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1. Introduction

The members and structures composed of laminated composite material are usually very thin, and hence more
prone to buckling. Buckling phenomenon is critically dangerous to structural components because the buckling of
composite plates usually occurs at a lower applied stress and generates large deformations. This led to a focus on the
study of buckling behavior in composite materials. General introductions to the buckling of elastic structures and of
laminated plates can be found in (Chai & Khong, 1993), (Narita & Fukushi, 1996), (Turvey & Marshal, 1995),
(Singer et al., 1998, 2002), (Reddy, 2004), and (Berthelot, 1999). However, these available curves and data are
restricted to idealized loading, namely, uniaxial or biaxial uniform compression.
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Due to the importance of buckling considerations, there is an overwhelming number of investigations available in
which corresponding stability problems are considered by a wide variety of analysis methods which may be of a
closed — form analytical nature or may be sorted into the class of semi — analytical or purely numerical analysis
method.

Closed — form exact solutions for the buckling problem of rectangular composite plates are available only for
limited combinations of boundary conditions and laminated schemes. These include cross — ply symmetric and angle
— ply anti — symmetric rectangular laminates with at least two opposite edges simply supported, and similar plates
with two opposite edges clamped but free to deflect (i.e. guided clamp) or with one edge simply supported and the
opposite edge with a guided clamp. Most of the exact solutions discussed in the monographs of (Whitney, 1987),
who developed an exact solution for critical buckling of solid rectangular orthotropic plates with all edges simply
supported, and of (Reddy, 1997, 1984), ( Reddy & Phan, 1985), (Reddy & Khdeir, 1989) and (Leissa & Kang, 2002)
and that of (Iyengar,1988). Bao et al., (1997), developed an exact solution for two edges simply supported and two
edges clamped, and Robinson (1955), who developed an exact solution for the critical buckling stress of an
orthotropic sandwich plate with all edges simply supported.

For all other configurations, for which only approximated results are available, several semi — analytical and
numerical techniques have been developed. The Rayleigh — Ritz method (Iyengar, 1988), the finite strip method
(FSM) (Chai & Khong, 1993) and (Dawe & Wang, 1995), the element free Galerkin method (EFG) (Liu et al.,
2002), the differential quadrature technique (Bert & Malik, 1997), the moving least square differential quadrature
method (Huang & Li, 2004) and the most extensively used finite element method (FEM) (Kim & Hoa, 1995), are the
most common ones.

The Kantorovich method (KM) (Shufrin et al., 2007), which is a different and in most cases advantageous semi —
analytical method, combines a variation approach of closed — form solutions and an iterative procedure. The method
assumes a solution in the form of a sum of products of functions in one direction and functions in the other direction.
Then, by assuming the function in one direction, the variation problem of the plate reduces to a set of ordinary
differential equations. In the case of buckling analysis, the variation problem reduces to an ordinary differential
eigenvalue and Eigen function problem. The solution of the resulting problem is an approximate one, and its
accuracy depends on the assumed functions in the first direction. The extended Kantorovich method (EKM), which
was proposed by Kerr (1969), is the starting point for an iterative procedure, where the solution obtained in one
direction is used as the assumed functions in the second direction. After repeating this process several times,
convergence is obtained. The single term extended Kantorovich method was employed for a buckling analysis of
rectangular plates by several researches. Eienberger & Alexandrov (2003), used the method for the buckling analysis
of isotropic plates with variable thickness. Shufrin & Eienberger (2005), extended the solution to thick plates with
constant and variable thickness using the first and higher order shear deformation theories. Ungbhakorn &
Singhatanadgid (2006), extended the solution to buckling of symmetrically cross — ply laminated rectangular plates.
The multi — term formulation of the extended Kantorovich approach to the simplest samples of rectangular isotropic
plates was presented by Yuan & Jin (1998), this study showed that the additional terms in the expansion can be used
in order to improve the solution.

March & Smith (1945), found an approximate solution for all edges clamped. Also, Chang et al., (1962),
developed approximate solution to the buckling of rectangular orthotropic sandwich plate with two edges simply
supported and two edges clamped or all edges clamped using the March — Erickson method and an energy technique.
Jiang et al., (1977), developed solutions for local buckling of rectangular orthotropic hat — stiffened plates with edges
parallel to the stiffeners were simply supported or clamped and edges parallel to the stiffeners were free, and Smith
(1990), presented solutions bounding the local buckling of hat stiffened plates by considering the section between
stiffeners as simply supported or clamped plates.

Many authors have used finite element method to predict accurate in — plane stress distribution which is then used
to solve the buckling problem. Zienkiewicz (1977) and Cook (1981), have clearly presented an approach for finding
the buckling strength of plates by first solving the linear elastic problem for a reference load and then the eigenvalue
problem for the smallest eigenvalue which then multiplied by the reference load gives the critical buckling load of
the structure. An excellent review of the development of plate finite elements during the past 35 years was presented
by (Yang et al., 2000).

Many buckling analyses of composite plates available in the literature are usually realized parallel with the
vibration analyses, and are based on two — dimensional plate theories which may be classified as classical and shear
deformable ones. Classical plate theories (CPT) do not take into account the shear deformation effects and over
predict the critical buckling loads for thicker composite plates, and even for thin ones with a higher anisotropy. Most
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of the shear deformable plate theories are usually based on a displacement field assumption with five unknown
displacement components. As three of these components corresponded to the ones in CPT, the additional ones are
multiplied by a certain function of thickness coordinate and added to the displacements field of CPT in order to take
into account the shear deformation effects.

