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Abstract

The article considers the non-stationary initial-boundary problem of thermal conductivity in axially symmetric domain in 

Minkowski space, formulated as equivalent boundary integral equation. Using the representation of the solution in the form of a 

Fourier series expansion, the problem is reformulated as an infinite system of two-dimensional singular integral equations regarding 
expansion coefficients. The paper presents and investigates the explicit form for fundamental solutions used in the integral repre-

sentation of the solution in the domain and on the border. The obtained results can be used in the construction of efficient numerical 
boundary element method for estimation of structures behavior under the influence of intense thermal loads in real-time.
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1. Introduction

Large number of studies is devoted to the theory of temperature stresses and engineering 

methods for their calculation [1–4]. Mathematical model of thermal stresses of metal structures 

is reduced to calculation of non-stationary behavior of thermal fields by solving a non-stationary 
initial-boundary value problem of thermal conductivity, and calculation of temperature stresses 

by solving stationary boundary problem of elasticity [1, 2]. Basic analytical solutions for model 

problems for canonical domains are obtained [1–3]. At the same time, calculations and control 

of real structures require the development of efficient numerical methods that allow to calculate 
the behavior of structures under the influence of intense thermal loads in real-time. One of these 
methods is the boundary element method that is one of numerous implementations of the method 

of boundary integral equations [5–7].

The method of boundary integral equations is based on the transition from the non-station-

ary initial-boundary value problem of thermal conductivity to the equivalent boundary integral 

equation. This approach has numerous advantages over classical methods because it allows to re-

duce the dimension of the problem, the obtained solution is semi-analytical and therefore it can be 

analyzed with analytical methods. The method uses the Green function as a fundamental solution 

that allows to satisfy one part of the boundary conditions and the condition at infinity (in the case 
of infinity inclusion) automatically. The method allows to build special boundary elements, that 
take into account the asymptotic behavior of the solution in a neighborhood of singular points of 

the problem [6, 7].

Special numerical methods, that take into account some particular qualities of construc-

tions, are more effective in comparison with universal methods. Since cylindrical structures, such 

as pipelines, reactor vessels, constitute a significant share of production elements, calculation of 
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critical temperature modes of their operation is very important. Axially symmetric domain allows 

to use the representation of the solution in the form of a Fourier series expansion.

In practical applications it is important to take into account a finite number of harmonics 
only, so this problem can be reduced to a finite system of two-dimensional (spatial domain and 
time) boundary singular integral equations.

2. Materials and methods

2. 1. Previous results 

Let’s introduce the following notations: ( ) 3 3

1 2 3x x , x , x R , R= ∈ Ω ⊂  is a space domain 

with the boundary surface u q ,Γ = Γ ∪ Γ  t is time; u(x, t)  is a temperature at a point x at a time 

moment t; c(x)  is the heat capacity, k(x)  is the thermal conductivity; (x)ρ  is the matter density, 

f (x, t)  is the intensity of heat sources at a point x at a time moment t.

Let’s consider the problem for the heat equation:

 

                         0

u
c (x, t) div (k grad u(x, t)) f (x, t), x , t t

t

∂
ρ = + ∈Ω >

∂
 

(1)

with the boundary conditions:

                                          

u 0

q, 0

u (x, t) u (x, t), x , t t ,

q (x, t) q (x, t), x t t

 = ∈Γ ≥


= ∈Γ ≥

    (2)
 

and initial condition:

                                                 0 0u (x, t ) u (x), x ,= ∈Ω  (3)

where Ω = Ω ∪ Γ, 
u

q (x, t) k
n

∂
=

∂
 , n


 is an external normal to the surface. 

Let’s consider the initial boundary problem (1)−(3) as a boundary problem in Minkowski 
space (x, t), where x is a point of three-dimensional space, t is time. Obviously, we get the bound-

ary problem for cylinder ( )0x , t t∈Ω >  with boundary conditions: (2) on the boundary surface of 
the cylinder ( )u q 0x , t t∈Γ ∪ Γ ≥  and (3) on the cylinder base. 

In [8], using the method of weighted residuals [9, 10], the integral representation of the solu-

tion is obtained and its correctness is proved, the conditions on the parameters of the passage to the 

limit for correct interpretation of the singular integral in four-dimensional space are formulated. 

