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Abstract 

A face irregular entire labeling is introduced by Baca et al. recently, as a modification of the well-known  
vertex irregular and edge irregular total labeling of graphs and the idea of the entire colouring of plane 
graph. A face irregular entire k-labeling 𝜆: 𝑉 ∪ 𝐸 ∪ 𝐹 → {1, 2,⋯ , 𝑘} of a 2-connected plane graph              𝐺 = (𝑉, 𝐸, 𝐹) is a labeling of vertices, edges, and faces of 𝐺 such that for any two different faces 𝑓 and 𝑔, 
their weights 𝑤𝜆(𝑓) and 𝑤𝜆(𝑓) are distinct. The minimum 𝑘 for which a plane graph 𝐺 has a face irregular 
entire 𝑘-labeling is called the entire face irregularity strength of 𝐺, denoted by 𝑒𝑓𝑠(𝐺). 
This paper deals with  the entire face irregularity strength of a book with 𝑚 𝑛-polygonal pages, where 
embedded in a plane as a closed book with 𝑛 −sided external face. 

Keywords and phrases: Book, entire face irregularity strength, face irregular entire 𝒌-labeling, plane graph, 
polygonal page. 

 
 

 

NILAI KETAKTERATURAN SELURUH MUKA  

GRAF BUKU SEGI BANYAK 
 

Abstrak 

Pelabelan tak teratur seluruh muka diperkenalkan oleh Baca et al. baru-baru ini, sebagai suatu modifikasi 
atas pelabelan total tak teratur titik dan tak teratur sisi suatu graf serta ide tentang pewarnaan lengkap pada 
graf bidang. Pelabelan 𝑘- tak teratur seluruh muka 𝜆: 𝑉 ∪ 𝐸 ∪ 𝐹 → {1, 2,⋯ , 𝑘} dari suatu graf bidang            
2-connected 𝐺 = (𝑉, 𝐸, 𝐹) adalah suatu pelabelan seluruh titik, sisi, dan muka internal dari 𝐺 sedemikian 

sehingga untuk sebarang dua muka 𝑓 and 𝑔 berbeda, bobot muka 𝑤𝜆(𝑓) and 𝑤𝜆(𝑓) juga berbeda. Bilangan 
bulat terkecil 𝑘 sedemikian sehingga suatu graf bidang 𝐺 memiliki suatu pelabelan 𝑘-tak teratur seluruh 
muka disebut nilai ketakteraturan seluruh muka dari 𝐺, dinotasikan oleh 𝑒𝑓𝑠(𝐺). 
Kami menentukan nilai eksak dari nilai ketakteraturan seluruh muka graf buku segi-𝑛, dimana pada bidang 
datar dapat digambarkan seperti suatu buku tertutup. 

Kata Kunci: Graf bidang, graf buku segi-𝒏, nilai ketakteraturan seluruh muka, pelabelan lengkap                    𝒌-tak teratur muka. 

 

 

1. Introduction 

Let 𝐺 be a finite, simple, undirected graph with vertex set 𝑉(𝐺)and edge set 𝐸(𝐺). A total labeling of   𝐺 is a mapping that sends 𝑉 ∪ 𝐸 to a set of numbers (usually positive or nonnegative integers). According to 
the condition defined in a total labeling, there are many types of total labeling have been investigated. 

Baca, Jendrol, Miller, and Ryan in [1] introduced a vertex irregular and edge irregular total labeling of 
graphs.  For any total labeling 𝑓: 𝑉 ∪ 𝐸 → {1, 2, … , 𝑘}, the weight of a vertex 𝑣 and the weight of an edge       𝑒 = 𝑥𝑦 are defined by 𝑤(𝑣) = 𝑓(𝑣) + ∑ 𝑓(𝑢𝑣)𝑢𝑣∈𝐸  and 𝑤(𝑥𝑦) = 𝑓(𝑥) + 𝑓(𝑦) + 𝑓(𝑥𝑦), respectively.   If all 
the vertex weights are distinct, then 𝑓 is called a vertex irregular total 𝑘-labeling, and if all the edge weights 
are distinct, then 𝑓 is called an edge irregular total 𝑘-labeling. The minimum value of 𝑘 for which there exist 
a vertex (an edge) irregular total labeling 𝑓: 𝑉 ∪ 𝐸 → {1, 2, … , 𝑘} is called the total vertex (edge) irregularity 
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strength of 𝐺 and is denoted by 𝑡𝑣𝑠(𝐺) (𝑡𝑒𝑠(𝐺)), respectively. There are several bounds and exact values of 𝑡𝑣𝑠 and 𝑡𝑒𝑠 were determined for different types of graphs given in [1] and listed in [2].  

