
ADBU Journal of Electrical and Electronics Engineering (AJEEE)  |   Volume 1, Issue  1   | May 2017 

 

 
www.tinyurl.com/ajeee-adbu    | ISSN: 2582-0257 Page |   14 
 

A Review on Optimal Operation of Distributed 

Network Embedded to Wind-Battery Storage 

System 

Swapnali Hazarika
1
, Smriti Dey

2
 

 
1,2 Department of Electrical and Electronics Engineering, Assam Don Bosco University,  

Airport Road, Azara, Guwahati -781017, Assam, INDIA. 
1mamunu.hazarika@gmail.com, 2smriti.nita@gmail.com* 

 

Abstract: Energy is a vital requirement for today’s socio-economic welfare and 

development. But due to the continuous increase of the demand the conventional energy 

resources are depleting day by day and on the verge of extinction. Hence more renewable 

generation units are emphasised to integrate to the power network to supply the required 

demand. This incorporation of the distributed generation into the distributed network has 

the advantages of controllability, flexibility and tremendous potential if it can be exploited 

properly. However, due to their intermittent and unpredictable nature, there is a need for 

energy storages to ensure continuous operations, i.e., to meet the load all the time. There 

are many possible options for energy storage, but the most popular and technologically 

sound option is battery storage. Along with this battery storage system (BSS), a power 

conditioning system (PCS) has to be connected for generation of both active and reactive 

power from the BSS which in turn increases the overall installation cost of BSS. Moreover, 

the energy storage cost is a function of the storage device power,  energy capacities and 

their specific costs depending on the chosen technology of optimization. Thus, profit from 

those renewable energy producers have to be maximized, and losses are to be minimized by 

using dynamic optimization techniques. But along with the advantages there comes the 

complexities due to the inclusion of distributed generation and the additional energy 

storages in the power system network. Moreover, it is highly critical to operate the vast 

system optimally. Hence there are lots of research had been done or are in process for 

finding the proper approach of optimization of the system.  This paper presents a review of 

the current state of the optimization methods applied to renewable and sustainable energy 

source embedded with the Energy storage for maximization of the revenue obtained from 

the power trading to the network. 
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1.  Introduction 
 
Renewable Power Generation systems are being 
increasingly preferred for clean power generation, 
to reduce the dependency on fossil fuels and to 
cease greenhouse gas emissions. Many countries 
have implemented various terms and policies to 
promote renewable energy in the distribution 
network. Many researches have been recently 
carried out for making the wind farms dispatchable. 
This can be accomplished by integrating a Battery 
Storage System (BSS) with these wind farms [1]. It 
was shown that the only economically feasible BSS 
technology is Zn/Br [10]. With high Photo Voltaic 
(PV) and wind penetration in some regions, there is 
a surplus power available, which is utilized for 
charging the Battery Storage System during low 
demand and deliver power during high demand. 
From the consumers’ point of view, use of a BSS 
can lower the electricity costs as it can store 
electricity bought at lower prices during off-peak, 

which can be used during peak load periods in the 
place of expensive power [7]. The potential of BSS 
can be well understood from Fig. 1. 

 
Fig. 1: Daily wind-demand power profiles and 

electricity price model 
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Fig. 1 schematically shows the daily 
demand and Wind Power profiles. It can be seen 
that, during time periods of T1  and T3 (off-peak), 
the excess energy can be stored in BSS. This stored 
energy can be used during the time period of T2 
(peak), in which the demand is more than the wind 
power penetration. In a research by A. Gabash and 
P. Li [2], a method based on genetic algorithms 
(GA) is applied to evaluate the impact of the cost 
of energy storage on the economic performance of 
a distribution substation .Thus by optimizing the 
daily /weekly scheduling of the renewable 
generating plants integrated with the BSS should be 
done in order to maximize the total revenue [1]. 
BSS should be connected to the AC power system 
through PCS which is a Flexible AC Transmission 
System (FACTS) device  used  for  accommodating  
the  bidirectional  power conversion between AC 
and DC system. 