Taking these functions as linear and cubic forms leads to the so — called uniform or Mindlin shear deformable
plate theory (USDPT) (Mindlin, 1951), and parabolic shear deformable plate theories (PSDPT) (Reddy, 1984)
respectively. Different forms were also employed such as hyperbolic shear deformable plate theory (HSDPT)
(Soladatos, 1992), and trigonometric or sine functions shear deformable plate theory (TSDPT) (Touratier, 1991).
Since these types of shear deformation theories do not satisfy the continuity conditions among many layers of the
composite structures, the zig — zag type of the plate theories introduced by Di Sciuva (1987) and Cho & Parmerter
(1993), in order to consider interlaminar stress continuities. Recently, Karama et al, (2003), proposed a new
exponential function {i.e. exponential shear deformable plate theory (ESDPT)} in the displacement field of the
composite laminated structures for the representation of the shear stress distribution along the thickness of the
composite structures and compared their result for static and dynamic problem of the composite beams with the sine
model.

Within the classical lamination theory, Jones (1973) presented a closed — form solution for the buckling problem
of cross — ply laminated plates with simply supported boundary conditions. In the case of multi — layered plates
subjected to various boundary conditions which are different from simply supported boundary conditions at all of
their four edges, the governing equations of the buckling of the composite plates do not admit an exact solution,
except for some special arrangements of laminated plates. Thus, for the solution of these types of problems, different
analytical and / or numerical methods are employed by various researchers. Narita & Leissa (1989), applied the Ritz
method with the displacement components assumed as the double series of trigonometric functions for the buckling
problem of generally symmetric laminated composite rectangular plates with simply supported boundary conditions
at all their edges. They investigated the critical buckling loads for five different types of loading conditions which are
uniaxial compression (UA — C), biaxial compression (BA — C), biaxial compression — tension (BA — CT), and
positive and negative shear loadings.

The higher — order shear deformation theories can yield more accurate inter — laminate stress distributions. The
introduction of cubic variation of displacement also avoids the need for shear correction displacement. To achieve a
reliable analysis and safe design, the proposals and developments of models using higher order shear deformation
theories have been considered. Lo et al., (1977), reviewed the pioneering work on the field and formulated a theory
which accounts for the effects of transverse shear deformation, transverse strain and non — linear distribution of the
in — plane displacements with respect to the thickness coordinate. Third — order theories have been proposed by
Reddy (1993); Librescu (1975), Schmidt (1977); Murthy (1981); Levinson (1980); Seide (1980); Bhimaraddi et al.,
(1984); Mallikarjuna & Kant (1993); Kant & Pandya (1988); and Phan & Reddy (1985). Pioneering work and
overviews in the field covering closed — form solutions and finite element models can be found in (Reddy, 1980);
(Noor & Burton, 1990); ( Bert, 1984); ( Kant & Kommineni, 1984); and (Reddy and Robbins, 1994).

For the buckling analysis of the cross — ply laminated plates subjected to simply supported boundary conditions
at their opposite two edges and different boundary conditions at the remaining ones (Khdeir, 1989) and (Reddy &
Khdeir, 1989), used a parabolic shear deformation theory and applied the state — space technique. Hadian & Nayfeh
(1993), on the basis of the same theory and for the same type of problem, needed to modify the technique due to ill —
conditioning problems encountered especially for thin and moderately thick plates. The buckling analyses of
completely simply supported cross — ply laminated plates were presented by Fares & Zenkour (1999), who added a
non — homogeneity coefficient in the material stiffnesses within various plate theories, and by Matsunaga (2000),
who employed a global higher order plate theory. Gilat el al., (2001), also investigated the same type of problem on
the basic of a global — local plate theory where the displacement field is composed of global and local contributions,
such that the requirement of the continuity conditions and delamination effects can be incorporated into formulation.

Many investigations have been reported for static and stability analysis of composite laminates using different
traditional methods. Pagano (1970), developed an exact three — dimensional (3 — D) elasticity solution for static
analysis of rectangular bi — directional composites and sandwich plates. (Noor, 1975) presented a solution for
stability of multi — layered composite plates based on 3 — D elasticity theory by solving equations with finite
difference method. Also, 3 — D elasticity solutions are presented by Gu & Chattopadhyay (2000), for the buckling of
simply supported orthotropic composite plates. When the problem is reduced from a three — dimensional one (3 — D)
to a two-dimensional case to contemplate more efficiently the computational analysis of plate composite structures,
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the displacement based theories and the corresponding finite element models receive the most attention (Reddy,
1993).

Bifurcation buckling of laminated structures has been investigated by many researchers without considering the
flatness before buckling (Leissa, 1986). This point was first clarified for laminated composite plates for some
boundary conditions and for some lamina configurations by (Leissa, 1986). Qatu & Leissa (1993), applied this result
to identify true buckling behavior of composite plates.

It is important to recognize that, with the advent of composite media, certain new material imperfections can be
found in composite structures in addition to the better — known imperfections that one finds in metallic structures.
Thus, broken fibers, delaminated regions, cracks in the matrix material, as well as holes, foreign inclusions and small
voids constitute material and structural imperfections that can exist in composite structures. Imperfections have
always existed and their effect on the structural response of a system has been very significant in many cases. These
imperfections can be classified into two broad categories: initial geometrical imperfections and material or
constructional imperfections.

The first category includes geometrical imperfections in the structural configuration (such as a local out of
roundness of a circular cylindrical shell, which makes the cylindrical shell non — circular; a small initial curvature in
a flat plate or rod, which makes the structure non — flat, etc.), as well as imperfections in the loading mechanisms
(such as load eccentricities; an axially loaded column is loaded at one end in such a manner that a bending moment
exists at that end. The second class of imperfections is equally important, but has not received as much attentions as
the first class; especially as far as its effect on the buckling response characteristics is concerned. For metallic
materials, one can find several studies which deal with the effect of material imperfections on the fatigue life of the
structural component. Moreover, there exist a number of investigations that deal with the effect of cut — outs and
holes on the stress and deformation response of thin plates. Another material imperfection is the rigid inclusion. The
effect of rigid inclusions on the stress field of the medium in the neighborhood of the inclusion has received limited
attention. The interested reader is referred to the bibliography of Professor (Naruoka, 1981).

