
Syed abid ali et al., (2019) Int. J. Res. Pharm. Sci & Tech., 1(2), 58-66 

58   © Rubatosis Publications | International Journal of Research In Pharmaceutical Sciences and Technology 

 

 

International Journal of Research In  
Pharmaceutical sciences and Technology 

 

Formulation and invitro evaluation of oral extended release microspheres of aceclofenac using 

various natural polymers 

Syed abid ali*2, Syed mujtaba pasha1, Omair sohail ahmed5, Omer wasiq6, Mohammed mukaram1, 
Mohammed abdul aala3, Mohammed abdul ali4, Aiyaz Ahmed7, B. Syed salman7 

1Department of Pharmacology, Nalanda college of pharmacy, Nalgonda, Telangana, India.  
2Department of Pharmaceutics, Holy mary institute of technology and science, Ghatkesar, Kondapur, Telangana, India. 
3Department of Pharmacology, Sultan ul uloom college of pharmacy, Banjara Hills, Hyderabad, Telangana, India. 
4Department of Hospital and clinical pharmacy, Anwar ul uloom college of pharmacy, Hyderabad, Telangana, India. 
5Department of Pharmaceutics, Nizam institute of pharmacy, Hyderabad, India. 
6Department of Pharmaceutics, Sultan ul uloom college of pharmacy, Banjara Hills, Hyderabad, Telangana, India. 
7Department of Pharmaceutics, Global college of Pharmacy, Moinabad, Hyderabad, Telangana, India. 

ABSTRACT	
	

In	the	present	work,	bioadhesive	microspheres	of	Aceclofenac	using	Sodium	alginate	along	with	Carbopol	

934,	Carbopol	971,	HPMC	K4M	as	copolymers	were	formulated	to	deliver	Aceclofenac	via	oral	route.	The	

results	of	this	investigation	indicate	that	ionic	cross-linking	technique	Ionotropic	gelation	method	can	be	

successfully	 employed	 to	 fabricate	Aceclofenac	microspheres.	 The	 technique	provides	 characteristic	 ad-

vantage	over	conventional	microsphere	method,	which	involves	an	“all-aqueous”	system,	avoids	residual	

solvents	in	microspheres.	FT-IR	spectra	of	the	physical	mixture	revealed	that	the	drug	is	compatible	with	

the	polymers	and	copolymers	used.	Micromeritic	studies	revealed	that	the	mean	particle	size	of	the	pre-
pared	microspheres	was	in	the	size	range	of	512-903µm	and	are	suitable	for	bioadhesive	microspheres	for	

oral	administration.	The	in-vitro	mucoadhesive	study	demonstrated	that	microspheres	of	Aceclofenac	using	

sodium	alginate	along	with	Carbopol934	as	copolymer	adhered	to	the	mucus	to	a	greater	extent	than	the	

microspheres	of	Aceclofenac	using	sodium	alginate	along	with	Carbopol	971	and	HPMC	K4M	as	copolymers.	

The	invitro	drug	release	decreased	with	increase	in	the	polymer	and	copolymer	concentration.	Analysis	of	

drug	release	mechanism	showed	that	the	drug	release	from	the	formulations	followed	non-Fickian	diffusion	
and	the	best	fit	model	was	found	to	be	Korsmeyer-Peppas.	Based	on	the	results	of	evaluation	tests	formula-

tion	coded	T4	was	concluded	as	best	formulation.	
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INTRODUCTION	

The	oral	route	for	drug	delivery	is	the	most	popular,	

desirable,	 and	 most	 preferred	 method	 for	

administrating	 therapeutically	 agents	 for	 systemic	

effects	 because	 it	 is	 a	 natural,	 convenient,	 and	 cost	
effective	to	manufacturing	process.	Oral	route	is	the	

most	commonly	used	route	for	drug	administration.	

