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Abstract. This paper introduces an adaptive neuro-fuzzy inference system 

(ANFIS) for tracking SEDC motor speed in order to optimize the parameters of 

the transient speed response by finding out the perfect training data provider for 

the ANFIS. The controller was adjusted using PI, PD and PIPD to generate data 

sets to configure the ANFIS rules. The performance of the ANFIS controllers 

using these the different data sets was investigated. The efficiencies of the three 

controllers were compared to each other, where the PI, PD, and PIPD 

configurations were replaced by ANFIS to enhance the dynamic action of the 

controller. The performance of the proposed configurations was tested under 

different operating situations. Matlab’s Simulink toolbox was used to implement 

the designed controllers. The resultant responses proved that the ANFIS based 

on the PIPD dataset performed better than the ANFIS based on the PI and PD 

data sets. Moreover, the suggested controller showed a rapid dynamic response 

and delivered better performance under various operating conditions. 

Keywords: adaptive neuro-fuzzy inference system (ANFIS); data sets; FIS and Matlab 

Simulink; motor control; SEDC motor. 

1 Introduction 

The core idea of motor control is to make the motor work reliably and to 

achieve an ideal operating process. DC motor control means regulating the 

speed to the desired value to realize all scheduled processes. In many situations, 

variations in the load can influence the speed. Therefore, the DC motor needs 

precise control to achieve the desired speed. The portability used in various 

speed ranges makes the application of an SEDC motor important. Full torque 

should be obtainable at all speeds. Connecting the armature to a variable voltage 

source is used to get accurate speed and the speed direction is changed by 

switching the field polarity [1].  

The speed control of DC motors has been broadly applied through the use of 

conventional control techniques. Nevertheless, these still have some drawbacks. 

For example, traditional PI, PD, and PID controllers cannot perform the desired 

speed control, especially under variant loads [2-6]. A control based on fuzzy 
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logic has been developed to overcome the weakness of conventional PIDs [7], 

but the efficiency of fuzzy control is limited because it is built on human 

experiences. This has led several researchers to develop modern methods aimed 

at improving the performance of the DC motor in order to avoid the 

shortcomings of conventional PIDs and the limitations of fuzzy control [8]. 

ANFIS, for instance, is one of the most useful techniques exploited to control 

DC motor speed. This method was developed by Jang in the 90s of the last 

century [9]. It is a combination of a fuzzy and a neural network by employing a 

hybrid learning process and has been applied by many researchers in the field of 

motor control. ANFIS control was developed specifically to control DC motors 

and good results have been obtained. It was found that ANFIS has less 

overshoot and settling time in the speed response and a fast dynamic response 

compared to fuzzy and conventional PIDs [10]. 

In addition, a neuro-fuzzy configuration has been recommended to control 

SEDC motors, where a PI scheme was used to build the training data. The 

configuration was operated under varying and constant load and tested in a 

simulation at inconstant speed [11]. The SEDC motor speed was regulated 

using an ANFIS, but in this system a chopper circuit was utilized. Moreover, 

the speed response was compared with fuzzy, PI and PID, where the effect of 

temperature on the speed was considered [12].  

A supervisory learning algorithm has been used with ANFIS to track the DC 

motor speed. However, the results showed high values in the transient response 

characteristics [13]. In a study by Zhang, once again high overshoot and 

substantial settling time were observed [14]. The simulation results for an 

ANFIS controller proposed for SEDC motor speed control showed that its 

performance with a conventional PI was somewhat acceptable [15]. In [16], 

fuzzy logic online learning for RBFNN was implemented to control the speed 

of a DC motor, where the controller showed superior performance compared 

with conventional PID.  

A bat algorithm optimized ANFIS has been designed for controlling a DC 

motor [17]. The performance of the suggested technique was compared with an 

ANFIS based genetic algorithm and PSO, Fuzzy-PID, PID based bat algorithm 

and adaptive FLC. The proposed method showed superior performance in all 

aspects compared with the other techniques. However, the controller showed 

different performance between the simulation and experimental verification. 