Furthermore, Ivanco and Jendrol in [3] posed a conjecture that for arbitrary graph 𝐺 different from 𝐾5 
and maximum degree ∆(𝐺), 𝑡𝑒𝑠(𝐺) = 𝑚𝑎𝑥 {⌈|𝐸(𝐺)| + 23 ⌉ , ⌈∆(𝐺) + 12 ⌉}. 

Combining previous conditions on irregular total labeling, Marzuki et al. [4] defined a totally irregular 
total labeling. A total 𝑘-labeling 𝑓: 𝑉 ∪ 𝐸 → {1, 2, … , 𝑘} of 𝐺 is called a totally irregular total 𝑘-labeling if for 
any pair of vertices 𝑥 and 𝑦, their weights 𝑤(𝑥) and 𝑤(𝑦) are distinct and for any pair of edges 𝑥1𝑥2 and 𝑦1𝑦2, 
their weights 𝑤(𝑥1𝑥2) and 𝑤(𝑦1𝑦2) are distinct. The minimum 𝑘 for which a graph 𝐺 has totally irregular 
total labeling, is called total irregularity strength of 𝐺, denoted by 𝑡𝑠(𝐺). They have proved that for every 
graph 𝐺, 𝑡𝑠(𝐺) ≥ max{𝑡𝑒𝑠(𝐺), 𝑡𝑣𝑠(𝐺)}         (6) 

Several upper bounds and exact values of 𝑡𝑠 were determined for different types of graphs given in [4], [5], 
[6], and [7]. 

Motivated by this graphs invariants, Baca et al. in [8] studied irregular labeling of a plane graph by  
labeling vertices, edges, and faces then considering the weights of faces. They defined a face irregular entire 
labeling.  

A 2-connected plane graph 𝐺 = (𝑉, 𝐸, 𝐹) is a particular drawing of planar graph on the Euclidean plane 
where every face is bound by a cycle. . Let 𝐺 = (𝑉, 𝐸, 𝐹) be a plane graph. 

A labeling 𝜆 ∶ 𝑉 ∪ 𝐸 ∪ 𝐹 → {1, 2,⋯ , 𝑘} is called a face irregular entire 𝑘-labeling of the plane graph 𝐺 if for 
any two distinct faces 𝑓 and 𝑔 of 𝐺, their weights 𝑤𝜆(𝑓) and 𝑤𝜆(𝑓) are distinct. The minimum 𝑘 for which a 
plane graph 𝐺 has a face irregular entire 𝑘-labeling is called the entire face irregularity strength of 𝐺, denoted 
by 𝑒𝑓𝑠(𝐺). The weight of a face 𝑓 under the labeling 𝜆 is the sum of labels carried by that face and the edges 
and vertices of its boundary. They also provided the boundaries of 𝑒𝑓𝑠(𝐺).  
Teorema A. Let 𝐺 = (𝑉, 𝐸, 𝐹) be a 2-connected plane graph 𝐺 with 𝑛𝑖 𝑖-sided faces, 𝑖 ≥ 3.                            
Let 𝑎 = min{𝑖|𝑛𝑖 ≠ 0} and 𝑏 = max{𝑖|𝑛𝑖 ≠ 0}. Then ⌈2𝑎 + 𝑛3 + 𝑛4 +⋯+ 𝑛𝑏2𝑏 + 1 ⌉ ≤ 𝑒𝑓𝑠(𝐺) ≤ max{𝑛𝑖|3 ≤ 𝑖 ≤ 𝑏}. 
 