In the present study, the composite media are assumed free of imperfections i.e. initial geometrical imperfections
due to initial distortion of the structure, and material and / or constructional imperfections such as broken fibers,
delaminated regions, cracks in the matrix material, foreign inclusions and small voids which are due to inconvenient
selection of fibers / matrix materials and manufacturing defects. Therefore, the fibers and matrix are assumed
perfectly bonded.

Mathematical Formulations

1) Introduction

The choice of the coordinate system is of critical importance for laminated plates. This is because plates with
rectangular orthotropic could be set on rectangular, triangular, circular or other boundaries. Composite materials with
rectangular orthotropic are the most popular, mainly because of their ease in design and manufacturing. The
equations that follow are developed for materials with rectangular orthotropic.
Figure 1 shows the geometry of a plate with rectangular orthotropic drawn in the Cartesian coordinates X, Y, and Z
or 1, 2, and 3. The parameters used in such a plate are: (1) the length in the X-direction, (a); (2) the length in the Y —
direction (i.e. breadth), (b); and (3) the length in the Z — direction (i.e. thickness), (h).
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Figure 1. The geometry of a laminated composite plate

2) Fundamental Equations of Elasticity

Classical laminated plate theory (CLPT) is selected to formulate the problem. Consider a thin plate of length a,
breadth b, and thickness h as shown in Figure 2(a), subjected to in — plane loads Rx, Ry and Rxy as shown in Figure
2(b). The in — plane displacements u (x,y,z) and v (x,¥,z) can be expressed in terms of the out of plane
displacement w (x, y) as shown below:
The displacements are:

ow
w(6,,2) = Up(x,) ~ 25~
v(x,y,2) = v,(x,y) — zZ—Vy” M
w(x,y,2) = wo(x,y) )

Where u,, v, and w, are mid — plane displacements in the direction of the x, y and z axes respectively; z is the
perpendicular distance from mid — plane to the layer plane.

zZ,w
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(a)
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Figure 2. A plate showing dimensions and deformations
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Figure 3. Geometry of an n-layered laminate

The plate shown in Figure 2(a) is constructed of an arbitrary number of orthotropic layers bonded together as in

Figure 3.

The strains are:

ou, 0*w ow\2
- (G

0x _Zaxz 0x
ov, 0*w ow\?
+3(5)

|

Ey:ay_zayz 2\dy
ov, du, 2w
y= ezt (3 (5)
dx  Ody dxdy 0x
The virtual strains:
se, = s O w2
€x = 528Uy — 25 6w + ———— 5w
s, =L on 20 w295
€y 3 Y, Zay2 3y 3y w
oy = 66 +a5 2 i 1)
V= 5x 0 dy Uo Zaxay v
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axay " Tax " oy

(2)

3)
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The virtual strain energy:
U = f SeTodV @
14

But,
o= Ce
Where,
C=¢(;G,j=126)

6U=f 8eT C Se adVv (5)
v

If we neglect the in-plane displacements u, and v, and considering only the linear terms in the strain —
displacement equations, we write:
62

be=—z| = |6w (6)

2. Materials and Methods
The Numerical Method

The finite element is used in this analysis as a numerical method to predict the buckling loads and shape modes of
buckling of laminated rectangular plates (Osama Mohammed Elmardi Suleiman, March 2016, August 2016). In this
method of analysis, four — noded type of elements is chosen. These elements are the four — noded bilinear rectangular
elements of a plate. Each element has three degrees of freedom at each node. The degrees of freedom are the lateral
displacement (w), and the rotations (¢p) and (1) about the (X) and (Y) axes respectively.

For an n noded element, and 3 degrees of freedom at each node.
Now express w in terms of the shape functions N and noded displacements a®, equation (6) can be written as:
de = —zBda’ @)
Where,

BT _ [azNi OZNL- 2 azNi]
dx? 0dy? dxdy
and
Niai =[w;] i=1n
The stress — strain relation is:
c=Ce
Where C are the material properties which could be written as follows:
Cll C12 C16
C= [Cu Cy Czel
Cis C26 Cos

6U=f (B8a®)T(Cz*)BacdV
v

Where V denotes volume.

oU = (SaeTf BTDBa®dx dy = §a°T K°a® (8)
v

Suleiman, O. M. E., Osman, M. Y., & Hassan, T. (2019). Stability of thin laminated decks plates under plane
compressive loading. International Research Journal of Engineering, IT & Scientific Research, 5(2), 1-28.
https://doi.org/10.21744/irjeis.v5n2.607



g8 [ ISSN: 2454-2261

Where D;; = Y7_ f Zk C;;Z? dZ is the bending stiffness, and K¢ is the element stiffness matrix which could be
ij k=1 Zp—q U
written as follows:
K¢ = fBTDB dxdy 9)

The virtual work done by external forces can be expressed as follows: Refer to Figure 4.
Denoting the nonlinear part of strain by e’

SW = ﬂ. S5e'Ta'dV =f66’TN dxdy (10)
Where
T =[Ny Ny Ny, | = [0, 0, 7] dZ
[Zow o
ax ow
S¢€, P —
se'=|6e,|=| 0 —ow]||%* (11)
- Y= ay ow
vl 1o s sl
lay W 0x v
N}'
-~ 3 -~
Nyy <
&~
N, < > N
v
> Ny
Y ¥ ¥
N}'

Figure 4. External forces acting on an element

Hence,
d
ax 0 6—6W-| N
SW = f” | I s YNy ldxdy (12)
layJ l @&N _6WJ
This can be written as:
ow
P} 2 o] ox
W = f” X | aﬂdxdy (13)
Nyy
6WJ —
y dy
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Now w = N;af

oN;T oN;
E N, ny 0x
— eT e
oW = ba ff % [ny Ny] % a®dx dy (14)
dy dy
Substitute P, = —=N,, P, = =N, Py, = =N,
aN ’ [BNl
e
= —8a" f f n W] I |ae dx dy (15)
y
3y
Therefore, equation (15) could be written in the following form:
SW = —8a’TKPa® (16)
Where,
6NL dN;
ax B ox
D _
_ff aN, xy ]laN dx dy
ay dy

KP is the differential stiffness matrix known also as geometric stiffness matrix, initial stress matrix, and initial load
matrix.
The total energy:

U+ W =0 a7n
Since §a¥ is an arbitrary displacement which is not zero, then
K¢a® — KPa® =0 (18)

Now let us compute the elements stiffness and the differential matrices.