Emotional learning algorithms utilizing a proportional-derivative based on 

ANFIS have been proposed in [18]. However, tuning the PD gain resulted in an 

observable overshoot and large settling time. In another study, a neuro-fuzzy 

speed regulator was designed. Its effectiveness in a simulation compared with a 

conventional speed regulator showed that the steady state was slightly improved 
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[19]. Likewise, a hybrid control has been established for DC motors, where the 

presented configuration slowed down the controller response. In addition, the 

controller exhibited a drawback at variant loads [20]. Another shortcoming was 

observed when an ANFIS controller was assessed in offline mode [21]. 

Nevertheless, the performance of ANFIS models in providing correct 

predictions is comparatively superior to that of ANN [22].  

In [23] the genetic algorithm appears again, where it was developed for FLC. 

However, setting the parameters affects the algorithm, which leads to repeating 

similar suboptimal solutions. Furthermore, a hybrid GA-PSO algorithm 

optimized online ANFIS has been developed to control DC motor speed, where 

the learning parameters were optimized online for different speed torques [24]. 

In [25], an ANFIS-based composite controller was developed for a static VAR 

compensator in a power system.  

The performance of the introduced method improved the steady-state response 

but deteriorated the transient response. In [26], the speed of a DC motor was 

regulated using an ANFIS based on neuro-fuzzy logic algorithms. This 

controller exhibited larger overshoot and undershoot in its speed response. An 

ANFIS controller based on PID has been proposed, where the controller showed 

outstanding performance in all aspects, except for the appearance of overshoot 

in the speed response of the motor.  

In [27], the performance and stability of ANFIS were analyzed for constant and 

variant speed, sudden load and changes in several motor parameters, i.e. inertia, 

resistance, inductance and magnetic flux. In a number of studies, algorithms 

have been developed to cope with the accelerated progression of the motor 

industry, where [8] and [28] developed a novel bacterial foraging and antlion 

algorithm to enhance ANFIS performance. 

Most of the previous studies compared their proposed designs with one or more 

conventional schemes. Herein, we present an ANFIS technique based on PI, 

PD, and PIPD control, where PIPD combines PI and PD training data, 

implemented through a particular algorithm. This study’s contributions are: 

firstly, generating three types of training data sets; secondly, comparing the 

performance of ANFIS between the three models; and thirdly, investigating the 

response efficiency of the suggested controllers under several operating 

conditions. This article is organized as follows: Section 2 describes the 

mathematical modeling of the DC motor. The control techniques are presented 

in Section 3. The results of the ANFIS methodologies implemented in this work 

and the discussion are detailed in Section 4, followed by the conclusion in the 

final section. 
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2 Motor Mathematical Modelling 

From Figure 1 and by applying Kirchhoff’s voltage law to the circuit, the 

voltage equation can be formed as follows:  

 

( )

( ) . ( ) . ( )

di t
a

E t R i t L e t
a a a bdt

= + +
 (1) 

where ( ) . ( )
b b m

e t K tω=  

 

Figure 1 Electrical circuit of an SEDC motor. 

After substitution in Eq. (1), it becomes Eq. (2) as follows:   

 
( )

( ) . ( ) . . ( )
a
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The mechanical part can be formulated as follows:  
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where 
T a

T(t)=K .i (t)  

After substitution in Eq. (3) we derive Eq. (4): 
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By applying Laplace transform we get Eqs. (5) and (6): 

 ( ) . . ( ) . ( ) . ( )
a a a a b m

E s L s I s R I s K sω= + +  (5) 

 . ( ) . ( ). . ( )
T a m m m m

K i s J s s B sω ω= +  (6) 

To obtain the final motor transfer function formula as in following Eq. (7): 
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Figure 2 shows a block diagram of an SEDC motor. Figure 3 illustrates the 

model made in Matlab Simulink, while the parameters applied to the model are 

specified in Table 1. 

