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Abstract

The article considers the non-stationary initial-boundary problem of thermal conductivity in axially symmetric domain in
Minkowski space, formulated as equivalent boundary integral equation. Using the representation of the solution in the form of a
Fourier series expansion, the problem is reformulated as an infinite system of two-dimensional singular integral equations regarding
expansion coefficients. The paper presents and investigates the explicit form for fundamental solutions used in the integral repre-
sentation of the solution in the domain and on the border. The obtained results can be used in the construction of efficient numerical
boundary element method for estimation of structures behavior under the influence of intense thermal loads in real-time.
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1. Introduction

Large number of studies is devoted to the theory of temperature stresses and engineering
methods for their calculation [1-4]. Mathematical model of thermal stresses of metal structures
is reduced to calculation of non-stationary behavior of thermal fields by solving a non-stationary
initial-boundary value problem of thermal conductivity, and calculation of temperature stresses
by solving stationary boundary problem of elasticity [1, 2]. Basic analytical solutions for model
problems for canonical domains are obtained [1-3]. At the same time, calculations and control
of real structures require the development of efficient numerical methods that allow to calculate
the behavior of structures under the influence of intense thermal loads in real-time. One of these
methods is the boundary element method that is one of numerous implementations of the method
of boundary integral equations [5—7].

The method of boundary integral equations is based on the transition from the non-station-
ary initial-boundary value problem of thermal conductivity to the equivalent boundary integral
equation. This approach has numerous advantages over classical methods because it allows to re-
duce the dimension of the problem, the obtained solution is semi-analytical and therefore it can be
analyzed with analytical methods. The method uses the Green function as a fundamental solution
that allows to satisfy one part of the boundary conditions and the condition at infinity (in the case
of infinity inclusion) automatically. The method allows to build special boundary elements, that
take into account the asymptotic behavior of the solution in a neighborhood of singular points of
the problem [6, 7].

Special numerical methods, that take into account some particular qualities of construc-
tions, are more effective in comparison with universal methods. Since cylindrical structures, such
as pipelines, reactor vessels, constitute a significant share of production elements, calculation of
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critical temperature modes of their operation is very important. Axially symmetric domain allows
to use the representation of the solution in the form of a Fourier series expansion.

In practical applications it is important to take into account a finite number of harmonics
only, so this problem can be reduced to a finite system of two-dimensional (spatial domain and
time) boundary singular integral equations.

2. Materials and methods

2. 1. Previous results

Let’s introduce the following notations: x = (xl,xz,x3) eR’, Qc R’ is a space domain
with the boundary surface I'=T", UT, tis time; u(x,t) is a temperature at a point x at a time
moment t; c(x) is the heat capacity, k(x) is the thermal conductivity; p(x) is the matter density,
f(x,t) is the intensity of heat sources at a point x at a time moment t.

Let’s consider the problem for the heat equation:

cp%—?(x,t) =div(kgradu(x,t)) +f(x,t), x € Q, t > t, (D)

with the boundary conditions:

u(x,t)=u(x,t), xel,t>t,, @)
qx.)=q(x,t), xel t>t,

and initial condition:

u(x,ty) =u,(x), x€Q, 3)

— ou - .
where Q=QuUT, q(x,t)= ka—lj, n is an external normal to the surface.
n

Let’s consider the initial boundary problem (1)—(3) as a boundary problem in Minkowski
space (x,t), where x is a point of three-dimensional space, t is time. Obviously, we get the bound-
ary problem for cylinder (x eQ, t> to) with boundary conditions: (2) on the boundary surface of
the cylinder (x el UL ,t2 to) and (3) on the cylinder base.

In [8], using the method of weighted residuals [9, 10], the integral representation of the solu-
tion is obtained and its correctness is proved, the conditions on the parameters of the passage to the
limit for correct interpretation of the singular integral in four-dimensional space are formulated.