The article [8] presents the integral equivalent of the problem:

( )
0

0

( , t t ) x

t

( , ) u ( , ) dt (u * x, t q(x, t) u (x, t)q *(x , t))d

τ

Ω >
Γ

χ ξ τ ⋅ ξ τ + ξ − τ − − − ξ τ − Γ =∫ ∫

              
0

0 0 x x

t

c u (x) u *( x, t )d dt f (x, t) u *( x, t)d ,

τ

Ω Ω

= ρ ξ − τ − Ω − ξ − τ − Ω∫ ∫ ∫
 

(4) 

where H  is the Heaviside function, *u  is a fundamental solution of the heat equation that satisfies 
the principle of causality and is limited at infinity for four-dimensional Minkowski space [8]: 

( )

21/2

3/2

x c( c)
u* exp H( t),

4k( t)4 k( t)

 ξ − ρρ
= − − τ − 

τ −π τ −  
 

0

0

( , t t )

0

1, ( , t) ( , t t )
( , t) ,

0, ( , t) ( , t t )
Ω >

ξ ∈ Ω >
χ ξ =  ξ ∉ Ω >

is the area function (indicator). 
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Obviously, (5) is the quasi equation. It allows to determine u(x, t)  at any point inside the 

area ( )0x , t t∈Ω >  if values of functions u(x, t)  and q(x, t)  on Γ  are known. So, the problem is 

to determine u(x, t)  on qΓ  and q(x, t)  on uΓ . To get a boundary integral equation in [8] the limit 

transition in (8) as the point of source approaches the boundary of the four-dimensional domain 
ξ → ξ ∈Γ  was conducted, the interpretation of the Cauchy principal value of integral singularity  

 

0

*

x

t

dt u(x, t)q (x , t)d

τ

Γ

− ξ τ − Γ∫ ∫  
was fulfilled, the conditions on the parameters of the passage to the 

limit for its correct interpretation were formulated.

The boundary integral equation of the problem was obtained in the form:

( ) ( ) ( )
0

x

t

C u , dt u *( x, t)q (x, t) u(x, t)q *( x, t) d

τ

Γ

ξ ε τ + ξ − τ − − ξ − τ − Γ =∫ ∫
 

          
 

0

0 0 x x

t

c u (x) u *( x, t )d dt f (x, t) u *( x, t)d

τ

Ω Ω

= ρ ξ − τ − Ω − ξ − τ − Ω∫ ∫ ∫ , ξ ∈Γ, 0t t ,< < τ        (5)
 

where 
1

C( ) (4 S)
4

ξ = π −
π

 (if ξ  is regular then 
1

C( )
2

ξ = ) and the second integral in the left side is  

taken in the sense of principal value. 

Thus, the original problem (1) - (3) was reduced to solving of the singular integral equa-

tion (5), that is, to finding u(x, t)  for qx ∈Γ  and q(x, t)  for ux ∈Γ . Then the integral representa-

tion of the solution (4) can be used to find u( , )ξ τ  for 0( , ) ( , t )ξ τ ∈ Γ τ > . It should be emphasized 

that (5) is an equation in three-dimensional space 0( , t )ξ ∈Γ τ > , and not in four-dimensional space 

0( R, t )ξ ∈ τ >  as the original problem. So, the transition to the boundary integral equation allowed 

to reduce the dimension of the problem [8].

2. 2. A linear boundary integral equation for the axially symmetric domain

Let the spatial domain Ω  with the border Γ  is axisymmetrical, but the boundary and initial 

conditions are not axisymmetrical. We show that in this case the boundary integral equation (5) 
can be reduced to an infinite countable set of singular integral equations that are two-dimensional 
in Minkowski space.

Let’s introduce the spatial cylindrical coordinate systems ( )x x xr , , zθ  in the space x  and 

( )r , , zξ ξ ξθ  in the space ξ. ( x  is an observation point, ξ  is a point of source). As Γ  is the surface 

of rotating, all limit functions in (5) can be expanded in Fourier series:

                     
( ) ( )c s

n x n x

n 0

f (x) f x cos n f x sin n ,
∞

=

 = θ + θ ∑ ( )x xx r , z .= ∈Γ  (6)

                            

( ) ( )

( ) ( )

( ) ( )

2

c

n x x x x x

0

2

c

0 x x x x

0

2

s

n x x x x x

0

1
f x f r , , z cos n d , n 1,2,...

1
f x f r , , z d

1
f x f r , , z sin n d , n 1,2,...

π

π

π


= θ θ θ = π

 = θ θ π

 = θ θ θ =

π

∫

∫

∫

 

(7)

Let’s substitute decompositions like (6) for functions u(x, t), q(x, t)  to (5), multiply by 
cos k , sin kξ ξθ θ  and integrate over ξθ  in the interval [ ]0, 2π . Because of the orthogonality of trig-

onometric functions it is easy to see that:

           

( ) ( ){ } ( )

( ) ( ){ } ( )

2

c s c

k x k x n

k 00

2

c s s

k x k x n

k 00

1
u , cos k u , sin k cos n d u , ,

1
u , cos k u , sin k sin n d u , .