Table 1 Motor specifications. 

Parameter Value 

Armature inductance 
aL  0.1215H 

Armature resistance 
aR  11.2 Ω 

Rotor inertia 
mJ  0.02215Kgm 

Viscous friction coefficient mB  0.002953Nms/rad 

Back EMF constant 
bK  1.28Vs/rad 

Torque constant 
TK  1.28Nm/A 

aa RsL +
1+

- BJs +
1

s

1
TK

bK

)(sω)(sEa )(sIa
)(sTm )(sθ

)(sEb

+
-

load

 

Figure 2 SEDC motor structure. 

  

Figure 3 Simulink scheme of the SEDC motor. 
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3 The Adaptive Neuro-Fuzzy Inference System 

3.1 Adaptive Neuro-Fuzzy Principle 

An artificial neural network is a new control technique that holds numeric 

entities and manipulates them by figuring out the convergence and divergence 

between them. Fuzzy logic is a flexible and autonomous methodology that has 

reasonable interpretation capabilities and can be easily integrated with similar 

systems. On the other hand, a neural network has superior efficiency with 

numerical entities. Hence, by incorporating both strategies, a modern method 

can be acquired.  

The new configuration has the characteristics of both systems and results in a 

significant improvement in modeling, nonlinear mapping, learning and pattern 

recognition. As for their general structures, fuzzy logic and ANFIS have the 

same parts except that ANFIS has a neural network portion. This is arranged in 

four major components: fuzzification, rule base, neural network, and 

defuzzification, as shown in Figure 4. 

 

Figure 4 The general structure of the ANFIS configuration. 

The network scheme contains a set of elements structured in five coupled 

layers. The nodes in layer 1 represent the fuzzy inputs. The weight of the 

membership functions is checked to select the minimum input values in the 

second layer. Then, layer 2 sends its output to layer 3, where each neuron is 

matched with a fuzzy rule and normalized by calculating its weight. Hence, at 

this level, the number of layers is equal to the number of fuzzy rules.  

The fourth layer is called the defuzzification layer and produces the output that 

results from the fuzzy rule layer. All of these are summed up in layer five to 

provide crisp values. The general scheme of the neuro-fuzzy network is shown 

in Figure 5, where the circles and squares represent fixed and adaptive nodes 

respectively.  
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Figure 5 The general scheme of the neuro-fuzzy network. 

3.2 The Methodology for Generating Training Data for ANFIS 

In this study, three models were built to generate data for training the ANFIS. 

The first and second were the regular PI and PD while the third one was PIPD, 

which is a combination of the first two configurations. They were then 

manipulated by a special algorithm called SADU to ensure that they are able to 

cover all possible operation conditions (SADU stands for symmetric difference 

of unions). This algorithm is designed to find out the convergence and 

divergence between data generated by models. The performance of PI and PD 

were predictable, but the performance of PIPD could be more efficient. Figure 6 

shows the structure of the PIPD model that was used to generate the training 

data for the ANFIS controller. 

 

Figure 6 Architecture of the PIPD model. 

SDAU algorithm: 

1. Set i, k, j = 0, 

2. Define , , , ,k k k k kA B U S R , 

3. Repeat , 

4. ( )k k kU A B=  , 

5. { }: ( ) ( )k k kS j j A j B= ∈ ⊕ ∈ , 

6. 
k k kR S U=  , 
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7. 1k k← + , 

8. Stop when the criterion is satisfied,  

9. where: Set i, k, j = 0 as index and counter, 

10. , , , ,k k k k kA B U S R  are defined as the variables, 

11. ( )k k kU A B=   is the intersection between two inputs that represent the 

data in 
kA

 
and kB , 

12. { }: ( ) ( )k k kS j j A j B= ∈ ⊕ ∈  is the symmetric difference between the two 

data sets, 

13. 
k k kR S U=   is the union between the two data sets, 

14. 1k k← +  is used to read the data element from the data set, 

15. Repeat the condition until the criterion is satisfied. 

3.3 ANFIS Controller Scheme 

The training data from the PI, PD, and PIPD configurations are generated 

according to observation of the SEDC motor’s behavior and then saved in 

separate files. The model used to generate the data is a predetermined model, 

which means that the assumed parameters related to the input/output 

membership function and rules are adjusted to attain optimum performance. The 

generated data files are uploaded to the fuzzy inference system in order to train 

it.  