The article [8] presents the integral equivalent of the problem:

Kooy EDUED+[dtf @*(E—x,T-t)q(x,H)—u(x, ) q* (x—&,T-1))dI, =

= [peu,(u*E-x.1-t,)dQ, —jdtjf(x,t)u*(ﬁ—x,‘t—t)de, )

, Q

where H is the Heaviside function, u” is a fundamental solution of the heat equation that satisfies
the principle of causality and is limited at infinity for four-dimensional Minkowski space [8]:

S 2 SO B ot . MRS
(4nk(t-1)) 4k(t-1)

LE, ) e(Q,t>t,)

Ao &1 = {0’ Ee(Qt>t)

is the area function (indicator).
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Obviously, (5) is the quasi equation. It allows to determine u(x,t) at any point inside the
area (x eQ, t> to) if values of functions u(x,t) and q(x,t) on I'" are known. So, the problem is
to determine u(x,t) on I', and q(x,t) on I',. To get a boundary integral equation in [8] the limit
transition in (8) as the point of source approaches the boundary of the four-dimensional domain
&— E e I' was conducted, the interpretation of the Cauchy principal value of integral singularity

J.dtJ.u(x,t)q* (x —g,‘r —t)dI", was fulfilled, the conditions on the parameters of the passage to the

t r
{imit for its correct interpretation were formulated.
The boundary integral equation of the problem was obtained in the form:

C(E)u(E,r)+jdtj(u*(é—x,m—t)q(x,t)—u(x,t)q*(E—x,r—t))dr =

_jpcuo(x)u*(a X,T—1,)dQ, jdtjf(x Hu*E-x,1-0)dQ_ Eel, t,<t<t, (5

, Q

= 1 = = 1
where C(§) = 4—(41t —S) (if & is regular then C(§) = E) and the second integral in the left side is
T

taken in the sense of principal value.

Thus, the original problem (1) - (3) was reduced to solving of the singular integral equa-
tion (5), that is, to finding u(x,t) for x €I’ and q(x,t) for x €I',. Then the integral representa-
tion of the solution (4) can be used to find u(g,t) for (€,7) € (I, > t,). It should be emphasized
that (5) is an equation in three-dimensional space (E eTI',7>t,), and not in four-dimensional space
(EeR,T>t,) as the original problem. So, the transition to the boundary integral equation allowed
to reduce the dimension of the problem [8].

2. 2. A linear boundary integral equation for the axially symmetric domain

Let the spatial domain Q with the border I' is axisymmetrical, but the boundary and initial
conditions are not axisymmetrical. We show that in this case the boundary integral equation (5)
can be reduced to an infinite countable set of singular integral equations that are two-dimensional
in Minkowski space.

Let’s introduce the spatial cylindrical coordinate systems (rx,ex,zx) in the space x and
(ré,eg,zé) in the space &. (x is an observation point, & is a point of source). As T is the surface
of rotating, all limit functions in (5) can be expanded in Fourier series:

f(x)zi[f“(_) cosn B+ (x )smne] x=(r,z, )el. ©6)

f:(;):%if (X,G z )cosnﬂxdex,nzl,z,...

f;(?):{f (r.,6,,z,)sinn6,d6,, n=1,2,.. )

Let’s substitute decompositions like (6) for functions u(x,t), q(x,t) to (5), multiply by
cosk®,, sink®, and integrate over 8, in the interval [O, 21t]. Because of the orthogonality of trig-
onometric functions it is easy to see that:

Ti{uk( )cosk6x+ui(g,1:)sinkex}cosneideg=u;(g,r),
Ti{uk(ﬁ, ’c) cosk 0 +uk(§ 'c) sink 0 }smne d6, = u; (é ‘t) ®)

1
T k=0
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Let’s consider the typical expressions in (5). Using the expression of the element of integra-
tion dI', in the cylindrical coordinate system dI', =r, dO, dI'(r,,z,) we move from the integrals
over the domain to integrals over the boundary I'. Then we have:

Ju' (€.x.7.t)q(x, dr, = fdexju* (&x,7,t)q(x,t) 1,d0(r,, z,) =

r
= Tdexju* (€.6..x.6, 7.t)q(x, ) rdl(r,, z,)
0 r
and so

2n

1
0. do dr,
- jcosn ij (€,x,7,t)q(x,t)

'

:Tdexjgjcosneg u'(€.6,.%,0,.7.t)d6, q(x.0,.t)r, dT(r,.z,). ©)
0 ro

Taking into account, that
u'(E-x, t—t)=u" (g x|, T-1), (10)

|X—E_,|2 =1 +r€2 -2 1,1, cos(6, —GX)+(Z§ —Zx)z, (11)

we have: u (|§— ’c—t) =u" (E,;, G,T—t), where 6 =6, —0,. Thus, we have shown that u’ is
independent separately from 6,, 8, and depends only on their difference 8, —8,. This allows us
to move from the integral over 9 or 0, to the integral over 6 =6, —0,.