 
Fig. 2: Arrangement of Storage system and PCS 
 
2. Optimization Techniques 
 
The  best  suitable  or  the  most  acceptable  design  
of  all feasible  conceptual  designs  can  be  said  
as  the  optimum design of a system. This process 
of designing the optimum system by satisfying 
some objective is called optimization; it follows a 
process or methodology of making something fully 
perfect, functional, or effective as possible; 
specifically by using the mathematical procedures. 
Simply, optimization is the process of maximizing 
of a desired quantity or minimizing of an undesired 
one [17]. Whereas, the various techniques used for 
designing the optimum model are known as the 
optimization techniques. In terms of Electrical 
Energy System, the optimized power system should 
minimize the fuel cost or minimize the losses, keep 
the power outputs of generators, bus voltages, 
shunt capacitors/reactors and transformer’s tap-
setting within their secure bounds and maximize 
the total profit. 
 

Some of the classical optimization 
techniques are direct method, gradient methods, 
linear programming method (LP) and interior point 
method. Some of the advanced optimization 
technique includes simulated annealing, 
evolutionary optimization algorithms (Genetic 
algorithm(GA), Particle swarm optimization(PSO), 
Ant colony optimization (ACO), Estimation of 

distribution algorithm (EDA), Differential 
Evolution(DE), Evolutionary Strategy(ES), 
Evolution Programming(EP), Bacteria Forging 
Algorithm (BFA), Bee’s colony Algorithm (BCA) 
etc.). The choice of suitable optimization method 
depends on the type of optimization problem. Due 
to the fast development of digital computers, there 
are major advances in optimization techniques. 
Techniques like GA and PSO have become very 
popular and powerful tools in power engineering to 
minimize the electricity cost in the electricity 
market from consumers’ point of view and also to 
enhance the profit derived from power trading. The 
classical optimization techniques are also useful for 
single as well as multi-dimensional optimization 
problems, but there are some drawbacks and they 
are less effective and reliable compared to the 
advanced techniques; because unlike advanced 
optimization method, classical methods do not use 
the information gathered from previously solved 
points [18]. Moreover, in the gradient method, the 
algorithm terminates as the gradient of the 
objective function reaches very close to zero. The 
slope or gradient of the function indicates what 
direction to move locally. Thus, it uses the 
knowledge of derivative information to find the 
local optimum point, not the global optimal point 
[19]. Again, for the LP method, there lies the 
condition of both objective and constraints being 
linear. Thus, the classical methods are inferior for 
finding global optimum; moreover, they are highly 
sensitive to the initial conditions. This suggests that 
to solve the complex, non-linear, discrete, 
continuous or mixed variables, multiple conflicting 
objectives, discontinuity etc., as the power flow 
optimization problem of the power system, there is 
a need of some robust techniques. Hence, advanced 
optimization methods come into play. Among 
them, for the problems having a very large number 
of decision-variables and non-linear objective 
functions, Evolutionary algorithms are often used. 
The evolutionary algorithms are based on 
population-based search methods that incorporate 
random variation and selection. The first 
evolutionary-based optimization technique was the 
genetic algorithm (GA) [18]. Eventually,   more   
optimization algorithms like Particle Swarm 
Optimization (PSO) [16], Ant Colony Optimization 
(ACO) and Estimation of Distribution Algorithm 
(EDA) etc. came into existence. 
 

According to the characteristics of the 
evolutionary algorithm, one algorithm cannot be 
superior to the other in all kinds of cases. Hence, 
for a class of problem, one has to observe which 
algorithm is reliable to obtain an optimized result. 
Another popular approach of solving optimization 
problem is the implementation of the Algebraic 
Modeling Languages (AML) like General 
Algebraic Modeling System (GAMS) [25], 
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Advanced Interactive Multidimensional Modeling 
System (AIMMS) [26], A Mathematical 
Programming Language (AMPL) [27], LINDO 
[28], etc. AML are high-level computer 
programming language, which uses different 
algorithms called solvers to handle different 
mathematical problems. They are also suitable for 
modelling of linear, nonlinear, mixed integer, large 
scale and complex optimization problems, as they 
are proficient in high-level mathematical 
computations. Hence, AML can easily be 
implemented to the power flow optimization 
problems. 
 