Although	different	route	of	administration	are	used	

for	 the	 delivery	 of	 drugs,	 oral	 route	 remain	 the	

preferred	mode.	Even	for	sustained	release	systems	

the	oral	route	of	administration	has	been	investigated	
the	most	 because	 of	 flexibility	 in	 designing	 dosage	

forms.		

Present	controlled	release	drug	delivery	systems	are	

for	 a	 maximum	 of	 12	 hours	 clinical	 effectiveness.	

Such	systems	are	primarily	used	 for	 the	drugs	with	

short	elimination	half	life	
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The	treatment	of	acute	diseases	or	chronic	illnesses	

has	been	achieved	by	delivery	of	drugs	to	the	patients	

for	many	years.	These	drug	delivery	systems	include	
tablets,	 indictables,	suspensions,	creams,	ointments,	

liquids	and	aerosols.	Today	these	conventional	drug	

delivery	 systems	 are	 widely	 used.	 The	 term	 drug	

delivery	can	be	defined	as	techniques	that	are	used	to	

get	 the	 therapeutic	 agents	 inside	 the	 human	 body.	

Conventional	drug	therapy	require	periodic	doses	of	
therapeutic	 agents.	 These	 agents	 are	 formulated	 to	

produce	 maximum	 stability,	 activity	 and	

bioavailability.	

For	 most	 drugs,	 conventional	 methods	 of	 drug	

administration	 are	 effective,	 but	 some	 drugs	 are	

unstable	 or	 toxic	 and	 have	 narrow	 therapeutic	

ranges.	Some	drugs	also	possess	solubility	problems.		

In	such	cases,	a	method	of	continuous	administration	

of	 therapeutic	 agent	 is	 desirable	 to	 maintain	 fixed	

plasma	 levels.	 To	 overcome	 these	 problems,	

controlled	 drug	 delivery	 systems	 were	 introduced	

three	 decades	 ago.	 These	 delivery	 systems	 have	 a	

number	of	advantages	over	traditional	systems	such	

as	 improved	 efficiency,	 reduced	 toxicity,	 and	
improved	 patient	 convenience.	 The	 main	 goal	 of	

controlled	 drug	 delivery	 systems	 is	 to	 improve	 the	

effectiveness	of	drug	therapies.	

Advantages	of	controlled	drug	delivery	system	

• Improved	patient	 convenience	and	compliance	

due	to	less	frequent	drug	administration.	

• Reduction	in	fluctuation	in	study	state	levels	and	

therefore	better	control	of	disease	condition	and	

reduced	 intensity	 of	 local	 or	 systemic	 side	

effects.	

• Increased	safety	margin	of	high	potency	drugs	

due	to	better	control	of	plasma	levels.	

• Maximum	utilization	drug	enabling	reduction	

in	total	amount	of	dose	administered.	

• Reduction	 in	 health	 care	 costs	 through	

improved	 therapy,	 shorter	 treatment	 period,	
less	frequency	of	dosing	and	reduction	personal	

time	 to	 dispense,	 administer	 and	 monitor	

patients.	

Disadvantages	of	controlled	drug	delivery	syste

m	

• Decreased	systemic	availability	in	comparison	to	

immediate	 release	 conventional	 dosage	 forms;	

this	may	be	due	to	incomplete	release,	increased	

first-	 pass	 metabolism,	 increased	 in	 stability,	 in	
sufficient	residence	time	for	complete	release,	site	

specific	absorption,	pH	dependent	solubility	etc.	

• Poor	in	vitro-	in	vivo	correlation.	

• Possibility	 of	 dose	 dumping	 due	 to	 food,	

physiologic	 or	 formulation	 variables	 or	 chewing	

or	 grinding	 of	 oral	 formulations	 by	 the	 patients	

and	thus,	increased	risk	of	toxicity.	

• Retrieval	 of	 drug	 is	 difficult	 in	 case	 of	 toxicity,	

poisoning	or	hypersensitivity	reactions.	