For 𝑛𝑏 = 1, they gave the lower bound as follow 

Teorema B. Let 𝐺 = (𝑉, 𝐸, 𝐹) be a 2-connected plane graph 𝐺 with 𝑛𝑖 𝑖-sided faces, 𝑖 ≥ 3. Let                           𝑎 = min{𝑖|𝑛𝑖 ≠ 0}, 𝑏 = max{𝑖|𝑛𝑖 ≠ 0}, 𝑛𝑏 = 1 and 𝑐 = max{𝑖|𝑛𝑖 ≠ 0, 𝑖 < 𝑏}. Then 𝑒𝑓𝑠(𝐺) ≥ ⌈2𝑎 + |𝐹| − 12𝑐 + 1 ⌉. 
Moreover, by considering the maximum degree of a 2-connected plane graph 𝐺, they obtained the following 
theorem. 

Theorem C. Let 𝐺 = (𝑉, 𝐸, 𝐹) be a 2-connected plane graph 𝐺 with maximum degree ∆. Let 𝑥 be a vertex of 
degree ∆ and let the smallest (and biggest) face incident with 𝑥 be an 𝑎-sided (and a 𝑏-sided) face, respectively. 
Then 𝑒𝑓𝑠(𝐺) ≥ ⌈2𝑎 + ∆ − 12𝑏 ⌉. 
 

They proved that Theorem B is tight for Ladder graph 𝐿𝑛, 𝑛 ≥ 3, and its variation and Theorem C is 
tight for wheel graph 𝑊𝑛, 𝑛 ≥ 3. In this paper, we determine the exact value of 𝑒𝑓𝑠 of a book with 𝑚                      𝑛-polygonal pages which is greater than the lower bound given in Theorem A - C. 
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2. Main Results 

Considering Theorem C, 𝑒𝑓𝑠(𝑊𝑛), and a condition where every face of a plane graph shares common 
vertices or edges, our first result provide a lower bound of the entire face irregularity strength of a graph with 
this condition. This can be considered as generalization of Theorem A, B, and C. 

 

Lemma 2.1. Let 𝐺 = (𝑉, 𝐸, 𝐹) be a 2-connected plane graph with 𝑛𝑖 𝑖-sided faces, 𝑖 ≥ 3. Let                               𝑎 = min{𝑖| 𝑛𝑖 ≠ 0},  𝑏 = max{𝑖| 𝑛𝑖 ≠ 0}, 𝑐 = 𝑚𝑎𝑥{𝑖| 𝑛𝑖 ≠ 0, 𝑖 < 𝑏}, and 𝑑 be the number of common labels 
of vertices and edges which have bounded every face of 𝐺. Then 

𝑒𝑓𝑠(𝐺) ≥ {  
  ⌈2𝑎 + |𝐹| − 𝑑 − 12𝑐 − 𝑑 + 1 ⌉ , for 𝑛𝑏 = 1,⌈2𝑎 + |𝐹| − 𝑑2𝑏 − 𝑑 + 1 ⌉ ,                 otherwise. 

Proof. Let 𝜆 ∶ 𝑉 ∪ 𝐸 ∪ 𝐹 → {1, 2,⋯ , 𝑘} be a face irregular entire 𝑘-labeling of 2-connected plane graph          𝐺 = (𝑉, 𝐸, 𝐹) with 𝑒𝑓𝑠(𝐺) = 𝑘. Our first proof is for 𝑛𝑏 ≠ 1. By Theorem A, the minimum face-weight is at 
least 2𝑎 + 1 and the maximum face-weight is at least 2𝑎 + |𝐹|. Since 𝐺 is 2-connected, each face of 𝐺 is a 
cycle. It implies that every face might be bounded by common vertices and edges.  

Let 𝑑 be the number of common labels of vertices and edges which have bounded every face of 𝐺 and 𝐷 be 

the sum of all common labels. Then the face-weights 𝑤𝜆(𝑓1),𝑤𝜆(𝑓1),⋯ ,𝑤𝜆(𝑓|𝐹|) are all distinct and each of 

them contains 𝐷, implies the variation of face-weights is depend on 2𝑎 − 𝑑 + 2 ≤ 𝑖 ≤ 2𝑏 − 𝑑 + 1 labels. 
Without adding 𝐷, the maximum sum of a face label and all vertices and edges-labels surrounding it is at least 2𝑎 + |𝐹| − 𝑑. This is the sum of at most 2𝑏 − 𝑑 + 1 labels. Thus, we have efs(G) ≥ ⌈2𝑎+|𝐹|−𝑑2𝑏−𝑑+1 ⌉.  
For 𝑛𝑏 = 1, it is a direct consequence from Theorem B with the same reason as in the result above. ∎ 

 

This lower bound is tight for ladder graphs and its variation and wheels given in [8]. 

