, the system behaviour is linear and super and 

subharmonics are absent; areas of frequencies with several stable forced vibration modes are not 

displayed; axial vibrations are not excited.
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a                                                                               b

Fig. 6. Harmonics amplitudes vs. driving force frequency (model #2) : a – fundamental harmonic 

and subharmonics; b – fundamental harmonic and superharmonics

a                                                                                   b

Fig. 7. Amplitude-frequency response: а – model #3 with forces F
Mρ1

; b – model #3 with forces F
Mρ2

Table 1

Resonance frequencies calculated with different linearized models [2p rad/s]

Model #2 with forces F
Mρ

Model #3 with forces F
Mρ1

Model #3 with forces F
Mρ2

ω
1x

=10.5 ω
1x

=10.5 ω
1x

=10.5

ω
1y

=12.0 ω
1y

=11.0 ω
1y

=12.0

ω
2x

=22.5 ω
2x

=21.0 ω
2x

=22.0

ω
2y

=35.5 (break-down) ω
2y

=30.0 ω
2y

=31.0

ω
2x(2)

=12.0; ω
1y(1/2)

=24.0 – –
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The situation with the description of dynamics phenomena appears to be better when 

models #3 with forces (7) are used. This is manifested by calculation results in Fig. 7, b.

In this case, the values of resonance frequencies are closer to those obtained with the 

nonlinear model and they are determined with an error of ~1–4 % (Table 1); however, their 

respective amplitudes also differ from reference ones by ~10–40 % (Fig. 7, b).

Using this analytical linearized model, as in the previous case, demonstrates resonance 

bifurcation due to anisotropy of stiffness of radial PMBs, and the motion of the direct and 

reverse, and cylindrical and conical precession types. It is also impossible to describe any 

nonlinear effects of the super and subharmonic vibrations and resonances types, and the inter-

relation of vibrations in the axial and radial directions.

8. Discussion of the findings on the dynamics of a rotor in magnetic bearings
The result of this research, which is a follow-up of a large variety of studies, is the devel-

opment and practical implementation of the method of mathematical description of linear and 

nonlinear rotor dynamics phenomena in systems with magnetic bearings of different types, 

which affect the vibration activity of power rotor machinery.

The advantage of the approach suggested is that the interrelationship of electric, mag-

netic and mechanical stationary and nonstationary processes can be accounted for as shown by 

the example of a laboratory setup.

Applying this approach to modelling the dynamics of rotor systems with magnetic bear-

ings improves the dynamic parameters of a whole class of rotor machinery due to a more cor-

rect description of dynamic processes and phenomena occurring therein. In turn, this has the 

effect of cutting the cost of development activities at the design and commissioning stages, and 

reducing operational and power resources costs.

9. Conclusions

The developed imitation of the mathematical model built around the suggested math-

ematical modelling method has been used for numerical research into a complete magnetic 

suspension in a laboratory setup. The study has shown how the model can be used for inves-

tigating the mechanisms of excitation of spatial vibrations in rotating rigid rotors in an MB, 

finding out the conditions of existence of different resonant modes (including super, sub and 
inner resonances).

A variety of methods have been discussed, which allow linearizing the mathematical 

model suggested. It has been shown that each method has its drawbacks, and the linearized 

mathematical models based on them enable determining only the main dynamic characteristics 

with but a certain level of validity, thus constraining the limits of their applicability. It has been 

proved that nonlinear mathematical models should be used for refined analysis.
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