K¢ = U BTDB dx dy
T

[ 92N; [ 92N
dx? 0x?
ale- Dy D1z Dis 62Nl
K¢ = ﬂ 3y? 212 gzz gze 3y? dx dy
2N, 16 Y26 Use ] d2N,
| Jdx0y] | Jx0y.
The elements stiffness matrix can be expressed as follows:
9%N; 0°N; 0%N; 0°N; 32N; 0%N; d%N; 3°N; 92N, 0%N; 9%N; 0°N;
e _ ff J J J J 4 I\ 4D J
1 9x2 9x2 dy? 9x2 ' 9x? 0y? axa x2  0x? oxdy) 2% dy? 0y?

420, (NN ONON Ly SN gy 19
26\ 9xdy dy? | dy? oxdy 56 5xdy dx a x dy (19)
The elements differential stiffness matrix can be expressed as follows;

aN oN; ON; ON; 0N, 0N; ON; ON;
ff P————+P, —+———"| 1P dxdy (20)

dy dx  dx Oy Y 9y dy.

Suleiman, O. M. E., Osman, M. Y., & Hassan, T. (2019). Stability of thin laminated decks plates under plane
compressive loading. International Research Journal of Engineering, IT & Scientific Research, 5(2), 1-28.
https://doi.org/10.21744/irjeis.v5n2.607



10 4 ISSN: 2454-2261

The shape local co — ordinate for a 4 — noded element is shown below in Figure 5.
5

F 3

(-1,1) . L1)

(1} 3)

» T
i B (0,0)

2) h, {4)

(11 b 4 L
x

Figlire 5. A four noded element with local and global co — ordinates

The shape functions for the 4 — noded element expressed in global co — ordinates (x, y) are as follows:

w = Nyw; + No¢py + N3py + Nyw, + N5, + Neip,

+N;w3 + Ngpz + Notpz + Nigwy + Ny + Niphy
Where,

_ow _ow
¢= ox '’ Ty
The shape functions in local co — ordinates are as follows:
N; = ajy + a7 + @3S + aiar? + aisTs + aies? + a1 + agr?s + ajors?

+a;108% + aj1173s + a3

N;

= ajy + T + @j3S + a1 + ajsrs + ajes? + a1 + ajgris + ajors?
+a;108% + aj1173s + aj,rs?
j10 j11 12

The integrals of the shape functions in local co — ordinates are as follows:

92N, 02N, 1
ql = ff dT‘ dS =16 ai4a]‘4 + 3al‘7a]’7 + _aiBa]’B + aillajll]

ar? or? 3
0%N; 02N; 1

= ﬂ os? gsz (rds=16 [a“a" +3 Qoo + 31010 + ai12aj12]
0%N; 0°N;

= ff or? 0s? dr ds = 16[ajs + ;78 + Qg0 + Ai11aj12]
0%N; 0%N;

= ,H ds2 or? dr ds = 16[a;ajs + Q97 + @104 + Q112414
0%N; 0%N;

%= ff ar? ords dr ds = S[ai“aﬁ + 14011 + 2057058 + A14Qj12

2

+§ai8aj9]
0%N; 0°N; . 2

e = ff 3ras gr2 4T ds =8|aisjs + 205507 + Ain1Gjs + 5 Aiolg

+ai12aj4]
0%N; 0°N; - 2

7= ﬂ ds? 0rds drds =8 | Zie%s + a1, + §ai9a18]
aZNi 62N] B 2

qs = ff 9705 2 drds =8 _aiSaje + gaigajg + aillajé]
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92N, 3N, 4
9 = || 5735 9rds drds = [aisajs + a;5a511 + 3 %is%s + a;5a517
+§ai9aj9 + 441112 + Q4120511 + gai12aj12]

aN 61\/, 1
drds =4 [aizajz + §(3ai2aj7 + 4ai,a5, + 3a;705,

+0a;7059 + Aj5Qj5 + A19Qj; + Ai5Aj11 T Q7059 + 5 AigAjg T Aoy

3
1
a;11q5) + g(aisaﬂz + 909 + Q41205 + 907057 + 304110511 + Ai11Gj12

1
+ai12aj11) + 7 ai12aj12]

aN; 61\/, 1
35 35 drds =4 [ai3aj3 + §(ai3aj8 + a;sa55 + ;5053

+3a3aj10 + 456056 + 30410053 + AjsAj12 + AigAj10 + 5 AigQjo + Aj100;8

3
1
+ai12aj5) + g(aisajn + a;ga;5 + 411155 + 944100510 T X111z T Ai12G511

1
+3aizaj12) + 7 aillajll]

dN; 6N] 1
3 3s drds =4 [aiza]g + §(ai2aj8 + 2a;,a;5 + 3a;;a58
4 1
+3ai2a]'10 + Zaisa]'6 + aigaj3 + zaM_ajlz + 3ai7aj10 + gaigajg + gaigajg
+2a;11a56) |
dN; 6N] 1
35 or drds =4 [ai3a]-2 + §(3ai3a]-7 + 2a;5a5, + a;gaj;

1 4
3 3

1
+2a;1,a;) + g(zaieaju + 3a;10a)9 + 3,057 + 2a;11a54)

+al-3aj9 + 2ai6a]-5 + 3ai10aj2 + 2ai6aj11 + aigajg + aigajg + 3ai10aj7

The values of the integrals are converted from local co — ordinate (7, s) to global co — ordinates.