π ∞

ξ ξ
=

π ∞

ξ ξ
=


ξ τ θ + ξ τ θ θ θ = ξ τπ


 ξ τ θ + ξ τ θ θ θ = ξ τ π

∑∫

∑∫

 

(8)
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Let’s consider the typical expressions in (5). Using the expression of the element of integra-

tion xdΓ  in the cylindrical coordinate system x x x x xd r d d (r , z )Γ = θ Γ  we move from the integrals 

over the domain to integrals over the boundary Γ. Then we have:

( ) ( )

( )

2

* *

x x x x x

0

2

*

x x x x

0

u , x, , t q(x, t)d d u , x, , t q(x, t) r d (r , z )

d u , , x, , , t q(x, t) r d (r , z )

π

Γ Γ

π

ξ
Γ

ξ τ Γ = θ ξ τ Γ =

= θ ξ θ θ τ Γ

∫ ∫ ∫

∫ ∫
and so

             

( )

( ) ( )

2

*

x

0

2 2

*

x x x x x x

0 0

1
cos n d u , x, , t q(x, t)d

1
d cos n u , , x, , , t d q x, , t r d (r , z ).

π

ξ ξ
Γ

π π

ξ ξ ξ
Γ

θ θ ξ τ Γ =
π

= θ θ ξ θ θ τ θ θ Γ
π

∫ ∫

∫ ∫ ∫

 

(9)

Taking into account, that

                                        
( ) ( )* *u x, t u x , t ,ξ − τ − = ξ − τ −   (10)

                             ( )22 2 2

x x x xx r r 2 r r cos( ) z zξ ξ ξ ξ− ξ = + − θ − θ + − ,  (11)

we have: ( ) ( )* *u x , t u , x, , t ,ξ − τ − = ξ θ τ −  where x .ξθ = θ − θ  Thus, we have shown that *u  is 

independent separately from x , ξθ θ  and depends only on their difference x ξθ − θ . This allows us 

to move from the integral over xθ  or ξθ  to the integral over x ξθ = θ − θ . 

Taking into account that ( )xcos n cos nξθ = θ − θ  and presented ( )xq x, , tθ  in the form (6), 
we rewrite (9) as:

( )
2

*

x

0

1
cos n d u , x, , t q(x, t)d

π

ξ ξ
Γ

θ θ ξ τ Γ =
π ∫ ∫

               

( ) ( ) ( ) ( ) ( )*c c *s s

n n n n x x xu , x, t q x, t u , x, t q x, t r d r , z ,
Γ

 = ξ τ − + ξ τ − Γ ∫  (12)

where

                          

( ) ( )

( ) ( )

2

*c *

n

0

2

*s *

n

0

1
u , x, t u , x, , t cos n d ,

4

1
u , x, t u , x, , t sin n d .

4

π

π


ξ τ − = ξ θ τ − θ θ π


 ξ τ − = ξ θ τ − θ θ π

∫

∫

 

(13)

Similarly, we obtain:

( )
2

*

x

0

1
sin n d u , x, , t q(x, t)d

π

ξ ξ
Γ

θ θ ξ τ Γ =
π ∫ ∫

      

( ) ( ) ( ) ( ) ( )*c s *s c

n n n n x x xu , x, t q x, t u , x, t q x, t r d r , z , n 1, .
Γ

 = ξ τ − − ξ τ − Γ = ∞ ∫
 

(14)

In view of (8), (13) and (14), (5) can be rewritten as:
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( ) ( ) ( ) ( ){
( ) ( ) ( ) ( )}

( )

( )

0

0

c *c c *s S

n n n n n

t

c *c s *s

n n n n x x x

2

*

0 0 x

0

2

*

0 x

t 0

s

n

c ( ) u , dt u , x, t q x, t u , x, t q (x, t)

u x, t q , x, t u x, t q , x, t r d (r , z )

1
c u (x) u , , x, t cos n d d

4

1
dt f (x, t) u , , x, t cos n d ,

4

c ( ) u

τ

Γ

π

ξ ξ ξ
Ω

τ π

ξ ξ
Ω

ξ ξ τ + ξ τ − + ξ τ − −

− ξ τ − − ξ τ − Γ =

= ρ ξ θ τ − θ θ Ω −
π

− ξ θ τ − θ Ω
π

ξ

∫ ∫

∫ ∫

∫ ∫ ∫

( ) ( ) ( ) ( ){
( ) ( ) ( ) ( )}

( )