• Reduced	potential	for	dosage	adjustment	of	drugs	

normally	administered	in	varying	strengths.	

• Higher	cost	of	formulation.	

Colon	targeted	drug	delivery	has	the	potential	to	de-

liver	bioactive	agents	for	the	treatment	of	a	variety	of	

colonic	diseases	and	to	deliver	proteins	and	peptides	

to	 the	 colon	 for	 their	 systemic	 absorption.	 Various	

strategies,	 currently	 available	 to	 target	 release	 of	

drugs	to	colon,	include	formation	of	pro	drug,	coating	

of	pH-sensitive	-	polymers,	use	of	colon-specific	bio-
degradable	polymers	 ,	 timed	 released	 systems	 ,	 os-

motic	systems	,	and	pressure	controlled	drug	delivery	

systems.	Polysaccharides	are	bacterial	enzymes	that	

are	available	in	sufficient	quantity	to	be	exploited	in	

colon	targeting	of	drugs.		

Aceclofenac	is	a	nonsteroidal	anti-inflammatory,	an-

algesic	and	antipyretic	drug	used	in	the	treatment	of	
rheumatoid	 arthritis,	 post-traumatic	 pain,	masculo-

skeletal	and	joint	disorders.	It	is	a	newer	derivative	of	

diclofenac	 with	 low	 gastrointestinal	 complications.	

The	biological	half-life	[3-4hr]	and	dosing	frequency	

more	than	one	per	day	2.	It	is	completely	absorbed	af-

ter	oral	administration.	Aceclofenac	is	partially	insol-
uble	for	poorly	soluble	oral	administrated	drugs,	the	

rate	of	absorption	 is	often	controlled	by	 the	rate	of	

dissolution.		

METHODS	AND	MATERIALS	

Fourier	transform	infrared	spectroscopy	(FTIR)	

In	order	to	check	the	integrity	(Compatibility)	of	drug	

in	the	formulation,	FT-IR	spectra	of	the	formulations	
along	 with	 the	 drug	 and	 other	 excipients	 were	

obtained	and	compared	using	Shimadzu	FT-IR	8400	

spectrophotometer.	In	the	present	study,	Potassium	

bromide	 (KBr)	 pellet	 method	 was	 employed.	 The	

samples	 were	 thoroughly	 blended	 with	 dry	

powdered	potassium	bromide	crystals.	The	mixture	
was	compressed	to	form	a	disc.	The	disc	was	placed	

in	 the	 spectrophotometer	 and	 the	 spectrum	 was	

recorded.	The	FT-IR	spectra	of	the	formulations	were	

compared	with	the	FT-IR	spectra	of	the	pure	drug	and	

the	polymers.	

Method	of	preparation	

Ionotropic	 gelation	 method:	 Batches	 of	 micro-
spheres	 were	 prepared	 by	 ionotropic	 gelation	

method	which	involved	reaction	between	sodium	al-

ginate	and	polycationic	ions	like	calcium	to	produce	a	

hydrogel	 network	 of	 calcium	 alginate.	 Sodium	 algi-

nate	and	the	mucoadhesive	polymer	were	dispersed	

in	purified	water	(10	ml)	to	form	a	homogeneous	pol-

ymer	mixture.	The	API,	Aceclofenac	 (100	mg)	were	
added	to	the	polymer	premix	and	mixed	thoroughly	

with	a	stirrer	to	form	a	viscous	dispersion.	The	result-

ing	dispersion	was	then	added	through	a	22G	needle	

into	 calcium	 chloride	 (4%	w/v)	 solution.	 The	 addi-

tion	was	 done	with	 continuous	 stirring	 at	 200rpm.	