The integrals of the shape functions in global co — ordinates are as follows:
ﬂ 0%N; ON; _(4h)\  4n®b
dx? 6x2 dy = 3 ~ma
ff 0%N; 0°N; dy = 4h, _4dam?
ayz ay x Yy = h; q2 = nb3 q2
ffa N; 0*N; gy = 4 _ 4mn
ox2 a2 XV = \in )BT
3 ff 9%N; 02N e dv = 4 _ 4mn
")) oy e Y T\ gk, )T Tap

_ﬂazvazv}d 4
> 0x? dx0y v =

92N; 02N; 4 4n?
6=ff dxdy:(_>%=—%
dxdy 0x? h2 a?
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ff 9%N; 02N; e dy =
ay? axay v =

92N, 9N , 4 4m?
ﬂ- dx dy = 7z |98 =77 s

ff 9%N; 02N; dy = 4 _4mn
axayaxay v = hyhy 9o = ab o

_ 6Ni6de gy = h, _bn
T10—f 9x Ox xay = E ‘ho—a‘ho
dN; ON; h, am
11=ﬂ-a ay dxdy E Q11=EQ11
dN; 81\/]
ax dy dx dy = qq;
dN; ON;
13=ﬂ- aygdx‘i}’:fhs

In the previous equations h, = % and hy, = % where a and b are the lengths of the plate along the x — and y — axis

respectively. n and m are the number of elements in the x — and y — directions respectively.

The elements of the stiffness matrix and the differential matrix can be written as follows:
Ki]- = Dy 11 + Diy1y + 2D 13 + Dyy13 + Dyy1y + 2Dgerg + 2D 75 + 2Dy + 4Dge1o

Ki? = Py + ny(r12 +73) + Byryy

or in the non — dimensional form:

4n® /b
K;; = 7( )D11CI1 + 4mn (b) D1,q4 + 4n2Dy4qs + 4mn (b) Di2qs

+£ (%) D,,q, + 4m? (%) D,6qg + 4n?D,4qs + 4m? (%)2 D47

— 1 — a
Dy = (5) P Pi= ()

o= 5= 5= 5o

The transformed stiffnesses are as follows:

Also

Ciq = C{ic* +2¢%52(C{y + 2Clg) + Cypst

Crp = €252(C{1 + C3p + 4Clg) + C1o(c* + %)
Cie = cS[Cl1c* + C555% — (€, + 2Cée) (c? — s2)]
Cyy = Ci18* + 2¢%s%(C{, + 2C4g) + Cypc*
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C6 = CS[C1’152 - Cz’zc2 —(Ci, + ZCée)(CZ —s9)]
Cos = (Ciy + Cgp — 2C1)c?s? + Cge(c?® — 5%)?

Where
Cih = 7El
1—v,vy
cl = v By v Ey
12 = =
1—-vvy 1—vvy
2
Chpy = ———
22
1 —v,vy,
r ro_ [
Caa = Ga3, Css = Gy3 and Cg = Gy

E, and E, are the elastic moduli in the direction of the fiber and the transverse directions respectively, v is the

Poisson's ratio. G4, G;3, and G,5 are the shear moduli in the x — y plane, y - z plane, and x - z plane respectively,
and the subscripts 1 and 2 refer to the direction of fiber and the transverse direction respectively

3. Results and Discussions
Numerical Results

3.1 Effect of Lamination Scheme

In the present analysis the lamination scheme of plates is supposed to be symmetric, anti — symmetric and quasi —
isotropic.

Four lamination schemes were considered which are symmetric and anti — symmetric cross — ply and angle — ply
laminates. Table 1 gives a comparison between the non — dimensional buckling loads for all lamination schemes. The
results are shown graphically in Figure 6. The thickness of all layers is assumed equal, the length to thickness ratio
(a/h = 20), and the modulus ratio (E;/E, = 5). It is noticed from Table 1 and Figures 6, 7 and 8 that the values of
the non — dimensional buckling loads for both symmetric and anti — symmetric lamination are slightly different,
except for symmetric and anti — symmetric angle — ply laminates which are exactly the same. Because of this fact,
the rest of the upcoming effects will be discussed for symmetric case only. The results indicate that the symmetric
laminate is stiffer than the anti — symmetric one. This phenomenon is caused by coupling between bending and
stretching which lowers the buckling loads of symmetric laminate.

Table 1
The first five non — dimensional buckling loads P = Pa?/E;h? of symmetric cross — ply (0/ 90/ 90/ 0) and anti —
symmetric cross — ply (0/ 90/ 0/ 90), and symmetric angle — ply (45/ -45/ -45/ 45) and anti — symmetric angle — ply
(45/ -45/ 45/ -45) laminated plates with a/h = 20, and E, /E, = 5

Lamination Mode Boundary Conditions
Scheme Number SS CC CS

1 0.6972  2.1994  1.8225
2 1.2522 25842  2.0097

0/90/90/ 0 3 24284 4.1609 27116
4 2.6907 4.7431 4.3034
5 27346  5.0168  4.4536
1 0.6973 22273  1.5591
2 1.9947  3.9687 2.3391

0/90/ 0/ 90 3 1.9958 39732 3.7581
4 2.6912 47871  3.8290
5 4.3962  7.0544  4.5402

Suleiman, O. M. E., Osman, M. Y., & Hassan, T. (2019). Stability of thin laminated decks plates under plane
compressive loading. International Research Journal of Engineering, IT & Scientific Research, 5(2), 1-28.
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1 0.8729 1.9505 14756

