

THE ENTIRE FACE IRREGULARITY STRENGTH OF A BOOK WITH POLYGONAL PAGES

Meilin I. Tilukay¹, Venn Y. I. Ilwari²

^{1,2}Jurusan Matematika FMIPA Universitas Pattimura
Jl. Ir. M. Putuhena, Kampus Unpatti, Poka-Ambon, Indonesia
e-mail: ¹meilin.tilukay@fmipa.unpatti.ac.id

Abstract

A face irregular entire labeling is introduced by Baca *et al.* recently, as a modification of the well-known vertex irregular and edge irregular total labeling of graphs and the idea of the entire colouring of plane graph. A face irregular entire k -labeling $\lambda: V \cup E \cup F \rightarrow \{1, 2, \dots, k\}$ of a 2-connected plane graph $G = (V, E, F)$ is a labeling of vertices, edges, and faces of G such that for any two different faces f and g , their weights $w_\lambda(f)$ and $w_\lambda(g)$ are distinct. The minimum k for which a plane graph G has a face irregular entire k -labeling is called the entire face irregularity strength of G , denoted by $efs(G)$.

This paper deals with the entire face irregularity strength of a book with m n -polygonal pages, where embedded in a plane as a closed book with n –sided external face.

Keywords and phrases: Book, entire face irregularity strength, face irregular entire k -labeling, plane graph, polygonal page.

NILAI KETAKTERATURAN SELURUH MUKA GRAF BUKU SEGI BANYAK

Abstrak

Pelabelan tak teratur seluruh muka diperkenalkan oleh Baca *et al.* baru-baru ini, sebagai suatu modifikasi atas pelabelan total tak teratur titik dan tak teratur sisi suatu graf serta ide tentang pewarnaan lengkap pada graf bidang. Pelabelan k - tak teratur seluruh muka $\lambda: V \cup E \cup F \rightarrow \{1, 2, \dots, k\}$ dari suatu graf bidang 2-connected $G = (V, E, F)$ adalah suatu pelabelan seluruh titik, sisi, dan muka internal dari G sedemikian sehingga untuk sebarang dua muka f and g berbeda, bobot muka $w_\lambda(f)$ and $w_\lambda(g)$ juga berbeda. Bilangan bulat terkecil k sedemikian sehingga suatu graf bidang G memiliki suatu pelabelan k -tak teratur seluruh muka disebut nilai ketakteraturan seluruh muka dari G , dinotasikan oleh $efs(G)$.

Kami menentukan nilai eksak dari nilai ketakteraturan seluruh muka graf buku segi- n , dimana pada bidang datar dapat digambarkan seperti suatu buku tertutup.

Kata Kunci: Graf bidang, graf buku segi- n , nilai ketakteraturan seluruh muka, pelabelan lengkap k -tak teratur muka.

1. Introduction

Let G be a finite, simple, undirected graph with vertex set $V(G)$ and edge set $E(G)$. A total labeling of G is a mapping that sends $V \cup E$ to a set of numbers (usually positive or nonnegative integers). According to the condition defined in a total labeling, there are many types of total labeling have been investigated.

Baca, Jendrol, Miller, and Ryan in [1] introduced a vertex irregular and edge irregular total labeling of graphs. For any total labeling $f: V \cup E \rightarrow \{1, 2, \dots, k\}$, the *weight of a vertex* v and the *weight of an edge* $e = xy$ are defined by $w(v) = f(v) + \sum_{uv \in E} f(uv)$ and $w(xy) = f(x) + f(y) + f(xy)$, respectively. If all the vertex weights are distinct, then f is called a *vertex irregular total k -labeling*, and if all the edge weights are distinct, then f is called an *edge irregular total k -labeling*. The minimum value of k for which there exist a vertex (an edge) irregular total labeling $f: V \cup E \rightarrow \{1, 2, \dots, k\}$ is called the *total vertex (edge) irregularity*

strength of G and is denoted by $tvs(G)$ ($tes(G)$), respectively. There are several bounds and exact values of tvs and tes were determined for different types of graphs given in [1] and listed in [2].