3. Optimal Power Flow 

 
The finding of the real and reactive powers 
scheduling of power plant in a way that it 
minimizes the overall operating cost of the 
interconnected power system by satisfying some 
set of operating constraints is known as the optimal 
power flow (OPF) problem. The OPF was first 
formulated by Carpentier in1962, and it was proved 
to be a very difficult problem during those days. 
There are commonly three types of problem in 
power system. They are load flow, economic 
dispatch and OPF, while economic load dispatch 
and load flow are the sub-problem of OPF. For a 
very large system, the modern trend is to use the 
metaheuristic algorithms to solve the non-convex, 
non-linear, complex OPF [20]. A metaheuristic 
algorithm is a higher-level procedure to find a near 
optimal solution; it guides the search space. These 
metaheuristics can be both local/ global search 
based. As OPF is population-based optimization, 
hence global search metaheuristics are applicable. 
Such global search metaheuristics include the 
evolutionary computation, GA, PSO, ACO etc. 
[21]. Even though, the cost of generation and real 
power generation can be found out using the 
versatile Newton-Raphson (NR) method. However, 
by using the developed Constraint, GA-OPF 
through crossover and mutation operations   can   
further   reduce   the   cost   of   generation 
[21].OPF is a large-scale, static optimization 
problem with both continuous and discrete control 
variables. The discrete control variables are the 
switchable shunt devices, transformer tap positions, 
and phase shifters and due to their presence, it 
becomes complicated to derive the problem 
solution. In the research by L. L. Lai, J. T. Ma, R. 
Yokoyama and M. Zhao [21], a simple genetic 
algorithm (SGA) is applied for OPF solution. The 
control variables taken in their work are generator 
active power outputs, voltages, shunt devices, and 
transformer taps. Complexity arises when the 
number of control variables increases. The GA-
OPF approaches do not have the limitations of the 
conventional methods in the modelling of non-
convex cost functions and discrete control 

variables. However, they do not scale easily to 
larger problems, because the solution weakens with 
the increase of the chromosome length, i.e., the 
number of control variables. Thus, the existing GA-
OPF is limited to very small problems. So in 
addition to the basic genetic operators of the SGA 
[21], the advanced and problem-specific operators 
are used to enhance the performance of GA. The 
three basic genetic operators are parent selection; 
crossover and mutation. Thus with the 
incorporation of the problem, specific operators 
such as Gene Swap operator (GSO), Gene Cross 
Swap Operator (GCSO), Gene Copy Operator 
(GPO), Gene Inverse Operator (GIO) and Gene 
Max-Min Operator (GMMO) the GA can solve 
larger OPF problems [7]. But, unfortunately, recent 
researchers have identified some fault in the 
performance of GA [23]. Hence evolutionary 
computation PSO was introduced to solve the OPF 
problem for its simple concept and flexibility. It 
can be observed from some researchers, like the 
results obtained by M. A. Abido [24], that PSO 
technique is highly effective and superior over the 
classical techniques and genetic algorithm. In 
addition to these hybrid heuristic algorithms (i.e. 
use of two optimization techniques together) are 
also used for solving OPF problem in order to get 
better results [30]. Optimization of the power 
network can also be done using AML [25-29]. 
 