( )

0

0

*c s *s c

n n n n

t

s *c c *s

n n n n x x x

2

*

0 0 x

0

2

*

0 x

t 0

, dt u , x, t q x, t u , x, t q (x, t)

u x, t q , x, t u x, t q , x, t r d (r , z )

1
c u (x) u , , x, t sin n d d

4

1
dt f (x, t) u , , x, t sin n d ,

4

τ

Γ

π

ξ ξ ξ
Ω

τ π

ξ ξ
Ω















ξ τ + ξ τ − − ξ τ − −

− ξ τ − + ξ τ − Γ =

= ρ ξ θ τ − θ θ Ω −
π

− ξ θ τ − θ Ω
π

∫ ∫

∫ ∫

∫ ∫ ∫













 (15)

where , n 0,ξ ∈Γ = ∞.

So, for an axially symmetric domain the boundary integral equation (5), that is three-dimen-

sional in four-dimensional Minkowski space, is reduced to a system of two-dimensional singular 

integral equations (15). Integral equations (15) are equations of the second kind for the Neumann 
problem, equations of the first kind for the Dirichlet problem, mixed type for the mixed problem. 

Let’s note that if the boundary conditions, initial conditions and source function are also 

axially symmetric (in cylindrical coordinate system they are independent of xθ ), the system (15) is 
reduced to one two-dimensional in four-dimensional Minkowski space singular integral equation. 

Accordingly, if the conditions of the problem can be represented as a segment of the Fourier series 

with n  members, the problem is reduced to a system of 2n  two-dimensional singular integral 

equations.

2. 3. The fundamental solution for axially symmetric domain

Let’s investigate the fundamental solution *c

nu , *s

nu  from (15). Taking into account (10), (11), 
we have:

      

( )

( )

2 1/2
*c *

n 3/2

0

2

2 2 2

x x x

0

1 ( c)
u , x, t u ( x , t) cos n d ( t)

(4 k ( t))

c
exp r r 2 r r cos (z z ) cos n d .

4k ( t)

π

π

ξ ξ ξ

ρ
ξ τ − = ξ − τ − θ θ = − Η τ − ×

π π π τ −

 ρ
× − + − θ + − θ θ τ − 

∫

∫           (16) 

Due to the fact that:

2

a cos

0

e sin n d 0,

π
θ θ θ =∫

 

                                            

2

a cos

n

0

e cos n d 2 I (a),

π
θ θ θ = π∫    

(17)

where nI (z)  is a modified n-th Bessel function, expressions *s *c

n nu , u  from (15) are the coefficients 
in the Fourier decomposition for fundamental solution, that can be written as:
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( ) ( )

( )

1/2
*c 2 2 2

n x x3/2

x

n

*s

n

( c) 2 c
u , x, t ( t) exp r r (z z )

4k ( t)(4 k ( t))

c r r
I ,

2k( t)

u , x, t 0.

ξ ξ

ξ

  ρ ⋅ ρ
ξ τ − = − Η τ − × − + + − ×  τ −π τ −  

 ρ ×  τ − 


 ξ τ − =

 

Define *c

nq  and *s

nq . Because 
*

*

x

u
q ( x , t) k ,

n

∂
ξ − τ − =

∂
 then 

x x

* *
*

r z

x x

u u
q k n n .

r z

 ∂ ∂
= + ∂ ∂ 

 For  

 
axially symmetric domain 

x xx x r z
ˆ ˆ ˆn r n zn= +  and we obtain:

( )

( )

* * 1/2

x3/2

x x

2

* * 1/2

x3/2

x x

2

x ( 2) x cu u ( c)
( t) 2 r 2 r cos

r x r 4k ( t)(4 k ( t))

x c
exp ,

4k ( t)

x ( 2) x cu u ( c)
( t) 2 z z ( 1)

z x z 4k ( t)(4 k ( t))

x c
exp

4k ( t)

ξ

ξ

∂ ξ − − ξ − ρ∂ ∂ ρ
= ⋅ = − Η τ − − θ ×

∂ ∂ ξ − ∂ τ −π τ −

 ξ − ρ
× − 

τ − 

∂ ξ − − ξ − ρ∂ ∂ ρ
= ⋅ = − Η τ − − − ×

∂ ∂ ξ − ∂ τ −π τ −

 ξ − ρ
× −

τ −
.