2 1.6400 2.8534 2.1162

45/-45/-45/45 3 2.3130 3.8941 3.3039

4 2.7100 4.3753  3.3068

5 3.5488 5.2694 4.4166

1 0.8729 22010 1.6554

2 1.6400 3.7616 2.5672

45/-45/45/-45 3 23130 3.7654 3.4642

4 27100 5.6599 4.2174

5 3.5488 5.9540 4.8091
45
40
3.5
2 3.0
§ ]
2.5
g
= 204
é ]
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Figure 6. Effect of lamination scheme for simply supported laminates
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Tables 2 and 3 show the buckling load of quasi — isotropic rectangular composite plate with a/h = 20, a/b = 1 and
different modulus ratios (E; /E, = 40 and 5). The buckling load is highly influenced by its boundary conditions. The
buckling load of the quasi — isotropic (0/+45/-45/90) rectangular composite plate with CC type boundary condition is
1.5 times higher than the buckling load of the composite plate with CS type boundary condition and more than 3

times of SS type boundary condition.

Table 2

The first three non — dimensional buckling loads of quasi — isotropic (0/+45/-45/90) laminated plates with a/h=20,
and El/EZ =40

Mode Boundary Conditions
Number SS CC CS
1 0.4905 1.6878 1.1683
2 1.4842 3.0187 1.7359
3 1.4850 3.0229 2.7673
Table 3
The first three non — dimensional buckling load of quasi — isotropic (0/+45/-45/90) laminated plates with a/h=20, and
E,/E, =5
Mode Boundary Conditions
Number SS CC CS
1 0.7338 2.2255 1.5717
2 2.0202 3.9506 23714
3 2.0214 3.9549 3.7214

Suleiman, O. M. E., Osman, M. Y., & Hassan, T. (2019). Stability of thin laminated decks plates under plane
compressive loading. International Research Journal of Engineering, IT & Scientific Research, 5(2), 1-28.
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3.2 Effect of Aspect Ratio

In this study, the buckling loads for symmetrically loaded laminated composite plates of layer orientation
0/90/90/0 have been determined for seven different aspect ratios ranging from 0.5 to 2.0 and two modulus ratios 40
and 5 as shown in Tables 4 and 5 and Figures 9 and 10. The first mode of buckling loads was considered. It is
observed that the buckling load increases continuously with increasing aspect ratio but the rate of increase is not
uniform. This may be due to the effect of bending — extensional twisting stiffness which increases the critical load.
The buckling load is maximum for clamped — clamped (CC), clamped — simply supported (CS) while minimum for
simply — simply supported (SS) boundary conditions. This means that as the plate becomes more restrained, its
resistance to buckling increases. The reason is that the structural stiffness reduces due to its constrains.

Table 4
The first three non — dimensional buckling loads P = Pa?/E;h? of symmetric cross — ply (0/ 90/ 90/ 0) laminated

plates with a/h = 20, and E, /E, = 40

Aspect Ratio Mode
(a/b) Number B Le e

1 0.4143 1.0742  0.9679

0.5 2 0.4236 1.0941 1.0484
3 0.5408 1.3751  1.1257

1 0.4300 1.2389  1.0444

0.75 2 0.4978 1.2691  1.2043
3 0.6520 1.8354  1.2921

1 0.4409 1.3795  1.0723

1.0 2 0.5580 1.5286  1.3105
3 1.0763 2.1648  1.6946

1 0.4224 1.5549  1.1349

1.25 2 0.7795 1.7455  1.4327
3 1.6164 3.0019  1.8042

1 0.4400 1.6402  1.2543

1.5 2 1.0787 22999  1.3330
3 1.6841 32702  2.4753

1 0.4885 1.8361 1.1494

1.75 2 1.4473 3.0138  1.6342
3 1.8520 3.6574  2.7310

1 0.5642 2.1358  1.1054

2.0 2 1.7525 3.7696  2.0207
3 1.8813 3.8703  2.8553

Table 5

The first three non — dimensional buckling loads P = Pa?/E;h? of symmetric cross — ply (0/ 90/ 90/ 0) laminated

plates with a/h = 20, and E; /E, =5

Aspect Boundary Conditions
Ratio NMO?)e sS yCC cs
(a/b) umber
1 0.6787 1.7786 1.6325
0.5 2 0.6841 1.8364 1.7192
3 0.8672 2.2141 1.9284
1 0.6698 2.0107 1.7117
0.75 2 0.8831 2.1504 1.9339
3 1.4912 27694  2.2689
1 0.6972 2.1994 1.8225
1.0 2 1.2552 2.5842  2.0097
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3 24284  4.1609 27116
1 0.7726 ~ 2.3958  1.8397
1.25 2 1.7753 3.5341  2.1821
3 2.6844  5.1641  3.8539
1 0.8943 2.7961 1.7643
1.5 2 24305  4.8034  2.7358
3 2.6675 5.2420  4.6305
1 1.0588 33873  1.7741
1.75 2 2.6919 54542 34532
3 32171 6.3629  4.7373
1 1.2630  4.1517  1.8578
2.0 2 27619  5.8342 43179
3 4.1301 8.1942  4.6131
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Figure 9. Effect of aspect ratio for different boundary conditions,
El/EZ =40
45 -
1 >
4.0 /
3.5 - —a—5SS "
2 —e—CC /
g 304 —4—CS
~ ] o
g 25 ‘/
E | /'/
2.0 -. ./j: """" S N NS S S—
154 S
1_0_- ././'
] . .____.____—l/
0.5 — T T T v T T T ‘+ T T T + T T T 7
04 06 08 10 12 14 16 18 20 22
Aspect Ratio

Figure 10. Effect of aspect ratio for different boundary conditions,

El/EZ =5
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3.3 Effect of Material Anisotropy

The buckling loads as a function of modulus ratio of symmetric cross — ply plates (0/ 90/ 90/ 0) are illustrated in
Table 6 and Figure 11. As confirmed by other investigators, the buckling load decreases with increase in modulus
ratio. Therefore, the coupling effect on buckling loads is more pronounced with the increasing degree of anisotropy.
It is observed that the variation of buckling load becomes almost constant for higher values of elastic modulus ratio.