4. Optimization of a Combined 

System 
 
The electrical power system is a network of a large 
number of electrical components used for 
supplying, transferring and utilizing power. 
Economically, electricity (both power and energy) 
can be bought, sold and traded. The profit derived 
from the power trading should be always more than 
all other costs (like generation cost, operation and 
maintenance cost etc.), which in turn will affect the 
electricity pricing. Hence, optimization plays a 
great role in such condition. Hence, ACOPF is 
solved every year for power system planning, 
every-day for the day-ahead market, every hour and 
in-fact for every 5 minutes [31]. OPF finds out the 
optimal solution to an objective function subject to 
the power flow constraints and other operational 
constraints such as generator constraints, thermal 
stability constraints and voltage constraints and 
many more according to the requirement. But, 
when the renewable generation units are integrated 
to the power network, the designing of an optimum 
model becomes more complex; because along with 
the renewable source, other auxiliaries will also be 
incorporated such as BSS, PCS etc. Hence, to find 
the optimal operation of such an integrated system, 
there may be a need for designing multiple 
objective functions. As a result, the complexities of 
the power system increases further. 
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5. Optimal Operation of Wind-

Storage System 
 
Energy storage is one of the efficient and effective 
solutions to store and use energy on demand. It 
provides flexibility throughout the grid and 
enhances stability, power quality and reliability of 
supply. Hence energy storage systems, when 
embedded with the renewable energy generation, 
provide a wide range of ways to manage power 
supplies and develop a more stable energy 
infrastructure, and as a result, the cost of energy for 
utility providers and consumers get reduced as well 
as it brings down the operating cost of generation. 
Despite, the optimal BSS capacity is closely 
associated with the shape of load curves and 
parameters of all generating units in a power 
system [3].  
 
Energy storage systems are comprised of three 
main modules: 
 
a) The Battery storage, i.e., BSS 

b) The Power Conditioning System (PCS), which 
helps the energy the energy conversion from 
AC to DC or DC to AC 

c) The control system that controls the operation 
of the energy storage system 

 
Since several decades, the optimization 

techniques are applied to the power system 
problems, and there seems to be a competition 
among the optimization algorithms, applied to the 
growing complexity of power system planning and 
operations related problems [4]. Optimization of 
ESS includes the optimal operation of the storage 
system with the least losses during charging and 
discharging. Moreover, the losses during AC-DC 
conversion also should be less. For the Renewable 
Embedded Storage System (RESS) the optimal 
scheduling of generation should be done for 
supplying power demand to the network. In the 
work by A. Gabash and P. Li [1], the operation of 
Wind-Battery stations is considered which is 
composed of two main substations. First, a wind 
farm substation, which can dispatch power hourly. 
Second, a Battery substation in which its power and 
capacity are selected initially through simulation 
procedures for satisfying the electricity market 
requirements at the same time [1]. 
 

The wind farm (WF) is designed to 
generate the active and reactive power. During low 
demand, the excess power is used to charge the 
battery through PCS. While during high demand, 
the power to the network is supplied by the wind 
farm as well as the battery. 

 
Fig. 3: Structure of the proposed W-Battery station 

and the total operating scheme 
 

In Fig. 3, Psell(k) is the hourly active 
power to be sold to the electrical power system, 
Pch(k) is the hourly active power used for charging 
the battery substation and Pdis(k) is the hourly 
active power discharged to the network from the 
battery substation respectively. Typically, the 
power factor (PF) of a wind farm is controllable 
from 0.95 inductive to 0.95 capacitive [5]. For 
simplicity 0.962 inductive power factor is assumed   
for the wind farm substation, which means 
absorbing reactive power, Qw(k) [1]. During 
charge/discharge processes, there are power losses. 
Generally, charging efficiency is assumed to be 
80% and during the discharge, the efficiency is 
assumed to be 75% [6]. 
 