Furthermore, Ivanco and Jendrol in [3] posed a conjecture that for arbitrary graph G different from K_5 and maximum degree $\Delta(G)$,

$$tes(G) = \max \left\{ \left\lceil \frac{|E(G)| + 2}{3} \right\rceil, \left\lceil \frac{\Delta(G) + 1}{2} \right\rceil \right\}.$$

Combining previous conditions on irregular total labeling, Marzuki *et al.* [4] defined a totally irregular total labeling. A total k -labeling $f: V \cup E \rightarrow \{1, 2, \dots, k\}$ of G is called a *totally irregular total k -labeling* if for any pair of vertices x and y , their weights $w(x)$ and $w(y)$ are distinct and for any pair of edges x_1x_2 and y_1y_2 , their weights $w(x_1x_2)$ and $w(y_1y_2)$ are distinct. The minimum k for which a graph G has totally irregular total labeling, is called *total irregularity strength* of G , denoted by $ts(G)$. They have proved that for every graph G ,

$$ts(G) \geq \max\{tes(G), tvs(G)\} \quad (6)$$

Several upper bounds and exact values of ts were determined for different types of graphs given in [4], [5], [6], and [7].

Motivated by this graphs invariants, Baca *et al.* in [8] studied irregular labeling of a plane graph by labeling vertices, edges, and faces then considering the weights of faces. They defined a face irregular entire labeling.

A 2-connected plane graph $G = (V, E, F)$ is a particular drawing of planar graph on the Euclidean plane where every face is bound by a cycle. Let $G = (V, E, F)$ be a plane graph.

A labeling $\lambda: V \cup E \cup F \rightarrow \{1, 2, \dots, k\}$ is called a *face irregular entire k -labeling* of the plane graph G if for any two distinct faces f and g of G , their weights $w_\lambda(f)$ and $w_\lambda(g)$ are distinct. The minimum k for which a plane graph G has a face irregular entire k -labeling is called the *entire face irregularity strength* of G , denoted by $efs(G)$. The *weight* of a face f under the labeling λ is the sum of labels carried by that face and the edges and vertices of its boundary. They also provided the boundaries of $efs(G)$.

Teorema A. Let $G = (V, E, F)$ be a 2-connected plane graph G with n_i i -sided faces, $i \geq 3$. Let $a = \min\{i|n_i \neq 0\}$ and $b = \max\{i|n_i \neq 0\}$. Then

$$\left\lceil \frac{2a + n_3 + n_4 + \dots + n_b}{2b + 1} \right\rceil \leq efs(G) \leq \max\{n_i|3 \leq i \leq b\}.$$

For $n_b = 1$, they gave the lower bound as follow

Teorema B. Let $G = (V, E, F)$ be a 2-connected plane graph G with n_i i -sided faces, $i \geq 3$. Let $a = \min\{i|n_i \neq 0\}$, $b = \max\{i|n_i \neq 0\}$, $n_b = 1$ and $c = \max\{i|n_i \neq 0, i < b\}$. Then

$$efs(G) \geq \left\lceil \frac{2a + |F| - 1}{2c + 1} \right\rceil.$$

Moreover, by considering the maximum degree of a 2-connected plane graph G , they obtained the following theorem.

Theorem C. Let $G = (V, E, F)$ be a 2-connected plane graph G with maximum degree Δ . Let x be a vertex of degree Δ and let the smallest (and biggest) face incident with x be an a -sided (and a b -sided) face, respectively. Then

$$efs(G) \geq \left\lceil \frac{2a + \Delta - 1}{2b} \right\rceil.$$

They proved that Theorem B is tight for Ladder graph L_n , $n \geq 3$, and its variation and Theorem C is tight for wheel graph W_n , $n \geq 3$. In this paper, we determine the exact value of efs of a book with m n -polygonal pages which is greater than the lower bound given in Theorem A - C.

2. Main Results

Considering Theorem C, $efs(W_n)$, and a condition where every face of a plane graph shares common vertices or edges, our first result provide a lower bound of the entire face irregularity strength of a graph with this condition. This can be considered as generalization of Theorem A, B, and C.

Lemma 2.1. Let $G = (V, E, F)$ be a 2-connected plane graph with n_i i -sided faces, $i \geq 3$. Let $a = \min\{i | n_i \neq 0\}$, $b = \max\{i | n_i \neq 0\}$, $c = \max\{i | n_i \neq 0, i < b\}$, and d be the number of common labels of vertices and edges which have bounded every face of G . Then

$$efs(G) \geq \begin{cases} \left\lceil \frac{2a + |F| - d - 1}{2c - d + 1} \right\rceil, & \text{for } n_b = 1, \\ \left\lceil \frac{2a + |F| - d}{2b - d + 1} \right\rceil, & \text{otherwise.} \end{cases}$$

Proof. Let $\lambda : V \cup E \cup F \rightarrow \{1, 2, \dots, k\}$ be a face irregular entire k -labeling of 2-connected plane graph $G = (V, E, F)$ with $efs(G) = k$. Our first proof is for $n_b \neq 1$. By Theorem A, the minimum face-weight is at least $2a + 1$ and the maximum face-weight is at least $2a + |F|$. Since G is 2-connected, each face of G is a cycle. It implies that every face might be bounded by common vertices and edges.