A book with 𝑚 𝑛-polygonal pages 𝐵𝑚𝑛 ,𝑚 ≥ 1, 𝑛 ≥ 3, is a plane graph obtained from 𝑚-copies of  cycle 𝐶𝑛 that share a common edge. There are many ways drawing  𝐵𝑚𝑛  for which the external face of 𝐵𝑚𝑛  can be an 𝑛-sided face or a (2𝑛 − 2)-sided face.  

By considering that topologically, 𝐵𝑚𝑛  can be drawn on a plane as a closed book such that 𝐵𝑚𝑛  has                  
an 𝑛-sided external face, an 𝑛-sided internal face, and 𝑚 − 1 number of (2𝑛 − 2)-sided internal faces, the 
entire face irregularity strength of 𝐵𝑚𝑛  is provided in the next theorem.  

 

Theorem 2.2. For 𝐵𝑚𝑛 , 𝑚 ≥ 1, 𝑛 ≥ 3, be a book with 𝑚 𝑛-polygonal pages whose an 𝑛-sided external face,     
an 𝑛-sided internal face, and 𝑚 − 1  (2𝑛 − 2)-sided internal faces, we have 

𝑒𝑓𝑠(𝐵𝑚 𝑛) = { 2,                         for 𝑚 ∈ {1, 2};        ⌈4𝑛 + 𝑚 − 74𝑛 − 5 ⌉ ,    otherwise.                 
 

Proof. Let 𝐵𝑚𝑛 ,𝑚 ≥ 1, 𝑛 ≥ 3, be a 2-connected plane graph. For 𝑚 ∈ {1, 2}, by Lemma 2.1, we have 𝑒𝑓𝑠(𝐵𝑚 𝑛) ≥ 2. Labeling the 𝑛-sided external face by label 2 and all the rests by label 1, then all face-weights 
are distinct. Thus, 𝑒𝑓𝑠(𝐵𝑚 𝑛) = 2.  

Now for 𝑚 > 2, let 𝑧 = 𝑒𝑓𝑠(𝐵𝑚 𝑛). Since every internal face of 𝐵𝑚𝑛  shares 2 common vertices, 𝑎 = 𝑛,                     𝑏 = 2𝑛 − 2, and 𝑛𝑏 > 1, by Lemma  2.1, we have 𝑧 ≥ ⌈2𝑎+|𝐹|−22𝑏−1 ⌉ = ⌈2𝑛+𝑚−14𝑛−5 ⌉. Consider that 𝑧 = ⌈2𝑛+𝑚−14𝑛−5 ⌉ is 

not valid, since for 𝑚 ≤ 2𝑛 − 4, the maximum label is 1. 

Moreover, since 𝐵𝑚𝑛  has at least 2 face-weights which are contributed by the same number of labels, there must 

be 2 faces of the same weight. Then the divisor must be at least 4𝑛 − 4. Thus we have 𝑧 ≥ ⌈4𝑛+𝑚−74𝑛−5 ⌉. 
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Next, to show that 𝑧 is an upper bound for entire face irregularity strength of 𝐵𝑚𝑛 , let 𝐵𝑚𝑛 , 𝑚 ≥ 1, 𝑛 ≥ 3, be the 
2-connected plane graph with an 𝑛-sided internal face 𝑓𝑖𝑛𝑡𝑛 , 𝑚 − 1 (2𝑛 − 2)-sided internal faces and an 
external 𝑛-sided face 𝑓𝑒𝑥𝑡𝑛 .  

Let 𝑚1 = ⌈𝑚2 ⌉ and 𝑚2 = 𝑚 −𝑚1. Our goal is to have 𝑚1 distinct even face-weights and 𝑚2 distinct odd         

face-weights such that 𝑚 (2𝑛 − 2)-sided face-weights are distinct and form an arithmetic progression.  