The	 added	 droplets	 were	 retained	 in	 the	 calcium	
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chloride	solution	for	30	minutes	to	complete	the	cur-

ing	 reaction	 and	 to	 produce	 rigid	 spherical	 micro-

spheres.	 The	 microspheres	 were	 collected	 by	 de-
cantation,	 and	 the	 product	 thus	 separated	 was	

washed	repeatedly	with	purified	water	to	remove	ex-

cess	calcium	impurity	deposited	on	the	surface	of	mi-

crospheres	and	then	air-dried.	

Determination	of	λmax	

10mg	of	drug	was	accurately	weighed	and	dissolved	
in	 10ml	 of	 0.1N	 HCl,	 7.4	 PH,	 and	 6.8	 PH	 in	 10	 ml	

volumetric	 flask,	 to	 make	 (1000	 µg/ml)	 standard	

stock	solution	(1).	Then	1	ml	stock	solution	(1)	was	

taken	in	another	10	ml	volumetric	flask	to	make	(100	

µg/ml)	standard	stock	solution	(2),	then	again	1	ml	of	

stock	 solution	 (2)	 was	 taken	 in	 another	 10	 ml	

volumetric	 flask	and	then	final	concentrations	were	
prepared	 2,	 4,6,	 8,	 10,	 12,	 14,	 16,	 18	 ,and	 20µg/ml	

with	0.1N	HCl,	7.4	pH,	and	6.8	pH.	The	absorbance	of	

standard	 solution	 was	 determined	 using	 UV/	 VIS	

spectrophotometer	at	269nm.	Linearity	of	 standard	

curve	 was	 assessed	 from	 the	 square	 of	 correlation	

coefficient	 (R2)	 which	 determined	 by	 least-square	

linear	regression	analysis.	

The	 calibration	 curve	 data	 of	 Aceclofenac	 in	

simulated	 gastric	 fluid	 pH	 1.2	 at	 269nm.	 Fig.	 6.2	

shows	 the	 standard	 calibration	 curve	 with	 a	

regression	 value	 of	 0.998,	 slope	 of	 0.028	 and	

intercept	of	0.004	 in	 simulated	gastric	 fluid	pH	1.2.	

The	curve	was	found	to	be	linear	in	the	concentration	

range	of	2-10µg/ml.	

 

Figure 1: UV of Aceclofenac in simulated gastric fluid 

pH 1.2 

Table 1: calibration curve Aceclofenac in simulated 

gastric fluid in different pH 

Concentrat

ion (µg/ml) 

Absorba

nce 

Concentrat

ion (µg/ml) 

Absorba

nce 

pH 1.2 pH 6.8 

0 0 0 0 

2 0.051 0.5 0.153 

4 0.110 1 0.312 

6 0.163 1.5 0.445 

8 0.221 2 0.634 

10 0.290 2.5 0.814 

 
Figure 2: calibration curve Aceclofenac in simulated 

gastric fluid pH 1.2 

 
Figure 3: calibration curve Aceclofenac in simulated 

gastric fluid pH 6.8 

Compatibility	studies	

Drug	polymer	compatibility	studies	were	carried	out	

using	 Fourier	 Transform	 InfraRed	 spectroscopy	 to	

establish	any	possible	interaction	of	Aceclofenac	with	

the	 polymers	 used	 in	 the	 formulation.	 The	 FT-IR	
spectra	of	the	formulations	were	compared	with	the	

FTIR	spectra	of	the	pure	drug.	The	results	indicated	

that	the	characteristic	absorption	peaks	due	to	pure	

Aceclofenac	 have	 appeared	 in	 the	 formulated	

microspheres,	without	any	significant	change	in	their	

position	after	successful	encapsulation,	indicating	no	
chemical	 interaction	 between	 Aceclofenac	 and	

Polymers.	