Let d be the number of common labels of vertices and edges which have bounded every face of G and D be the sum of all common labels. Then the face-weights $w_\lambda(f_1), w_\lambda(f_2), \dots, w_\lambda(f_{|F|})$ are all distinct and each of them contains D , implies the variation of face-weights is depend on $2a - d + 2 \leq i \leq 2b - d + 1$ labels. Without adding D , the maximum sum of a face label and all vertices and edges-labels surrounding it is at least $2a + |F| - d$. This is the sum of at most $2b - d + 1$ labels. Thus, we have $efs(G) \geq \left\lceil \frac{2a + |F| - d}{2b - d + 1} \right\rceil$.

For $n_b = 1$, it is a direct consequence from Theorem B with the same reason as in the result above. ■

This lower bound is tight for ladder graphs and its variation and wheels given in [8].

A book with m n -polygonal pages B_m^n , $m \geq 1, n \geq 3$, is a plane graph obtained from m -copies of cycle C_n that share a common edge. There are many ways drawing B_m^n for which the external face of B_m^n can be an n -sided face or a $(2n - 2)$ -sided face.

By considering that topologically, B_m^n can be drawn on a plane as a closed book such that B_m^n has an n -sided external face, an n -sided internal face, and $m - 1$ number of $(2n - 2)$ -sided internal faces, the entire face irregularity strength of B_m^n is provided in the next theorem.

Theorem 2.2. For B_m^n , $m \geq 1, n \geq 3$, be a book with m n -polygonal pages whose an n -sided external face, an n -sided internal face, and $m - 1$ $(2n - 2)$ -sided internal faces, we have

$$efs(B_m^n) = \begin{cases} 2, & \text{for } m \in \{1, 2\}; \\ \left\lceil \frac{4n + m - 7}{4n - 5} \right\rceil, & \text{otherwise.} \end{cases}$$

Proof. Let $B_m^n, m \geq 1, n \geq 3$, be a 2-connected plane graph. For $m \in \{1, 2\}$, by Lemma 2.1, we have $efs(B_m^n) \geq 2$. Labeling the n -sided external face by label 2 and all the rests by label 1, then all face-weights are distinct. Thus, $efs(B_m^n) = 2$.

Now for $m > 2$, let $z = efs(B_m^n)$. Since every internal face of B_m^n shares 2 common vertices, $a = n$, $b = 2n - 2$, and $n_b > 1$, by Lemma 2.1, we have $z \geq \left\lceil \frac{2a + |F| - 2}{2b - 1} \right\rceil = \left\lceil \frac{2n + m - 1}{4n - 5} \right\rceil$. Consider that $z = \left\lceil \frac{2n + m - 1}{4n - 5} \right\rceil$ is not valid, since for $m \leq 2n - 4$, the maximum label is 1.

Moreover, since B_m^n has at least 2 face-weights which are contributed by the same number of labels, there must be 2 faces of the same weight. Then the divisor must be at least $4n - 4$. Thus we have $z \geq \left\lceil \frac{4n + m - 7}{4n - 5} \right\rceil$.

Next, to show that z is an upper bound for entire face irregularity strength of B_m^n , let $B_m^n, m \geq 1, n \geq 3$, be the 2-connected plane graph with an n -sided internal face $f_{int}^n, m-1$ ($2n-2$)-sided internal faces and an external n -sided face f_{ext}^n .

Let $m_1 = \lceil \frac{m}{2} \rceil$ and $m_2 = m - m_1$. Our goal is to have m_1 distinct even face-weights and m_2 distinct odd face-weights such that m ($2n-2$)-sided face-weights are distinct and form an arithmetic progression.