Let 𝑧 = ⌈4𝑛+𝑚−74𝑛−5 ⌉. It can be seen that 𝐵𝑚𝑛  has 𝑚 different paths of length (𝑛 − 1). Next, we divide 𝑚1 paths 

into 𝑆 = ⌈ 𝑚14𝑛−5⌉ parts, where part 𝑠-th consists of (4𝑛 − 5) paths, for 1 ≤ 𝑠 ≤ 𝑆 − 1,  and part 𝑆-th consists of 𝑟1 = 𝑚1 − (𝑆 − 1)(4𝑛 − 5) paths. Also, we divide 𝑚2 paths into 𝑇 = ⌈𝑚2+14𝑛−5⌉ parts, where the first part 

consists of (4𝑛 − 6) paths, part 𝑡-th consists of (4𝑛 − 5) paths, for 2 ≤ 𝑡 ≤ 𝑇 − 1,  and part 𝑇-th consists of 𝑟2 = 𝑚2 − (𝑇 − 1)(4𝑛 − 5) paths.  

Let  𝑉(𝐵𝑚𝑛 ) = {𝑥, 𝑦, 𝑢(𝑠)𝑖2𝑗, 𝑢(𝑆)𝑘2𝑗, 𝑣(𝑡)𝑖2𝑗 ≠ 𝑣(1)12𝑗, 𝑣(𝑇)𝑙2𝑗 | 1 ≤ 𝑠 ≤ 𝑆 − 1, 1 ≤ 𝑡 ≤ 𝑇 − 1, 1 ≤ 𝑖 ≤ 4𝑛 −5, 1 ≤ 𝑗 ≤ 2𝑛 − 2, 1 ≤ 𝑘 ≤ 𝑟1 , 1 ≤ 𝑙 ≤ 𝑟2};  𝐸(𝐵𝑚𝑛 ) = {𝑥𝑦} ∪   {𝑢(𝑠)𝑖1 = 𝑥 𝑢(𝑠)𝑖2, 𝑢(𝑠)𝑖2𝑗−1 = 𝑢(𝑠)𝑖2𝑗−2 𝑢(𝑠)𝑖2𝑗, 𝑢(𝑠)𝑖2𝑛−3 = 𝑢(𝑠)𝑖2𝑛−4𝑦|1 ≤ 𝑠 ≤ 𝑆 − 1, 1 ≤𝑖 ≤ 4𝑛 − 5, 2 ≤ 𝑗 ≤ 𝑛 − 2} ∪  {𝑢(𝑆)𝑖1 = 𝑥 𝑢(𝑆)𝑖2, 𝑢(𝑆)𝑖2𝑗−1 = 𝑢(𝑆)𝑖2𝑗−2 𝑢(𝑆)𝑖2𝑗, 𝑢(𝑆)𝑖2𝑛−3 = 𝑢(𝑆)𝑖2𝑛−4𝑦|1 ≤ 𝑖 ≤ 𝑟1, 2 ≤ 𝑗 ≤𝑛 − 2} ∪  {𝑣(𝑡)𝑖1 = 𝑥𝑣(𝑡)𝑖2, 𝑣(𝑡)𝑖2𝑗−1 = 𝑣(𝑡)𝑖2𝑗−2𝑣(𝑡)𝑖2𝑗, 𝑣(𝑡)𝑖2𝑛−3 = 𝑣(𝑡)𝑖2𝑛−4𝑦 | 1 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑖 ≤ 4𝑛 −5, 2 ≤ 𝑗 ≤ 𝑛 − 2} ∪  {𝑣(𝑇)𝑖1 = 𝑥𝑣(𝑇)𝑖2, 𝑣(𝑇)𝑖2𝑗−1 = 𝑣(𝑇)𝑖2𝑗−2𝑣(𝑇)𝑖2𝑗, 𝑣(𝑇)𝑖2𝑛−3 = 𝑣(𝑇)𝑖2𝑛−4𝑦 | 1 ≤ 𝑖 ≤ 𝑟2, 2 ≤ 𝑗 ≤𝑛 − 2}; 𝐹(𝐵𝑚𝑛 ) = {𝑓𝑒𝑥𝑡𝑛 ,  𝑓𝑖𝑛𝑡𝑛 , 𝑢(𝑠)𝑖2𝑛−2, 𝑢(𝑆)𝑘2𝑛−2, 𝑣(𝑡)𝑖2𝑛−2 ≠ 𝑣(1)12𝑛−2, 𝑣(𝑇)𝑗2𝑛−2| 1 ≤ 𝑠 ≤ 𝑆 − 1, 1 ≤ 𝑡 ≤ 𝑇 −1, 1 ≤ 𝑖 ≤ 4𝑛 − 5, 1 ≤ 𝑘 ≤ 𝑟1 , 1 ≤ 𝑙 ≤ 𝑟2};  
Where 𝑓𝑒𝑥𝑡𝑛  is bounded by cycle 𝑥𝑣(1)22𝑣(1)24⋯𝑣(1)22𝑛−4𝑦𝑥;  𝑓𝑖𝑛𝑡𝑛  is bounded by cycle 𝑥𝑢(1)12𝑢(1)14⋯𝑢(1)12𝑛−4𝑦𝑥; 𝑢(𝑠)𝑖2𝑛−2 is bounded by cycle 𝑥𝑢(𝑠)𝑖2𝑢(𝑠)𝑖4⋯𝑢(𝑠)𝑖2𝑛−4𝑦𝑢(𝑠)𝑖+12𝑛−4𝑢(𝑠)𝑖+12𝑛−6⋯𝑢(𝑠)𝑖+12 𝑥, for                1 ≤ 𝑠 ≤ 𝑆, 𝑖 ≠ 𝑟1;  𝑢(𝑆)𝑟12𝑛−2 is bounded by cycle 𝑥𝑢(𝑆)𝑟12 𝑢(𝑆)𝑟14 ⋯𝑢(𝑆)𝑟12𝑛−4𝑦𝑣(𝑇)𝑟22𝑛−4𝑣(𝑇)𝑟22𝑛−6⋯𝑣(𝑇)𝑟22 𝑥; and  𝑣(𝑡)𝑖2𝑛−2 is bounded by cycle 𝑥𝑣(𝑡)𝑖2𝑣(𝑡)𝑖4⋯𝑣(𝑡)𝑖2𝑛−4𝑦𝑣(𝑡)𝑖+12𝑛−4𝑣(𝑡)𝑖+12𝑛−6⋯𝑣(𝑡)𝑖+12 𝑥, for                   1 ≤ 𝑡 ≤ 𝑇, 𝑖 ≠ 𝑟2;  