 
Figure 4: FTIR of Aceclofenac	
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Evaluation	and	characterisation	of	microspheres	

Percentage	 yield:	 It	 was	 observed	 that	 as	 the	

polymer	 ratio	 in	 the	 formulation	 increases,	 the	

product	 yield	 also	 increases.	 The	 low	 percentage	
yield	in	some	formulations	may	be	due	to	blocking	of	

needle	 and	 wastage	 of	 the	 drug-	 polymer	 solution,	

adhesion	 of	 polymer	 solution	 to	 the	magnetic	 bead	

and	microspheres	 lost	 during	 the	washing	 process.	

The	percentage	yield	was	found	to	be	in	the	range	of	

80	 to	 88%	 for	 microspheres	 containing	 sodium	

alginate	along	with	carbopol	934	as	copolymer,	62.22	

to	87%	for	microspheres	containing	sodium	alginate	
along	 with	 carbopol	 971	 as	 copolymer	 and	 80	 to	

87.5%	for	microspheres	containing	sodium	alginate	

along	with	HPMC	K	4	M	as	copolymer.	The	percentage	

yield	of	the	prepared	microspheres	is	recorded	in	

Table 2: Percentage yield and percentage drug entrapment efficiency of the prepared microspheres 

S.No. Formulation code % yield Drug Content (mg) % Drug entrapment efficiency 

1 T1 80 12.40 82.66 

2 T2 83.33 12.66 84.4 

3 T3 85 12.70 84.66 

4 T4 88 13.29 88.66 

5 T5 62.22 8.07 53.2 

6 T6 80 8.25 55 

7 T7 80 10.33 68.86 

8 T8 87 11.5 76.66 

9 T9 80 10.01 66.73 

10 T10 86 10.5 70 

11 T11 86.66 11.25 75 

12 T12 87.5 11.88 79.2 

Table 3: In-Vitro drug release data of Aceclofenac microspheres  

Time 

Cumulative percent of drug released 

sodium alginate+carbopol 934 sodium alginate+carbopol 971 sodium alginate+HPMC K 4 M 

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 

0 0 0 0 0 0 0 0 0 0 0 0 0 

1 24.88 21.11 18.66 15.88 27.77 22.44 18.44 17.11 25.77 21.55 18.66 16.44 

2 31.55 31.55 25.11 24.22 36.44 32.22 29.33 26.44 35.33 31.77 26.55 27.11 

3 42.44 39.77 35.44 32.66 43.77 40.88 39.55 37.55 43.55 40.44 36.55 36.44 

4 53.55 47.77 40.66 39.33 54.66 48.66 45.55 46.88 54 48.44 43.66 45.55 

5 62 56.66 52 47.55 64.01 57.55 57.33 55.77 63.55 57.11 54.55 55.33 

6 74.66 62.44 57.33 55.77 75.77 63.55 65.33 63.55 75.33 63.11 62.33 63.11 

7 83.55 69.55 63.11 61.77 84.65 70.44 71.55 71.33 84 70.22 67.68 71.55 

8 89.33 75.33 69.11 69.55 90 76.55 77.56 75.77 89.77 76 73.55 76.44 

9 92.66 84.66 75.33 77.55 92.22 85.55 81.55 79.77 92.66 85.11 78.55 80.66 

10 85.55 90.66 82.66 85.55 84.88 91.33 83.33 82.44 85.11 91.33 83 85.55 

11 80.22 84.22 90.66 90.66 79.55 85.77 89.55 86.88 80.66 85.33 90 89.55 

12 78.88 80.88 89.55 94.66 77.55 81.11 87.55 90.66 78 81.11 87.55 92.44 

 

 
Figure 5: In-Vitro drug release data of Aceclofenac microspheres 
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	Table	2	and	displayed	in	Figures	6	to	8.	

Drug	 entrapment	 efficiency:	 Percentage	 Drug	

entrapment	 efficiency	 of	 Aceclofenac	 ranged	 from	

82.66	to	88.66%	for	microspheres	containing	sodium	

alginate	along	with	carbopol	934	as	copolymer,	53.2	
to	 76.66%	 for	 microspheres	 containing	 sodium	

alginate	along	with	carbopol	971	as	copolymer	and	

66.73	to	79.2%	for	microspheres	containing	sodium	

alginate	along	with	HPMC	K4M	as	copolymer.		