Let $z = \lceil \frac{4n+m-7}{4n-5} \rceil$. It can be seen that B_m^n has m different paths of length $(n-1)$. Next, we divide m_1 paths into $S = \lceil \frac{m_1}{4n-5} \rceil$ parts, where part s -th consists of $(4n-5)$ paths, for $1 \leq s \leq S-1$, and part S -th consists of $r_1 = m_1 - (S-1)(4n-5)$ paths. Also, we divide m_2 paths into $T = \lceil \frac{m_2+1}{4n-5} \rceil$ parts, where the first part consists of $(4n-6)$ paths, part t -th consists of $(4n-5)$ paths, for $2 \leq t \leq T-1$, and part T -th consists of $r_2 = m_2 - (T-1)(4n-5)$ paths.

Let

$$V(B_m^n) = \{x, y, u(s)_i^{2j}, u(S)_k^{2j}, v(t)_i^{2j} \neq v(1)_1^{2j}, v(T)_l^{2j} \mid 1 \leq s \leq S-1, 1 \leq t \leq T-1, 1 \leq i \leq 4n-5, 1 \leq j \leq 2n-2, 1 \leq k \leq r_1, 1 \leq l \leq r_2\};$$

$$E(B_m^n) = \{xy\} \cup$$

$$\{u(s)_i^1 = x u(s)_i^2, u(s)_i^{2j-1} = u(s)_i^{2j-2} u(s)_i^{2j}, u(s)_i^{2n-3} = u(s)_i^{2n-4} y \mid 1 \leq s \leq S-1, 1 \leq i \leq 4n-5, 2 \leq j \leq n-2\} \cup$$

$$\{u(S)_i^1 = x u(S)_i^2, u(S)_i^{2j-1} = u(S)_i^{2j-2} u(S)_i^{2j}, u(S)_i^{2n-3} = u(S)_i^{2n-4} y \mid 1 \leq i \leq r_1, 2 \leq j \leq n-2\} \cup$$

$$\{v(t)_i^1 = x v(t)_i^2, v(t)_i^{2j-1} = v(t)_i^{2j-2} v(t)_i^{2j}, v(t)_i^{2n-3} = v(t)_i^{2n-4} y \mid 1 \leq t \leq T, 1 \leq i \leq 4n-5, 2 \leq j \leq n-2\} \cup$$

$$\{v(T)_i^1 = x v(T)_i^2, v(T)_i^{2j-1} = v(T)_i^{2j-2} v(T)_i^{2j}, v(T)_i^{2n-3} = v(T)_i^{2n-4} y \mid 1 \leq i \leq r_2, 2 \leq j \leq n-2\};$$

$$F(B_m^n) = \{f_{ext}^n, f_{int}^n, u(s)_i^{2n-2}, u(S)_k^{2n-2}, v(t)_i^{2n-2} \neq v(1)_1^{2n-2}, v(T)_j^{2n-2} \mid 1 \leq s \leq S-1, 1 \leq t \leq T-1, 1 \leq i \leq 4n-5, 1 \leq k \leq r_1, 1 \leq l \leq r_2\};$$

Where f_{ext}^n is bounded by cycle $xv(1)_2^2 v(1)_2^4 \dots v(1)_2^{2n-4} yx$;

f_{int}^n is bounded by cycle $xu(1)_1^2 u(1)_1^4 \dots u(1)_1^{2n-4} yx$;

$u(s)_i^{2n-2}$ is bounded by cycle $xu(s)_i^2 u(s)_i^4 \dots u(s)_i^{2n-4} yu(s)_{i+1}^{2n-4} u(s)_{i+1}^{2n-6} \dots u(s)_{i+1}^2 x$, for $1 \leq s \leq S, i \neq r_1$;

$u(S)_{r_1}^{2n-2}$ is bounded by cycle $xu(S)_{r_1}^2 u(S)_{r_1}^4 \dots u(S)_{r_1}^{2n-4} yv(T)_{r_2}^{2n-4} v(T)_{r_2}^{2n-6} \dots v(T)_{r_2}^2 x$; and

$v(t)_i^{2n-2}$ is bounded by cycle $xv(t)_i^2 v(t)_i^4 \dots v(t)_i^{2n-4} yv(t)_{i+1}^{2n-4} v(t)_{i+1}^{2n-6} \dots v(t)_{i+1}^2 x$, for $1 \leq t \leq T, i \neq r_2$;

Our notations above imply that, without losing generality, for $v(t)_i^j$, we let $2 \leq i \leq 4n-5$ for $t=1$. It means that there is no vertex or edge or face $v(1)_1^j$.