The fuzzy system then learns the data and tracked the I/O provided data. The 

adaptive mechanism must continuously perform online identification of the 

controlled object during system operation. It is required that the structure of the 

selected neural network should be suitable for the work characteristics of the 

adaptive learning mechanism for online learning. 

Moreover, the learning speed should be increased. In case the network structure 

is more complicated, the number of weights that need to be adjusted is higher. 

This inevitably affects the learning speed of the adaptive mechanism. It also 

makes it impossible to properly track changes of the controlled object and the 

dynamic learning theory of the multi-layer neural network is not perfect enough. 

Based on comprehensive consideration of the above factors, the speed controller 

in this study used neuron network dynamic learning to achieve the adaptive 

mechanism as explained in Figure 7. 
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Figure 7 Architecture of the ANFIS network. 

The PI, PD, and PIPD controllers were built and correctly adjusted. The 

generated data were investigated several times in order to ensure that they were 

able to cover all situations. In this study, the data were minimized as much as 

possible to increase the dynamic response speed. Moreover, they were 

rearranged in a usable form for training in the ANFIS. Subsequently, the ANFIS 

was utilized to train the data set. The zero-error criterion was used to modify the 

membership functions. The model was validated to ensure that the FIS model 

was successful in predicting the values of the equivalent data set output; the 

models’ efficiency and capability were verified; and the tested data were able to 

cover all different possibilities of load variation. The system was repeatedly 

tested by implementing different load signals and values. This resulted in the 

membership functions, method optimization and several modifications of the 

error tolerance to obtain an ideal response. If the training data prepared for the 

ANFIS completely represent the features of the optimal response, this kind of 

modeling will work admirably. However, if the training data are prepared via 

noisy measurements and cannot represent all features of the data that will be 

presented to the ANFIS, then validating the model is helpful. As an example, 

the data generated using the PIPD scheme to perform ANFIS are shown in 

Figures 8, 9 and 10 respectively. 

 

Figure 8 PIPD training errors for ANFIS. 
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Figure 9 PIPD training data for ANFIS. 

 

Figure 10 PIPD tested data for ANFIS. 

For all the introduced controllers, a fuzzy first-order Takagi-Sugeno model was 

utilized to perform the configuration of the ANFIS. It had two inputs, namely 

error E and its changing rate EC, and one output to represent the control signal 

to the motor. The rules were defined as follows: 

Rule 1: If is 
1

A  and y  is 
1

B , then  

  1 1 1 1
;f p x q y r= + +  

Rule 2: If is 2
A  and y  is 2

B , then  

 2 2 2 2
p ;f x q y r= + +  

Since A and B are the fuzzy antecedent sets, ( . )f x y  is a consequent crisp 

function. In this configuration, the ANFIS controller has two inputs, each 

consisting of four triangle membership functions and one linear output type. 

The system has 16 possible rules, with zero-error tolerance and 10 epochs.  

The ANFIS structure was tuned automatically by a back propagation 

optimization algorithm for training the FIS because it is flexible and showed 

X

X
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perfect performance with load variation, while the hybrid optimization method 

was found to be unsuitable for changes in load. Figure 11 shows a schematic 

diagram of the ANFIS Simulink model for controlling SEDC motor speed, 

where the reference and real speed difference are input into the ANFIS 

configuration, while the resulting output is the voltage to the motor. 

 

Figure 11 ANFIS Simulink model scheme for controlling SEDC motor speed. 