 
Figure 6: Comparison of % Yield and % drug entrap-

ment efficiency microspheres containing sodium algi-

nate along with carbopol 934 as copolymer 

	

The	 drug	 entrapment	 efficiency	 of	 the	 prepared	

microspheres	 increased	 progressively	 with	 an	

increase	 in	 proportion	 of	 the	 respective	 polymers.	

Increase	in	the	polymer	concentration	increases	the	

viscosity	 of	 the	 dispersed	 phase.	 The	 particle	 size	
increases	 exponentially	 with	 viscosity.	 The	 higher	

viscosity	 of	 the	 polymer	 solution	 at	 the	 highest	

polymer	 concentration	 would	 be	 expected	 to	

decrease	 the	diffusion	of	 the	drug	 into	 the	external	

phase	 which	 would	 result	 in	 higher	 entrapment	

efficiency.	The	%	drug	entrapment	efficiency	of	 the	

prepared	microspheres	is	displayed	in	Table	2.	

 
Figure 7: Comparison of % Yield and % drug entrap-

ment efficiency microspheres containing sodium algi-

nate along with carbopol 971 as copolymer 

Table 4: Prepared formulation of Biooadhesive Microspheres 

S.no. Formulation code Drug : polymer ratio Polymer ratio 

1 T1 1:2.5 Na alginate: Carbopol 934 (1.5:0.5) 

2 T2 1:3 Na alginate: Carbopol 934 (2:1) 

3 T3 1:3.5 Na alginate: Carbopol 934 (2.5:1) 

4 T4 1:4 Na alginate: Carbopol 934 (3:1) 

5 T5 1:2.5 Na alginate: Carbopol 971 (1.5:0.5) 

6 T6 1:3 Na alginate: Carbopol 971 (2:1) 

7 T7 1:3.5 Na alginate: Carbopol 971 (2.5:1) 

8 T8 1:4 Na alginate: Carbopol 971 (3:1) 

9 T9 1:2.5 Na alginate: HPMC K 4M (1.5:0.5) 

10 T10 1:3 Na alginate: HPMC K 4 M (2:1) 

11 T11 1:3.5 Na alginate: HPMC K 4 M (2.5:1) 

12 T12 1:4 Na alginate: HPMC K 4 M (3:1) 

 

Table 5: Release kinetics studies of the prepared formulations 

Formulation code 

Release model 

Zero order First order Higuchi matrix Koresmeyer-peppas 

K R2 K R2 K R2 n K R2 

T1 21.6 0.797 1.923 0.72 -0.313 0.912 0.556 1.388 0.925 

T2 16.39 0.908 1.991 0.89 -3.945 0.97 0.595 1.326 0.983 

T3 10.45 0.976 2.062 0.945 -8.966 0.975 0.673 1.233 0.991 

T4 7.434 0.99 2.118 0.914 -12.25 0.962 0.743 1.171 0.996 

T5 24.34 0.768 1.897 0.689 2.624 0.903 0.498 1.442 0.914 

T6 17.19 0.904 1.99 0.885 -3.333 0.971 0.579 1.346 0.981 

T7 14.53 0.936 2.018 0.985 -6.239 0.983 0.655 1.278 0.99 

T8 13.06 0.948 2.032 0.991 -7.587 0.984 0.69 1.241 0.991 

T9 23.2 0.783 1.909 0.704 1.336 0.909 0.526 1.418 0.925 

T10 16.73 0.906 1.992 0.885 -3.771 0.97 0.591 1.334 0.982 

T11 12.5 0.957 2.036 0.974 -7.64 0.982 0.667 1.253 0.993 

T12 11.94 0.959 2.061 0.982 -8.986 0.981 0.712 1.226 0.995 
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Figure 8: Comparison of % Yield and % drug entrap-