Now, we divide our labeling of B_m^n into 2 cases as follows:

Case 1. For odd m with $2 \leq r_2 \leq 2n-1$ or even m ;

Define an entire k -labeling $\lambda : V \cup E \cup F \rightarrow \{1, 2, \dots, k\}$ of B_m^n as follows.

$$\lambda(x) = \lambda(y) = \lambda(xy) = \lambda(f_{ext}^n) = 1;$$

$$\lambda(f_{int}^n) = 2;$$

$$\lambda(u(s)_i^j) = \begin{cases} 2s - 1 & \text{for } 1 \leq s \leq S, 1 \leq i \leq \min\{r_1, 2n - 2\} \text{ and } 1 \leq j \leq 2n - i - 1 \\ 2s & \text{for } 1 \leq s \leq S, 1 \leq i \leq \min\{r_1, 2n - 2\} \text{ and } 2n - i \leq j \leq 2n - 2 \\ 2s & \text{for } 1 \leq s \leq S, 2n - 1 \leq i \leq \min\{r_1, 4n - 5\} \text{ and } 1 \leq j \leq 2n - 2 \left\lfloor \frac{i-2n+2}{2} \right\rfloor - 2 \\ 2s + 1 & \text{for } 1 \leq s \leq S, 2n - 1 \leq i \leq \min\{r_1, 4n - 5\} \text{ and } 2n - 2 \left\lfloor \frac{i-2n+2}{2} \right\rfloor - 1 \leq j \leq 2n - 2 \end{cases}$$

$$\lambda(v(t)_i^j) = \begin{cases} 2t - 1, & \text{for } 1 \leq t \leq T, 1 \leq i \leq \min\{r_2, 2n - 2\} \text{ and } 1 \leq j \leq 2n - i - 2; \\ 2t, & \text{for } 1 \leq t \leq T, 1 \leq i \leq \min\{r_2, 2n - 2\} \text{ and } 2n - i - 1 \leq j \leq 2n - 3; \\ 2t, & \text{for } 1 \leq t \leq T, 2n - 1 \leq i \leq \min\{r_2, 4n - 5\} \text{ and } 1 \leq j \leq 2n - 2 \left\lfloor \frac{i-2n+2}{2} \right\rfloor - 3; \\ 2t + 1, & \text{for } 1 \leq t \leq T, 2n - 1 \leq i \leq \min\{r_2, 4n - 5\} \text{ and } 2n - 2 \left\lfloor \frac{i-2n+2}{2} \right\rfloor - 2 \leq j \leq 2n - 3; \\ 2t - 2, & \text{for } 1 \leq t \leq T, i = 1 \text{ and } j = 2n - 2; \\ 2t - 1, & \text{for } 1 \leq t \leq T, 2 \leq i \leq \min\{r_2, 2n - 1\} \text{ and } j = 2n - 2; \\ 2t, & \text{for } 1 \leq t \leq T - 1, 2n \leq i \leq 4n - 5 \text{ and } j = 2n - 2. \\ 2t, & \text{for } t = T, 2n - 1 \leq i \leq \min\{r_2 - 1, 4n - 6\} \text{ and } j = 2n - 2 \end{cases}$$

Case 2. For odd m with $r_2 = 1$ or $2n \leq r_2 \leq 4n - 5$;

Define an entire k -labeling $\lambda^* : V \cup E \cup F \rightarrow \{1, 2, \dots, k\}$ of B_m^n as follows.

$$\lambda^*(x) = \lambda^*(y) = \lambda^*(xy) = \lambda^*(f_{ext}^n) = 1;$$

$$\lambda^*(f_{int}^n) = 2;$$

$$\lambda^*(u(s)_i^j) = \lambda(u(s)_i^j)$$

$$\lambda^*(v(t)_i^j) = \begin{cases} 2T - 2, & \text{for } r_2 = 1, t = T, i = 1, j = 1; \\ 2T - 1, & \text{for } r_2 = 1, t = T - 1, i = 4n - 5, j = 2n - 2; \\ \lambda(v(t)_i^j) + 1, & \text{for } r_2 \text{ odd, } 2n \leq r_2 \leq 4n - 5, t = T, i = r_2, j = 1; \\ \lambda(v(t)_i^j) - 1, & \text{for } r_2 \text{ odd, } 2n \leq r_2 \leq 4n - 5, t = T, i = r_2 - 1, j = 2n - 2; \\ \lambda(v(t)_i^j) - 1, & \text{for } r_2 \text{ even, } 2n \leq r_2 \leq 4n - 5, t = T, i = r_2 - 1, j = 2n - 3; \\ \lambda(v(t)_i^j) + 1, & \text{for } r_2 \text{ even, } 2n \leq r_2 \leq 4n - 5, t = T, i = r_2 - 1, j = 2n - 2; \\ \lambda(v(t)_i^j), & \text{for otherwise.} \end{cases}$$