Taking into account that cosnO = cosn(e —6) and presented q(x,@X ,t ) in the form (6),
we rewrite (9) as:

2n

1 *
— | cosn6.dB, |u” (§,x,7,t)q(x,t)dl, =
oo [u 50

=[xt ar(xgeur Exe=t) o (xr) nal o). "
r
where
u’ (E,Q,r - t) :%T u (E,;, 0,T— t) cosnb do,
STEP E .

0

Similarly, we obtain:

2n

1
0.d6 dr",
- Jsmn gJ‘ (€,x,7,t)q(x,t)

= '[ [u:c (E,;,T —t) q (;,t)—u;S (E,;,‘c - t) q; (;,t)] rxdl:(rx,zx ), n= r (14)

In view of (8), (13) and (14), (5) can be rewritten as:
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@) us (B1)+ Ja [ur (& ko=t )ag (xot) rul (Exe—1) a0 -

—u¢ (;, t)q:° (E, X, T—t )—uf] (;, t)qff (E, X,T—t )}rxdf(rx,zx) =
2n

= ipcuo(x)ﬁ { u’(€.6,x,7-t, ) cosn6d0dQ, -
2n

_‘j;dtif(x,t)ﬁ'!u* (E,Si,x,‘t—to)cosnegdﬂx,

_ _ T __ _ _ _ (15)
c®)u; (Ej,,’c)+_[dt.[{u:° (E_w x,‘c—t)qi (X,t)—u:s (&,x,‘c—t) q;(x, t)—

—u}, (;, t)q;c (E, X, T—t )+ us (;, ’[)q;S (E, X, T—t )} rdl(r,,z, )=
2n

= Jpcuo(x)ﬁ [u'(E.6,.x,1-t,) sinn6,d6.dQ, -
Q

0

_j dtjf(x,t)izfu* (€.6..x,1-t,)sinn6,.dQ,,
[ & @ 4m 0

where Ee l:, n= O,_oo

So, for an axially symmetric domain the boundary integral equation (5), that is three-dimen-
sional in four-dimensional Minkowski space, is reduced to a system of two-dimensional singular
integral equations (15). Integral equations (15) are equations of the second kind for the Neumann
problem, equations of the first kind for the Dirichlet problem, mixed type for the mixed problem.

Let’s note that if the boundary conditions, initial conditions and source function are also
axially symmetric (in cylindrical coordinate system they are independent of ), the system (15) is
reduced to one two-dimensional in four-dimensional Minkowski space singular integral equation.
Accordingly, if the conditions of the problem can be represented as a segment of the Fourier series
with n members, the problem is reduced to a system of 2n two-dimensional singular integral
equations.

2. 3. The fundamental solution for axially symmetric domain
Let’s investigate the fundamental solution u'*, u”> from (15). Taking into account (10), (11),

we have:
v (T = 1F . (pc)”?
ulE,x,t—t|]=—|u (E-x,T—t) cosn0 d0=——————— H(T-1t)X
3 ) n{ « ) T (4mk (T —t))* (r=1
2n
pc 2 2 2
X|exps———— (" +r." =2 .1, cosO+(z, —z cosn6 do. 16
oD en -2 st -2, 16
Due to the fact that:
2n
j ¢* “sinn®do =0,
0
2n
J. e* % cosnBd6 = 2x1 (a), 17)

0

where I (z) is a modified n-th Bessel function, expressions u:f, u:f from (15) are the coefficients
in the Fourier decomposition for fundamental solution, that can be written as:
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uzc (E,;,’C — t) =—
pcr, 1,
I“(Zk(r—i)J’

u:S (E,;,‘c - t) =0.