ment efficiency microspheres containing sodium algi-

nate along with HPMC K 4 M as copolymer 

Particle	size	analysis	

The	 mean	 size	 increased	 with	 increasing	 polymer	

concentration	which	is	due	to	a	significant	increase	in	

the	viscosity,	thus	leading	to	an	increased	droplet	size	

and	finally	a	higher	microspheres	size.	Microspheres	

containing	sodium	alginate	along	with	carbopol	934	
as	copolymer	had	a	size	range	of	512µm	to	826µm,	

microspheres	containing	sodium	alginate	along	with	

carbopol	 971	 as	 copolymer	 exhibited	 a	 size	 range	

between	 517µm	 to	 834µm	 and	 microspheres	

containing	sodium	alginate	along	with	HPMCK4M	as	

copolymer	had	a	size	range	of	664µm	to	903µm.	The	

particle	 size	data	 is	presented	 in	Tables	6.4	 to	6.15	
and	 displayed	 in	 Figure	 6.10	 to	 6.12.	 The	 effect	 of	

drug	to	polymer	ratio	on	particle	size	is	displayed	in	

Figure	 10.	 The	 particle	 size	 as	 well	 as	 %	 drug	

entrapment	efficiency	of	the	microspheres	increased	

with	increase	in	the	polymer	concentration.	

The	swelling	ratio	is	expressed	as	the	percentage	of	

water	in	the	hydrogel	at	any	instant	during	swelling.	
Swellability	is	an	important	characteristic	as	it	affects	

mucoadhesion	 as	 well	 as	 drug	 release	 profiles	 of	

polymeric	 drug	 delivery	 systems.	 Swellability	 is	 an	

indicative	 parameter	 for	 rapid	 availability	 of	 drug	

solution	 for	 diffusion	with	 greater	 flux.	 Swellability	

data	 revealed	 that	 amount	 of	 polymer	 plays	 an	
important	role	in	solvent	transfer.	It	can	be	concluded	

from	the	data	shown	in	Table	6	that	with	an	increase	

in	polymer	concentration,	the	percentage	of	swelling	

also	increases.	

 
Figure 9: Comparison of percentage swelling of pre-

pared microspheres	

Thus	 we	 can	 say	 that	 amount	 of	 polymer	 directly	

affects	the	swelling	ratio.	As	the	polymer	to	drug	ratio	

increased,	the	percentage	of	swelling	increased	from	
28	 to	 85%	 for	 microspheres	 containing	 sodium	

alginate	along	with	carbopol	934	as	copolymer,	24	to	

64%	 for	 microspheres	 containing	 sodium	 alginate	

along	with	carbopol	971	as	copolymer	and	31	to	85	

for	 microspheres	 containing	 sodium	 alginate	 along	

with	HPMC	K	4	M	as	 copolymer.	The	percentage	of	
swelling	of	the	prepared	microspheres	is	displayed	in	

Fig.	6.16	to	6.18.	The	effect	of	drug	to	polymer	ratio	

on	percentage	swelling	is	displayed	in	Figure	9.	

 

Figure 10: Comparison of average particle size of pre-

pared microspheres 

 
Figure 11: Comparison of percentage mucoadhesion 

of prepared microspheres 

In-vitro	drug	release	studies	

Dissolution	 studies	 of	 all	 the	 formulations	 were	
carried	 out	 using	 dissolution	 apparatus	USP	 type	 I.	

The	 dissolution	 studies	 were	 conducted	 by	 using	

dissolution	media,	pH	1.2.	The	results	of	the	in-vitro	

dissolution	studies	of	formulations	T1	to	T4,	T5	to	T8	

and	 T9	 to	 T12	 are	 shown	 in	 table.	 The	 plots	 of	

Cumulative	percentage	drug	release	Vs	Time.	Figure	

6.24	 shows	 the	 comparison	 of	 %	 CDR	 for	
formulations	T1	to	T4,	figure	6.25	for	formulations	T5	

to	 T8	 and	 figure	 6.26	 for	 formulations	 T9	 to	 T12.	