It is easy to check that the labeling λ is an entire z -labeling. Then we have evaluate the face -weights set $\{w(f_{ext}^n), w(f_{int}^n), w(u(s)_i^{2n-2}), w(v(t)_i^{2n-2}) \mid 1 \leq s \leq S, 1 \leq t \leq T, 1 \leq i \leq 4n - 5\}$ as follows.

$$w(f_{ext}^n) = 2n + 1;$$

$$w(f_{int}^n) = 2n + 2;$$

$$w(u(s)_i^{2n-2}) = \begin{cases} (2s - 1)(4n - 5) + 2i, & \text{for } 1 \leq s \leq S - 1, 1 \leq i \leq 4n - 5; \\ (2s - 1)(4n - 5) + 2i, & \text{for } s = S - 1, 1 \leq i \leq r_1; \\ (2s - 1)(4n - 5) + 2r_1, & \text{for even } m, s = S - 1, i = r_1; \\ (2s - 1)(4n - 5) + 2r_1 - 1, & \text{for odd } m, s = S - 1, i = r_1. \end{cases}$$

$$w(v(t)_i^{2n-2}) = \begin{cases} (2t - 1)(4n - 5) + 2i + 1, & \text{for } 1 \leq t \leq T - 1, 1 \leq i \leq 4n - 5; \\ (2T - 1)(4n - 5) + 2i + 1, & \text{for } t = T, 1 \leq i \leq r_2 - 1. \end{cases}$$

Since all face-weights are distinct, then λ is a face irregular entire z -labeling of B_m^n where m is odd with $2 \leq r_2 \leq 2n - 1$ or m is even; and λ^* is a face irregular entire z -labeling of B_m^n where m is odd with $r_2 = 1$ or $2n \leq r_2 \leq 4n - 5$. Thus, $z = \left\lceil \frac{4n+m-7}{4n-5} \right\rceil$ is the entire face irregularity strength of B_m^n . ■

Note that our result in Theorem 2.2 show that the $efs(B_m^n)$ is greater than the lower bound in Lemma 2.1.

Hence, we propose the following open problem.

Open Problems

1. Find a class of graph which satisfy a condition where the lower bound in Lemma 2.1 is sharp;
2. Generalize the lower bound for any condition.

References

- [1] M. Baca, S. Jendrol, M. Miller and J. Ryan, "On Irregular Total Labelings," *Discrete Mathematics*, vol. 307, pp. 1378-1388, 2007.
- [2] J. A. Galian, "A Dynamic Survey of Graph Labeling," *Electronic Journal of Combinatorics*, vol. 18 #DS6, 2015.
- [3] J. Ivancic and S. Jendrol, "The Total Edge Irregularity Strength of Trees," *Discuss. Math. Graph Theory*, vol. 26, pp. 449-456, 2006.
- [4] C. C. Marzuki, A. N. M. Salman and M. Miller, "On The Total Irregularity Strengths of Cycles and Paths," *Far East Journal of Mathematical Sciences*, vol. 82 (1), pp. 1-21, 2013.
- [5] R. Ramdani and A. N. M. Salman, "On The Total Irregularity Strengths of Some Cartesian Products Graphs," *AKCE Int. J. Graphs Comb.*, vol. 10 No. 2, pp. 199-209, 2013.
- [6] R. Ramdani, A. N. M. Salman, H. Assiyatun, A. Semanicova-Fenovcikova and M. Baca, "Total Irregularity Strength of Three Family of Graphs," *Math. Comput. Sci.*, vol. 9, pp. 229-237, 2015.
- [7] M. I. Tilukay, A. N. M. Salman and E. R. Persulessy, "On The Total Irregularity Strength of Fan, Wheel, Triangular Book, and Friendship Graphs," *Procedia Computer Science*, vol. 74, pp. 124-131, 2015.
- [8] M. Baca, S. Jendrol, K. Kathiresan and K. Muthugurupackiam, "Entire Labeling of Plane Graphs," *Applied Mathematics and Information Sciences*, vol. 9, no. 1, pp. 263-207, 2015.