Our notations above imply that, without losing generality, for 𝑣(𝑡)𝑖𝑗, we let 2 ≤ 𝑖 ≤ 4𝑛 − 5 for 𝑡 = 1. It means 

that there is no vertex or edge or face 𝑣(1)1𝑗.  
 

Now, we divide our labeling of 𝐵𝑚𝑛  into 2 cases as follows: 

Case 1. For odd 𝒎 with  𝟐 ≤ 𝒓𝟐 ≤ 𝟐𝒏 − 𝟏 or even 𝒎; 

Define an entire 𝑘-labeling 𝜆 ∶ 𝑉 ∪ 𝐸 ∪ 𝐹 → {1, 2,⋯ , 𝑘} of 𝐵𝑚𝑛  as follows. 𝜆(𝑥) = 𝜆(𝑦) = 𝜆(𝑥𝑦) = 𝜆(𝑓𝑒𝑥𝑡𝑛 ) = 1; 𝜆(𝑓𝑖𝑛𝑡𝑛 ) = 2; 
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𝜆(𝑢(𝑠)𝑖𝑗) = {  
  2𝑠 − 1 for 1 ≤ 𝑠 ≤ 𝑆, 1 ≤ 𝑖 ≤ min{𝑟1, 2𝑛 − 2} and 1 ≤ 𝑗 ≤ 2𝑛 − 𝑖 − 1   2𝑠        for 1 ≤ 𝑠 ≤ 𝑆, 1 ≤ 𝑖 ≤ min{𝑟1, 2𝑛 − 2} and 2𝑛 − 𝑖 ≤ 𝑗 ≤ 2𝑛 − 2                                 2𝑠        for 1 ≤ 𝑠 ≤ 𝑆, 2𝑛 − 1 ≤ 𝑖 ≤ min{𝑟1, 4𝑛 − 5} and 1 ≤ 𝑗 ≤ 2𝑛 − 2 ⌊𝑖−2𝑛+22 ⌋ − 2          2𝑠 + 1 for 1 ≤ 𝑠 ≤ 𝑆, 2𝑛 − 1 ≤ 𝑖 ≤ min{𝑟1, 4𝑛 − 5} and 2𝑛 − 2 ⌊𝑖−2𝑛+22 ⌋ − 1 ≤ 𝑗 ≤ 2𝑛 − 2    