Table 6
The first three non — dimensional buckling loads P = Pa?/E;h3 of symmetric cross — ply (0/ 90/ 90/ 0) square
laminated plates for different modulus ratios with a/h = 20

E,/E Mode Boundary Conditions
/72 Number SS CcC CS
1 0.6972 2.1994 1.8225
5 2 1.2552 2.5842 2.0097
3 2.4284 4.1609 27116
1 0.5505 1.8548 1.3928
10 2 0.8557 1.8951 1.8292
3 1.6532 2.9814 1.9089
1 0.5019 1.6663 1.2505
15 2 0.7232 1.7248 1.6428
3 1.3966 2.6049 1.7694
1 0.4775 1.5515 1.1791
20 2 0.6569 1.6524 1.5096
3 1.2683 2.4228 1.7394
1 0.4629 1.4828 1.1365
25 2 0.6172 1.6055 1.4299
3 1.1916 23171 1.7214
1 0.4531 1.4366 1.1078
30 2 0.5907 1.5723 1.3766
3 1.1402 2.2481 1.7094
1 0.4462 1.4044 1.0877
35 2 0.5723 1.5479 1.3391
3 1.1043 2.2006 1.7009
1 0.4409 1.3795 1.0723
40 2 0.5580 1.5286 1.3105
3 1.0763 2.1648 1.6946
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3.4 Effect of Fiber Orientations of Layers

The variation of the buckling load, P with fiber orientation (@) of square laminated plate is shown in Tables 7
and 8, and Figs. 12 and 13. Three boundary conditions SS, CC and CS are considered in this case. The buckling
loads have been determined for two modulus ratios 40 and 5. The curves of simply — simply supported (SS)
boundary conditions show maximum value of buckling load at = 45° . However, this trend is different for a plate
under clamped — clamed (CC) boundary conditions which show minimum buckling load at & = 45°. For clamped —
simply supported, it is observed that the buckling load decreases continuously with 8, this may be due to the total
and partial fixed rotation (¢p and ) in the two later cases.

() with a/h = 20, and E, /E, = 40

Table 7
The first three non — dimensional buckling loads P = Pa2/E;h® of laminated plates for different fiber orientations

Orientation Mode Boundary Conditions
Angle () Number SS CC CS
1 0.2604 0.6134 0.5561
0 2 0.2825 0.6398 0.5729
3 0.3960 0.8738 0.6745
1 0.2759 0.5957 0.5496
15 2 03171 0.6123 0.5855
3 04771 0.8638 0.7570
1 0.2823 0.5636 0.5114
30 2 0.3125 0.5834 0.5352
3 0.4861 0.9552 0.7902
1 0.2773  0.5207 0.4230
45 2 0.3253 0.5842  0.4490
3 0.5135 0.9793 0.7093
1 0.2834 0.5574 0.3073
60 2 0.3116  0.5788 0.3895
3 0.4783 0.9107 0.6362
1 0.2762  0.5859 0.3137
75 2 0.3153 0.6043  0.3297

Suleiman, O. M. E., Osman, M. Y., & Hassan, T. (2019). Stability of thin laminated decks plates under plane
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3 0.4161 0.8252 0.4924
1 0.2602 0.6061 0.3069
90 2 0.2811 0.6260 0.3438
3 0.3908 0.8429 0.4801
Table 8

The first three non — dimensional buckling loads P = Pa?/E;h3 of laminated plates for different fiber orientations
(0) witha/h = 20, and E;/E, =5

Buckling Loads

Orientation Mode Boundary Conditions
Angle (6) Number SS CC CS
1 0.6970 2.1130 1.6496
0 2 1.0086  2.1396 2.0991
3 1.7709  3.1397 2.1597
1 0.7108 2.0261 1.6665
15 2 1.0908 2.1400 1.9833
3 1.8704 3.2340 2.2141
1 0.7457 1.8142 1.6326
30 2 1.2613  2.2494 1.7099
3 2.0671 3.4809 2.4700
1 0.7665 1.7189 1.3114
45 2 1.3477  2.3567 1.7689
3 2.1557 3.5899 2.7032
1 0.7457 1.8147 1.0893
60 2 1.2602  2.2457 1.7913
3 2.0637 3.4650 2.6452
1 0.7110 2.0264 0.9824
75 2 1.0898 2.1366 1.6562
3 1.8659 3.2178 2.7338
1 0.6970 2.1101 0.9573
90 2 1.0080 2.1389 1.5827
3 1.7666  3.1269 2.7322
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Figure 12. Effect of fiber orientation of layers, E; /E, = 40
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3.5 Effect of Reversing Lamination Scheme

100

In order to study the stacking sequence of laminated plates, two lamination schemes of cross — ply (0/ 90) and
(90/ 0) and two other lamination of angle ply (45/ -45) and (-45/ 45) were considered. The results of their buckling
loads of parameter (P = Pa?/E,h3) are given in Tables 9, 10, 11 and 12. Three boundary conditions SS, CC and
CS are considered in this case. The buckling loads have been determined for two modulus ratios 40 and 5. It is
observed that, the buckling loads are completely the same for the given first three modes.

Therefore, it can be concluded that the buckling load of laminated plates will remain the same even if the
lamination order is reversed. The reason behind this is that the transformed elastic coefficients, [Ci j], are equal for
both lamination schemes.