Korsmeyer-Peppas	 plots	 of	 Aceclofenac	

microspheres	 formulations	T1	to	T12	are	displayed	

in	figures	6.27	to	6.30.	

The	 formulations	 T1,	 T2,	 T3	 and	 T4	 containing	
Sodium	 alginate	 along	 with	 Carbopol	 934	 as	
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copolymer	 showed	 a	 maximum	 release	 of	 92.66%	

after	9	hours,	90.66%	after	10	hours,	90.6%	after	11	

hours	and	94.66%	after	12	hours	respectively.	

The	 formulations	 T5,	 T6,	 T7	 and	 T8	 containing	

Sodium	 alginate	 along	 with	 Carbopol	 971	 as	

copolymer	 showed	 a	 maximum	 release	 of	 92.22%	

after	9	hours,	91.33%	after	10	hours,	89.55%	after	11	

hours	and	90.66%	after	12	hours	respectively.	

The	 formulations	 T9,	 T10,	 T11	 and	 T12	containing	
Sodium	alginate	along	with	HPMC	K	4	M	as	copolymer	

showed	a	maximum	release	of	92.6%	after	9	hours,	

91.3%	 after	 10	 hours,	 90%	 after	 11	 hours	 and	

92.44%	after	12	hours	respectively.	This	shows	that	

more	 sustained	 release	 was	 observed	 with	 the	

increase	in	percentage	of	polymers.	As	the	polymer	to	

drug	ratio	was	 increased	 the	extent	of	drug	release	
decreased.	 A	 significant	 decrease	 in	 the	 rate	 and	

extent	of	drug	release	is	attributed	to	the	increase	in	

density	 of	 polymer	matrix	 that	 results	 in	 increased	

diffusion	path	length	which	the	drug	molecules	have	

to	 traverse.	 The	 release	 of	 the	 drug	 has	 been	

controlled	 by	 swelling	 control	 release	 mechanism.	

Additionally,	 the	 larger	 particle	 size	 at	 higher	
polymer	 concentration	 also	 restricted	 the	 total	

surface	area	resulting	in	slower	release.	

 
Figure 12: Korsmeyer-Peppas plots of Aceclofenac mi-

crospheres formulations T1, T2 and T3 

 
Figure 13: Korsmeyer-Peppas plots of Aceclofenac mi-

crospheres formulations T4, T5 and T6 

 
Figure 14: Korsmeyer-Peppas plots of Aceclofenac mi-

crospheres formulations T7, T8 and T9 

 
Figure 15: Korsmeyer-Peppas plots of Aceclofenac mi-

crospheres formulations T10, T11, T12 

CONCLUSION	

In	 the	 present	 work,	 bioadhesive	 microspheres	 of	
Aceclofenac	using	Sodium	alginate	along	with	Carbo-

pol	 934,	 Carbopol	 971,	 HPMC	 K4M	 as	 copolymers	

were	formulated	to	deliver	Aceclofenac	via	oral	route.	

Increase	in	the	polymer	concentration	led	to	increase	

in	%	 Yield,	 %	 Drug	 entrapment	 efficiency,	 Particle	

size,	 %	 swelling	 and	 %	 Mucoadhesion.	 Analysis	 of	

drug	 release	 mechanism	 showed	 that	 the	 drug	 re-
lease	from	the	formulations	followed	non-Fickian	dif-

fusion	 and	 the	 best	 fit	 model	 was	 found	 to	 be	

Korsmeyer-Peppas.	 Based	 on	 the	 results	 of	 evalua-

tion	 tests	 formulation	 coded	 T4	 was	 concluded	 as	

best	formulation.	
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