𝜆 (𝑣(𝑡)𝑖𝑗) =
{  
  
   
 2𝑡 − 1, for 1 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑖 ≤ min{𝑟2, 2𝑛 − 2} and 1 ≤ 𝑗 ≤ 2𝑛 − 𝑖 − 2;                           2𝑡, for 1 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑖 ≤ min{𝑟2, 2𝑛 − 2} and 2𝑛 − 𝑖 − 1 ≤ 𝑗 ≤ 2𝑛 − 3;                 2𝑡, for 1 ≤ 𝑡 ≤ 𝑇, 2𝑛 − 1 ≤ 𝑖 ≤ min{𝑟2, 4𝑛 − 5} and 1 ≤ 𝑗 ≤ 2𝑛 − 2 ⌊𝑖−2𝑛+22 ⌋ − 3;            2𝑡 + 1, for 1 ≤ 𝑡 ≤ 𝑇, 2𝑛 − 1 ≤ 𝑖 ≤ min{𝑟2, 4𝑛 − 5} and 2𝑛 − 2 ⌊𝑖−2𝑛+22 ⌋ − 2 ≤ 𝑗 ≤ 2𝑛 − 3;2𝑡 − 2, for 1 ≤ 𝑡 ≤ 𝑇, 𝑖 = 1 and 𝑗 = 2𝑛 − 2;                                                2𝑡 − 1, for 1 ≤ 𝑡 ≤ 𝑇, 2 ≤ 𝑖 ≤ min{𝑟2, 2𝑛 − 1} and 𝑗 = 2𝑛 − 2;           2𝑡, for 1 ≤ 𝑡 ≤ 𝑇 − 1, 2𝑛 ≤ 𝑖 ≤ 4𝑛 − 5 and 𝑗 = 2𝑛 − 2.                       2𝑡,    for 𝑡 = 𝑇, 2𝑛 − 1 ≤ 𝑖 ≤ min{𝑟2 − 1, 4𝑛 − 6} and 𝑗 = 2𝑛 − 2                                        

  

Case 2. For odd 𝒎 with 𝒓𝟐 = 𝟏 or 𝟐𝒏 ≤ 𝒓𝟐 ≤ 𝟒𝒏 − 𝟓; 

Define an entire 𝑘-labeling 𝜆∗ ∶ 𝑉 ∪ 𝐸 ∪ 𝐹 → {1, 2,⋯ , 𝑘} of 𝐵𝑚𝑛  as follows. 𝜆∗(𝑥) = 𝜆∗(𝑦) = 𝜆∗(𝑥𝑦) = 𝜆∗(𝑓𝑒𝑥𝑡𝑛 ) = 1; 𝜆∗(𝑓𝑖𝑛𝑡𝑛 ) = 2; 𝜆∗(𝑢(𝑠)𝑖𝑗) = 𝜆(𝑢(𝑠)𝑖𝑗)  
𝜆∗ (𝑣(𝑡)𝑖𝑗) =