Table 9

Non — dimensional buckling loads P = Pa2/E;h3 of (0/ 90) and (90/ 0) lamination schemes of square laminated
plates with a/h = 20, and E, /E, = 40

Lamination Mode Boundary Conditions
order Number SS CC CS
1 0.4410 1.6885 1.1512
0/90 2 0.4494 3.0311 1.6881
3 1.4502 3.0349 2.5982
1 0.4410 1.6885 1.1512
90/0 2 0.4494 3.0311 1.6881
3 1.4502 3.0349 2.5982

Suleiman, O. M. E., Osman, M. Y., & Hassan, T. (2019). Stability of thin laminated decks plates under plane
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Table 10
Non — dimensional buckling loads P = Pa?/E;h3 of (0/ 90) and (90/ 0) lamination schemes of square laminated
plates with a/h = 20, and E; /E, =5

Lamination Mode Boundary Conditions
order Number SS CC CS
1 0.6970 22275 1.5593
0/90 1.9943 39687 2.3388

2

3 1.9954 39733 3.7581

1 0.6970 22274 1.5594
90/0 2 1.9944 39688 2.3393
3

1.9957 3.9733 3.7580

Table 11
Non — dimensional buckling loads P = Pa?/E; h3 of (45/ -45) and (-45/ 45) lamination schemes of square laminated
plates with a/h = 20, and E, /E, = 40

Lamination Mode Boundary Conditions
order Number SS CC CS
1 0.8375 1.6524 1.2806
45/-45 1.7263  2.7630  1.9965

2

3 1.7285 2.7659  2.5358

1 0.8372  1.6527 .2805
-45/45 2 1.7262  2.7631 19963
3

1.7283  2.7660  2.5355

Table 12
Non — dimensional buckling loads P = Pa2/E;h3 of (45/ -45) and (-45/ 45) lamination schemes of square laminated
plates with a/h = 20, and E; /E, =5

Lamination Mode Boundary Conditions
order Number SS CC CS
1 0.9907 22010 1.6553
45/-45 2.1995 3.7613  2.5668

2

3 22015  3.7652  2.4640

1 0.9908  2.2010 1.6553
-45/45 2 2.1995 3.7613 2.5671
3

22015  3.7652  3.4636

3.6 Effect of Boundary Conditions

The type of boundary support is an important factor in determining the buckling loads of a plate along with other
factors such as aspect ratio, modulus ratio, ... etc.

Three sets of boundary conditions, namely simply — simply supported (SS), clamped — clamped (CC), and
clamped — simply supported (CS) were considered in this study.

The variations of buckling load, P with the mode number for thin (a/h = 20) symmetrically loaded laminated cross
— ply (0/90/90/0) plate with modulus ratio (E;/E, = 5) were computed and the results are given in Table 13 and
Figure 14.

It is observed that, for all cases the buckling load increases with the mode number but at different rates depending
on whether the plate is simply supported, clamped or clamped — simply supported. The buckling load is a minimum
when the plate is simply supported and a maximum when the plate is clamped. Because of the rigidity of clamped
boundary condition, the buckling load is higher than in simply supported boundary condition. It is also observed that
as the mode number increases, the plate needs additional support.
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Table 13
The first five non — dimensional buckling loads P = Pa?/E;h?® of symmetric (0/90/90/0) square laminated plates
with a/h = 20, and E; /E, =5

Mode Boundary Conditions
Number SS CC CS
1 0.6972 2.1994 1.8225
2 1.2552 2.5842 2.0097
3 2.4284 4.1609 2.7116
4 2.6907 4.7431 4.3034
5 2.7346 5.0168 4.4536
5.0 /
1 .
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Figure 14. Effect of boundary conditions

4. Conclusion

The finite element model has been formulated to compute the buckling loads of laminated plates with rectangular
cross — section and to study the effects of lamination scheme, aspect ratio, material anisotropy, fiber orientation of
layers, reversed lamination scheme and boundary conditions on the non — dimensional critical buckling loads of
laminated composite plates. Finally, a series of new results have been presented.

The symmetric laminate is stiffer than the anti — symmetric one. This phenomenon is caused by coupling between
bending and stretching which lowers the buckling loads of symmetric laminate.

The buckling load is highly influenced by the end support. The buckling load of the quasi — isotropic (0/+45/-
45/90) rectangular composite plate with clamped — clamped type boundary condition is 1.5 times higher than the
buckling load of the composite plate with clamped — simply supported (CS) type boundary condition, and more than
3 times of simply — simply supported (SS) type boundary condition.

The buckling load increases continuously with increasing aspect ratio, but the rate of increase is not uniform.
This may be due to the effect of bending — extensional twisting stiffness which increases the critical load.

As the plate becomes more restrained, its resistance to buckling increases. The reason is that the structural
stiffness reduces due to its constraints.

The buckling load decreases with increase in modulus ratio. It is also observed that the variation of buckling load
becomes almost constant for higher values of elastic modulus. This may be attributed to the coupling effect which
increases with the increasing degree of anisotropy.

Suleiman, O. M. E., Osman, M. Y., & Hassan, T. (2019). Stability of thin laminated decks plates under plane
compressive loading. International Research Journal of Engineering, IT & Scientific Research, 5(2), 1-28.
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The curves of simply — simply supported (SS) boundary conditions show maximum value of buckling load at 8 =
45°. However, this trend is different for a plate under clamped — clamped (CC) boundary conditions which show
minimum load at 6 = 45°. For clamped — simply supported, it is observed that the buckling load decreases
continuously with 8. This may be due to the total and partial fixed rotation ¢ and { in the two later cases.

The buckling load of laminated plates will remain the same even if the lamination order is reversed. The reason
behind this is that the transformed elastic coefficients, [Cij], are equal for both lamination schemes.

The buckling load increases with the mode number but at different rates depending on whether the plate is simply
supported (SS), clamped (CC) or clamped — simply supported. The buckling load is a minimum when the plate is
simply supported and a maximum when the plate is clamped. Because of the rigidity of clamped boundary condition,
the buckling load is higher than in simply supported boundary condition. It is also observed that as the mode number
increases, the plate needs additional support.
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