6. Profit Maximization 
 
Besides optimizing the  operation of  the  battery, if  
active power and reactive power are optimized 
separately using optimal power flow (OPF), then 
the total profit derived can be increased hence the 
efficiency of the power network can be improved 
[7]. The profit can be farther increased if combine 
Active-Reactive Optimal Power Flow (AROPF) is 
formulated in Distributed Networks (DNs), which 
is embedded with wind generation and battery 
storage, satisfying all the operational constraints. 
The solution provides an optimal strategy, which 
ensures the feasibility and efficiency and enhances 
the profit significantly. The optimized output 
obtained from the optimization of energy storage is 
implemented for optimizing the AROPF [2]. 
Generally, the solution for Active Reactive Optimal 
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Power Flow is obtained considering the fixed 
length of the charge and discharge cycle of BSSs. 
This can lead to a low profit because the profiles of 
renewable generation, demand and energy prices 
vary from day-to-day. Due to the dynamic 
behaviour of renewable energy sources (e.g., wind 
and solar), demand, and energy prices leads to a 
complex process and needs adaptive strategies to 
deal with. The integration of the BSS to the energy 
supply networks can help in controllability of 
charging and discharging time interval [10]. Hence, 
if the charging/discharging time of BSS can be 
controlled with respect to the input parameters, the 
profit output can be increased. The lifetime of a 
battery storage depends on a fixed number of 
charge/discharge cycles and days of operation. This 
can be represented by a replacement period (in 
years) by the formula [5]: 
 𝑟 =

𝑝𝑛 × 𝐷 

 
where p is the total number of charge/discharge 
cycles in the lifetime, D is  the  annual operation 
days,  and    n    is  the number of charge/discharge 
cycles per day. Generally, the number of charging 
or discharging cycle is kept to be one in order to 
increase the replacement period of the battery and 
for optimal planning and operation [10]. Thus, the 
whole system of optimization wind battery 
embedded system can be represented by three 
objective functions. 
 
6.1 Objective      function      for      Energy      

Storage Optimization 
 
When the ESS is embedded with a wind farm, the 
objective function can be formulated as [1]: 
 

(i) 
 
where Cpr(k) represents a vector of hourly active 
power prices, Cch(k) is the charge operation cost, 
Cdis(k) is the discharge operation cost. The 
objective is to maximize profit. The first 
summation term gives the total profit from active 
power trading in which the losses in the revenue by 
charging/discharging are subtracted. The second 
summation term is formulated to reduce the 
differences of control variables between two 
successive time intervals in order to evaluate the 
minimum constant reactive power capability. In the 
work by A. Gabash and P. Li [1], a weighting 
factor β is used to formulate a multi-objective 
model where the generation cost and system 
network loss is combined together. 
 

6.2 Objective function for AROPF 

 
In the work by A. Gabash and P. Li [2], the 
objective function for combined AROPF in DNs 
with embedded wind generation and battery storage 
is given by: 
 
Rmax = (total revenue from active power trading of 

wind farm) – (cost of energy losses)  .…(ii) 
 

 

 
 
Where G(i,j) is the real component of the complex 
admittance matrix elements. Pw(i,h) is  the active 
power of wind generation at bus i during hour h. 
Vr(i,h) is  the real component of complex voltage at 
bus i during hour h. Vim(i,h) is the imaginary 
component of complex voltage at bus i during hour 
h. β₀ is the wind power curtailment factor, which is 
responsible for maintaining the capacity of the BSS 
(i.e., to spill a part of the power when the installed 
capacity of the BSS is not sufficient to 
accommodate the whole power or it may violate 
the other system constraints) [2]. The range of β₀ is 
0 to 1. If there is no wind power β₀ = 1 or β₀ ≤ 1 
 
6.3 Objective function for finding the 

optimal time duration of charging and 

discharging of the battery 

 
In another work by A. Gabash and P. Li [10], it  is  
shown  to  be a two-stage iterative framework 
because the whole optimization problem is divided 
into two sub-problems. In each iteration, the integer 
variables (hours of charge and discharge periods) 
will be optimized with an efficient search method 
in the upper stage, while the continuous variables 
are handled by a Non-Linear Programming (NLP) 
solver in the lower stage. This forms a complex 
Mixed-Integer Nonlinear Program (MINLP). The  
optimization  problem  will  have three additional 
integer variables (the three time variables) along 
with the continuous control variables for AROPF 
(i.e., active  power  charge,  active  power  
discharge  of  BSSs, reactive   power   dispatch   of   
BSSs   and   wind   power curtailment). 
 