{   
  
   2𝑇 − 2,           for 𝑟2 = 1, 𝑡 = 𝑇, 𝑖 = 1, 𝑗 = 1;                                            2𝑇 − 1,           for 𝑟2 = 1, 𝑡 = 𝑇 − 1, 𝑖 = 4𝑛 − 5, 𝑗 = 2𝑛 − 2;               𝜆(𝑣(𝑡)𝑖𝑗) + 1, for 𝑟2 odd, 2𝑛 ≤ 𝑟2 ≤ 4𝑛 − 5, 𝑡 = 𝑇, 𝑖 = 𝑟2, 𝑗 = 1;                      𝜆(𝑣(𝑡)𝑖𝑗) − 1, for 𝑟2 odd, 2𝑛 ≤ 𝑟2 ≤ 4𝑛 − 5, 𝑡 = 𝑇, 𝑖 = 𝑟2 − 1, 𝑗 = 2𝑛 − 2;    𝜆(𝑣(𝑡)𝑖𝑗) − 1, for 𝑟2 even, 2𝑛 ≤ 𝑟2 ≤ 4𝑛 − 5, 𝑡 = 𝑇, 𝑖 = 𝑟2 − 1, 𝑗 = 2𝑛 − 3; 𝜆(𝑣(𝑡)𝑖𝑗) + 1, for 𝑟2 even, 2𝑛 ≤ 𝑟2 ≤ 4𝑛 − 5, 𝑡 = 𝑇, 𝑖 = 𝑟2 − 1, 𝑗 = 2𝑛 − 2; 𝜆(𝑣(𝑡)𝑖𝑗),       for otherwise.                                                                                              

  

It is easy to check that the labeling 𝜆 is an entire 𝑧-labeling. Then we have evaluate the face –weights set {𝑤(𝑓𝑒𝑥𝑡𝑛 ),𝑤(𝑓𝑖𝑛𝑡𝑛 ),𝑤(𝑢(𝑠)𝑖2𝑛−2),𝑤(𝑣(𝑡)𝑖2𝑛−2) | 1 ≤ 𝑠 ≤ 𝑆, 1 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑖 ≤ 4𝑛 − 5} as follows. 𝑤(𝑓𝑒𝑥𝑡𝑛 ) = 2𝑛 + 1; 𝑤(𝑓𝑖𝑛𝑡𝑛 ) = 2𝑛 + 2; 

𝑤(𝑢(𝑠)𝑖2𝑛−2) = { 
 (2𝑠 − 1)(4𝑛 − 5) + 2𝑖,           for 1 ≤ 𝑠 ≤ 𝑆 − 1, 1 ≤ 𝑖 ≤ 4𝑛 − 5; (2𝑠 − 1)(4𝑛 − 5) + 2𝑖,     for 𝑠 = 𝑆 − 1, 1 ≤ 𝑖 ≤ 𝑟1;                (2𝑠 − 1)(4𝑛 − 5) + 2𝑟1,        for even 𝑚,  𝑠 = 𝑆 − 1, 𝑖 = 𝑟1;   (2𝑠 − 1)(4𝑛 − 5) + 2𝑟1 − 1, for odd 𝑚,  𝑠 = 𝑆 − 1, 𝑖 = 𝑟1.                   𝑤(𝑣(𝑡)𝑖2𝑛−2) = {(2𝑡 − 1)(4𝑛 − 5) + 2𝑖 + 1,           for 1 ≤ 𝑡 ≤ 𝑇 − 1, 1 ≤ 𝑖 ≤ 4𝑛 − 5; (2𝑇 − 1)(4𝑛 − 5) + 2𝑖 + 1,     for 𝑡 = 𝑇, 1 ≤ 𝑖 ≤ 𝑟2 − 1.                

Since all face-weights are distinct, then 𝜆 is a face irregular entire z-labeling of 𝐵𝑚𝑛  where 𝑚 is odd with             2 ≤ 𝑟2 ≤ 2𝑛 − 1 or 𝑚 is even; and 𝜆∗ is a face irregular entire z-labeling of 𝐵𝑚𝑛  where 𝑚 is odd with  𝑟2 = 1 

or 2𝑛 ≤ 𝑟2 ≤ 4𝑛 − 5. Thus, 𝑧 = ⌈4𝑛+𝑚−74𝑛−5 ⌉ is the entire face irregularity strength of 𝐵𝑚𝑛 . ∎ 

 

Note that our result in Theorem 2.2 show that the 𝑒𝑓𝑠(𝐵𝑚𝑛 ) is greater than the lower bound in Lemma 2.1. 

Hence, we propose the following open problem. 
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Open Problems 

1. Find a class of graph which satisfy a condition where the lower bound in Lemma 2.1 is sharp; 
2. Generalize the lower bound for any condition. 
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