Define q;°

A

axially symmetric domain n_

(pc)

and q°. Because q (§—x,T—-t)=k g

=rn_+zn,

_ _ _ pc 2 2 N2
(ank (-t ))” e t)xexp{ pra e R )}X

* *’

, then q —k[?}Tn +g%n ] For

X X

and we obtain:

u'_ au f-x_ (po)”  (DfE-xlpe . ~
o de—x o (mk(-1y” dk(iy O ) (25, 25, cosé)x
o 5T

4k (1-t) |’
o au =¥ (o (DE-x[pe o
dz, OE-x| 9z,  (dmk(t-t)" 4k(t-t) HT-02(z -2, ) -
X exp _—|E_,—X|2pc

4k (t-t) |

This system, using (17), can be rewritten as:

ou”
ar

a_u* = (Aq +B, cose) e ef,

z

X

where

o) (Z)pc( +12 +(z, - ZX)Z)

(A +B, cos0+C, cos 9) @ esod

! (4nk (t—

X exp(

_ (p c)1/2

t))** 4k(t—-t)

o (e ))]

H(t-t)x

" (4mk (t—

-2 2, .2 2 )
e 41(2?‘;) H(t-t) (—2 I (rE +1, + (Zi -z, ) ) =211, )x

pe 2
Xexp(—m (I'E-Yz'l‘l'x2 +(Z§ —ZX) )] ,

(p c)1/2

(=2)pc

n

xexp(

(4nk (t—1))"? 4k(t—1)

- ?TC 5 (ré +1 +(z§ —Zx)z)) ,

H(t-t) 4r§rx X
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A =-— (po)” (—2)pc(r§ 5 +(Z§ _ZX) )H(T—t)(—Z)(Z -z,)X
1 (dnk(t-1)? 4k(T—t) ©m

pe 2
xexp(— pr— (rg2 +r. +(Z& —zx) )) ,

_ (9 (2)pe(2rr) o )
Ba= (4nk (t—1))**  4k(t-t) H(t-1t) (-2)(z; —2,) %

xexp(—ﬁ (ré +r +(zé —zx)z)) .

Applying obvious trigonometric transformations and entering notation:

perr:
a=———,
2k(t—1)

we find q°(€,x,7—1t) and q*(,x,T—t):

» w [T — pCr.t, 1
q (E_,, X,T— t) =2mn_k, {An I (W—i)) +B, E(IM (a)+1,_ (a))+

1 1 1 1
+5C, (In (a>+51n+2<a>+51n_2<a>)}+ 2n nzxk{Aq L (a)+B, S (L @+1,, (a))},

»q:s (E,;,T— t) =0.

Thus, we find the explicit formulas for finding functional coefficients (components) of the Fou-
rier decomposition of fundamental solutions u”, q  from (15). Consequently, (15) defines a system of
integral equations, solving this system we find the boundary values of functions (or u;, or q}). Obtain-
ing the Fourier series of the form (6), we find the unknown boundary values. Then, using the integral
representation (5), we can get the complete solution to the problem in the axially symmetric domain.

3. Conclusions

The work is devoted to investigation of non-stationary initial boundary value problem of
thermal conductivity with not axially symmetric right part of the equation and boundary conditions
for axially symmetric domain in Minkowski space.

Using the methods of boundary integral equations and the Fourier decomposition, the prob-
lem is reformulated as an infinite set of two-dimensional singular integral equations for coefficients
of expansion. Fundamental solutions, used in the integral representation of the solution in the do-
main and on the border, are built in the explicit form and studied.

Reducing of the initial four-dimensional boundary problem to the set of two -dimensional
equations by taking into account the axisymmetric of the domain is important for the problem of
constructing of the effective numerical boundary element method for Real-Time settlements of
behavior of structures.

Interpretation of initial-boundary problem as a boundary value problem in Minkowski
space allows to use the results of the article for solving problems in axially symmetric domains
variable over time.

The ideas and methods of this study can be applied in very similar problems in linear ther-
moelasticity. Such vector problems are related and imply a transition to a matrix description. Ac-
cording to the results of the article, such transition is possible. In addition, using the Kirchhoff
transformation, the proposed approach can be generalized for problems with spatial inhomoge-
neous coefficient of thermal conductivity and for nonlinear problems (with power nonlinearity of
thermal conductivity coefficient).
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