The objective function of general AROPF 
depends on the time variable. The function for 
maximizing the profit is represented by 
 

Rmax = F(x, u, t)      ............................................ (iii) 
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where x is the vector of state variables of the 
system, i.e., real and imaginary component of 
complex voltage at PQ buses, active and reactive 
power injected at slack bus and energy level of 
BSS. u is the vector of continuous control variables 
including active power charge/discharge of BSS 
and reactive power dispatch of BSSs. Lastly, t is 
the vector of the integer control variables, i.e., the 
number of charge/discharge hours per day. In 
eqn.(iii), the function F is the total revenue from 
wind power and BSSs minus the total cost of 
energy losses (includes the cost of active energy 
losses in the grid) [2]. 
Subjected to  
g (x,u,t) = 0   .....................................................  (iv) 
xmin ≤  t1 ≤  xmax   ..................................................(v) 
umin ≤  t2 ≤  umax   .................................................(vi)  
 
where, g(x,u,t) in eqn.(iv) represents the equality  
constraints including active and reactive power 
balance equations (they are nonlinear terms). The 
energy balance equations for BSSs are also 
included in eqn.(iv). The inequality constraints in 
eqn.(v) and eqn.(vi) include voltage bounds, active 
and reactive bounds at the slack bus, and main 
feeder bounds. The operational constraints in 
eqn.(vii) and eqn.(viii) are also included in the 
inequality constraints. 

 
Fig. 4: Input-output model for the combined A-R-

OPF with a search algorithm. 
 

The two- stage model gives the sub- objective 
function for eqn.(iii). They are given by eqn.(a) and 
eqn.(b).  
The upper stage solves the following problem. 
 
Max F [x(t),u(t),t]      .......................................... (a) 
Subjected to: 
t1 + t2 + t3 = tmax ,where tmax= 24 and tmin= 0 ......(vii) 

 
 
where tmin and tmax are the minimum and maximum 
bounds on time variables, respectively. The cycle 
of charge is determined by two integer variables 

representing the time periods (hours) of charge (t1 
and t3). The cycle of discharge is defined by one 
integer variable representing the hours of discharge 
(t2). As the daily operation of BSSs are considered, 
so tmin= 0 and tmax = 24 . 
 

With the optimum value of t delivered 
from the upper stage, the lower stage solves the 
following NLP problem, i.e., AROPF becomes: 
Rmax = F(x,u) ....................................................... (b)  
Subjected to 
g(x,u) = 0 ............................................................ (c) 
 

And inequality constraints are given by 
eqn.(v) and eqn.(vi). The solution of the lower 
stage provides the objective function value for the 
upper stage, where an update will be made for the 
next iteration until it reaches an optimum result. 
 

 
 
Fig. 5: Illustration for one charge/discharge cycle 

every day. A, and B stand for fixed and 
flexible operations of BSS, respectively 

 
The model equations formulated by A. 

Gabash and P. Li, [1,2] for the system, describe the 
active power exchanges in the designed model as 
well as the change in the energy level in the BSS. 
 
Psell(k) = Pwn(k) + Pdis(k) …………...……….. (ix) 
Pw(k) = Pwn(k) + Pch(k)  ..……………..……… (x) 
 
where k = 1……..24, Pwn(k) is the hourly active 
power delivered to the network by the wind farm, 
Pw(k) is the hourly available wind power for a 
given wind speed. 
 

The energy level of the battery is given by 
hourly energy balance equation in each storage 
unit. For optimization, it is commonly recognized 
that the energy level in the storage unit at the final 
time interval should be equal to that at the initial 
time point [1]. 
 