 
  
 

This system, using (17), can be rewritten as: 

( )

( )

*
2 a cso

n n n

x

*
a cso

q q

x

u
A B cos C cos e ,

r

u
A B cos e ,

z

θ

θ

∂
= + θ + θ ∂


∂ = + θ∂

where

( )( )

( )( )

2
2 2

1/2 x x

n 3/2

2
2 2

x x

( 2) c r r z z
( c)

A ( t)
4k( t)(4 k ( t))

c
exp r r z z ,

4k ( t)

ξ ξ

ξ ξ

− ρ + + −ρ
= − Η τ − ×

τ −π τ −

 ρ
× − + + − τ − 

( )( )
( )( )

1/2
2

2 2 2

n x x x3/2

2
2 2

x x

( c) ( 2) c
B ( t) 2 r r r z z 2 r r

4k( t)(4 k ( t))

c
exp r r z z ,

4k ( t)

ξ ξ ξ ξ

ξ ξ

ρ − ρ  = − Η τ − − + + − − × τ −π τ −

 ρ
× − + + − τ − 

( )( )

1/2
2

n x3/2

2
2 2

x x

( c) ( 2) c
C ( t) 4r r

4k( t)(4 k ( t))

c
exp r r z z ,

4k ( t)

ξ

ξ ξ

ρ − ρ
= − Η τ − ×

τ −π τ −

 ρ
× − + + − τ − 
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( )( )

( )( )

2
2 2

1/2 x x

q x3/2

2
2 2

x x

( 2) c r r z z
( c)

A ( t) ( 2)(z z )
4k( t)(4 k ( t))

c
exp r r z z ,

4k ( t)

ξ ξ

ξ

ξ ξ

− ρ + + −ρ
= − Η τ − − − ×

τ −π τ −

 ρ
× − + + − τ − 

( )( )

1/2
x

q x3/2

2
2 2

x x

( 2) c( 2 r r )( c)
B ( t) ( 2)(z z )

4k( t)(4 k ( t))

c
exp r r z z .

4k ( t)

ξ
ξ

ξ ξ

− ρ −ρ
= − Η τ − − − ×

τ −π τ −

 ρ
× − + + − τ − 

Applying obvious trigonometric transformations and entering notation:

xc r r
a ,

2k( t)

ξρ
=

τ −
 

we find *c

nq ( , x, t)ξ τ −  and *s

nq ( , x, t) :ξ τ − :

( ) ( )

( ) ( )

( )

x

x*c

n r x n n n n 1 n 1

n n n 2 n 2 z q n q n 1 n 1

*s

n

c r r 1
q , x, t 2 n k A I B I (a) I (a)

2k( t) 2

1 1 1 1
C I (a) I (a) I (a) 2 n k A I a B I (a) I (a) ,

2 2 2 2

q , x, t 0.

ξ
+ −

+ − + −

  ρ ξ τ − = π + + +   τ −  


   + + + + π + +       


 ξ τ − =

Thus, we find the explicit formulas for finding functional coefficients (components) of the Fou-

rier decomposition of fundamental solutions * *u , q  from (15). Consequently, (15) defines a system of 
integral equations, solving this system we find the boundary values of functions (or s

nu , or s

nq ). Obtain-

ing the Fourier series of the form (6), we find the unknown boundary values. Then, using the integral 
representation (5), we can get the complete solution to the problem in the axially symmetric domain.

3. Conclusions

The work is devoted to investigation of non-stationary initial boundary value problem of 

thermal conductivity with not axially symmetric right part of the equation and boundary conditions 

for axially symmetric domain in Minkowski space. 

Using the methods of boundary integral equations and the Fourier decomposition, the prob-

lem is reformulated as an infinite set of two-dimensional singular integral equations for coefficients 
of expansion. Fundamental solutions, used in the integral representation of the solution in the do-

main and on the border, are built in the explicit form and studied.

Reducing of the initial four-dimensional boundary problem to the set of two -dimensional 

equations by taking into account the axisymmetric of the domain is important for the problem of 

constructing of the effective numerical boundary element method for Real-Time settlements of 

behavior of structures.

Interpretation of initial-boundary problem as a boundary value problem in Minkowski 

space allows to use the results of the article for solving problems in axially symmetric domains 

variable over time. 

The ideas and methods of this study can be applied in very similar problems in linear ther-

moelasticity. Such vector problems are related and imply a transition to a matrix description. Ac-

cording to the results of the article, such transition is possible. In addition, using the Kirchhoff 

transformation, the proposed approach can be generalized for problems with spatial inhomoge-

neous coefficient of thermal conductivity and for nonlinear problems (with power nonlinearity of 
thermal conductivity coefficient).
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