E(k) = E(k-1) + ƞch Pch(k)∆t – (1/ƞdis) Pdis(k)∆t  
(for k = 1…….24) …………………..…………(xi) 
 
Where,  
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E(k) = the energy storage level in the Battery 
substation in kth hour 
ƞch = charging efficiency of BSS 
ƞdis = discharging efficiency of BSS 
The time interval Δt in research of A. Gabash and 
P. Li [1] is considered to be one hour.  
 

Finally, the feasibility, capability and 
efficiency of the proposed model are verified with 
the IEEE 41-Bus test system. Taking into 
consideration of various equality and inequality 
constraints of the system for optimization of energy 
storage could be obtained by using the optimizing 
tools like General Algebraic mathematical system 
(GAMS), Genetic Algorithm (GA) or Particle 
Swarm optimization (PSO) etc. [8]. 
 

After solving the optimization problem for 
the objective given by eqn.(i), the optimal scenario 
of Pch(k) and Pdis(k) can be obtained. Thereby, the 
reactive power from the Battery substation Qsn(k) 
[hourly available] can be calculated as follows [9] 
 
Qsn(k) = √(Sr

2-Pch
2) if charging (k =1,..,24) …. (xii) 

 
          = √(Sr

2-Pdis
2) if discharging (k =1,..,24)..(xiii) 

 
where Sr is the rated apparent power of the selected 
PCS, suitable for the battery station. Again the 
hourly reactive power available from the wind farm 
substation Qw(k) is given by 
 
Qw(k) = Pw(k) tan Φ ……………...………….. (xiv) 
 
where Qw(k) is set to  work with the  fixed power 
factor (cosΦ = 0.962) lagging (i.e. absorbing 
reactive power) [1]. Thus, the available reactive 
power to be sold to the electrical power system 
Qsell(k) can be calculated using relation: 
 
Qsell(k)=Qw(k) +Qsn(k) …………………...…... (xv) 
 

Therefore, the reactive power capability 
from the wind-battery station can be controlled 
using suitable PCS [1]. This reactive power can 
satisfy the local reactive power requirement of the 
wind farms and provide sufficient, constant and 
fully controlled reactive power to the electrical 
power system. In addition, it can also be used in a 
hybrid reactive power sources system by dynamic 
optimal operation at the W-B station. The reactive 
power could also be sold to the electrical power 
system for increasing power quality, voltage 
regulation, power losses minimization etc. 
Moreover, it increases the individual profit of wind 
farms through their reactive power compensation 
capabilities. Hence, the necessity of installing other 
reactive power compensators such as Static 
Synchronous Compensator (STATCOM) and 
Mechanically-Switched Capacitors and Reactors 

(MSCR) will get reduced in future. The 
optimization problem that is defined can be solved 
under the MATLAB environment, using 
FMINCON function [1], which can find a 
minimum/maximum of a constrained nonlinear 
multivariable function. 
 

When a combined problem is formulated 
for active-reactive optimal power  flow (A-R-OPF) 
for  DNs  with  embedded wind generation and 
battery storage the objective was to maximize the 
total profit   meanwhile the maximization of the 
amount of available reactive power. It was shown 
by A. Gabash and P. Li [2] that a large amount of 
reactive power can be achieved by an optimal 
operation of Wind-battery system embedded to 
DN. The formulated equations of the system show 
it to be a highly Non-Linear system; hence the 
Newton Raphson Power Flow Method is most 
suitable for finding the bus voltages of the required 
system. However, the initial values in the A-R- 
OPF method also has an impact on both the 
feasibility and computational efficiency of the 
system [2]. Hence the initial values  are  generally  
chosen  to  be  a  flat  start  for  all computations, 
i.e., 
Pch = Pdis = Qdisp = Vim = Ps = Qs = E = 0 
Whereas 
Vr

(0) = 1 
 

For different initial values, the solution 
converges to the same results, but the CPU time is 
different. Only when the initial values are very far 
from the flat start, a convergence problem may 
occur. The problem of AROPF in the work of A. 
Gabash and P. Li [2] with the objective function, as 
shown in eqn.(ii), is solved by using GAMS 
satisfying all the operating constraints. In addition, 
the NLP solver or algorithm used for solving the 
AROPF is CONOPT3, which is suitable for solving 
models with highly nonlinear constraints. 
 

But in AROPF, even though charging-
discharging power is flexible, the battery operation 
was restricted as the charging/discharging time of 
the battery was considered to be fixed. So the A-R-
OPF method is extended by developing flexibility 
in the battery management system. This can be 
accomplished by optimizing the lengths (hours) of 
charge and discharge periods of BSSs for each day 
(24 hours). This, together with the A-R-OPF 
formulation, leads to a complex mixed-integer 
nonlinear programming (MINLP) problem, which 
cannot be readily solved by available approaches. 
GA has been successfully applied in solving many 
optimization problems in power systems, especially 
when both integer and continuous variables are 
present. The authors Anastasios G. Bakirtzis et al. 
[7] presented an enhanced GA for the solution of 
OPF with both continuous and discrete control 
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variables. Since all these methods treat the 
continuous and integer variables simultaneously, 
they are not suitable to be used for the large-scale 
complex MINLP problem framework to 
decompose the optimization problem. Thus, a two-
stage model is designed represented by (i) and (ii). 
In the upper stage, the time variable (i.e., hours of 
charge and discharge periods) are optimized based 
on the day-to-day profiles and delivered to the 
lower stage. In the lower stage, the A-R-OPF 
problem is solved by a Non-linear programming 
solver and the resulting objective function value is 
sent to the upper stage for the next iteration. 
 

The search method for selecting the 
optimal time interval is a complex problem. It is 
demonstrated with the help of a search space 
shown in Fig. 6(a) and 6(b) [10]. 

 

 
Fig. 6: (a) Illustration of the search space                

(b)   String-structure. 
 
In the search space, there is a total of 325 
combinations as can be seen from Fig. 6(a). At 
first, an initial combination is selected (say t1 = t2 = 
t3 = 8, i.e., at the center of the triangle) and this 
initial combination is provided to the lower stage 
for evaluating the objective function   then the 
fitness value is recorded. Then keeping one of the 
variables fix (say t3) and sweeping another    
variable (t1) bit by bit backwards or forward from 
its initial value, different combinations are set. For 
each string, different fitness is recorded and among 
them, the best is selected for t1. Then again, 
keeping t1 fix for that value, sweeping is done with 
t3 and the best value, which is obtained from it, is 
the best string found; its fitness represents the 
optimal operations for a specific day. Thus, the 
optimal lengths of charge/discharge cycle of BSSs 
for daily operations or even multiple days can lead 
to a considerably higher profit in comparison to 
that from a fixed operation strategy [10]. 

7.  Conclusion 
 
Many power related issues influence the operation 
of the Distributed Network (DN); and when Wind-
Battery system is embedded with DN, the system 
becomes more complex to carry out the optimal 
operation of the network. Thus, many studies are 
done or still going on to find the most acceptable 
and feasible optimization technique that could be 
implemented to the power system for deriving the 
optimal operation. It can be concluded that the 
choice of suitable optimization method totally 
depends on the type of optimization problem 
formulated. In the case of deriving an optimized 
result of a wind-battery embedded system 
integrated into the power network, the problem is 
divided into parts then optimization is applied to 
maximize the profit of the overall system. 
Moreover, Energy Storage facilitates many 
advantages for optimal operation of the power 
network and has a great impact on profit 
maximization, specially when the generation is 
unpredictable. As the input parameters of the 
network are variable, a flexible and adaptive 
optimized operation strategy of storage systems can 
control the power flow and reduce the power 
losses, thereby enhancing the derived revenue from 
the power trading to the network. However, there is 
a very limited number of studies done related to the 
storage systems in grids such as design, dimension, 
location, operation planning and control of BSSs 
[10]. Hence, there lies immense opportunities and 
potential of BSS yet to be explored  in  the  field  of  
optimal  power  flow,  which  if explored will be 
promising in the future energy networks. 
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