4 Results and Discussion 

The system was tested in several stages. In the first stage, the motor response 

was tested without controller for the purpose of clarifying the overall impact of 

the control. As expected, the response showed a sizeable steady-state error as 

shown in Figure 11. Secondly, it was operated with a fixed load equal to 10% of 

the input signal. The response was very far removed from the optimal response, 

as illustrated in Figures 12 and 13. 

 

Figure 12 Motor response without control and load. 
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Figure 13 Motor response without control and with constant 1/10 of referenced 

speed. 

In the second, and for the purpose of demonstrating the disparity in the 

performance of the simulation system tests, the ANFIS controller operated 

based on the data generated by the PI, PD, and PIPD models. First, the speed 

response performance was accomplished without load. For the ANFIS-based PI 

data controller, the speed response showed a reasonable response performance 

with a slight overshoot and an inconsiderable oscillation before reaching a 

stable state, as shown in Figure 14. As for the ANFIS-based PD data controller, 

its response showed a distinct overshoot. Moreover, it also showed a small 

oscillation and more rapidly reached a steady state compared with the ANFIS-

based PI data controller, as can be seen in Figure 15. Figure 16 illustrates the 

speed response produced by the ANFIS-based PIPD data controller, which 

showed optimal performance and superiority in all aspects.  

The second test was done by applying a constant external load to the motor in 

order to determine the ability of the controller for disturbance avoidance. The 

ANFIS-based PI data controller got stuck in an oscillating state, thus causing an 

inadmissible instability, as can be seen in Figure 17. This obviously proves that 

the controller failed to bear a constant load under the same circumstances, other 

than the other two controllers. PD and PIPD demonstrated their ability in 

dealing with an unvarying load without any change in their responses, as 

illustrated in Figures 18 and 19. In the third test, the constant load was increased 

tenfold. For the ANFIS-based PI data and the ANFIS-based PD data, this 

resulted in a massive overshoot in the speed response. However, so far the 

ANFIS-based PIPD data maintained their efficiency without any change. 

Besides, their response was not affected even if the load was increased ten- or 

hundredfold. For the ANFIS-based PIPD data controller response, the overshoot 

was so small that it was difficult to measure. As for the rise time and settling 
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time, the controller showed exceptional performance and a very speedy 

dynamic response with no oscillation. Figures 20-22 display the three 

controllers’ speed responses. 

 

Figure 14 Speed response of ANFIS-based PI training data without load. 

 

Figure 15 Speed response of ANFIS-based PD training data without load. 

  

Figure 16 Speed response of ANFIS-based PIPD training data without load. 
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Figure 17 Speed response of ANFIS-based PI training data with a constant 

load. 

  

Figure 18 Speed response of ANFIS-based PD training data with a constant 

load. 

 

Figure 19 Speed response of ANFIS based on PIPD training data with a 

constant load. 
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Figure 20 Speed response of ANFIS-based PI training data with 10 times 

constant load. 

 

Figure 21 Speed response of ANFIS-based PD training data with 10 times 

constant load. 

 

Figure 22 Speed response of ANFIS-based PIPD training data with 10 and 100 

times constant load. 
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Furthermore, for further confirmation the system was tested under sudden load. 

First, the system was operated under a slight sudden load. For the ANFIS-based 

PI data controller, apparently, the slight sudden load had a large effect on the 

speed response, as can be seen in Figure 23. As a result, the motor speed 

oscillated during the load period and only reached stable state after the load was 

removed. Meanwhile, for the ANFIS-based PD data, there was a small change 

observed in the speed response to the sudden load, as shown in Figure 24. With 

respect to the ANFIS-based PIPD data no difference was seen, as is evident 

from Figure 25, where the controller succeeded to absorb the load successfully. 

For more confirmation, the amplitude of the sudden load was increased ten- and 

hundredfold. The ANFIS-based PIPD data controller displayed outstanding 

performance for the sudden heavy load, as shown in Figure 26. In contrast, for 

the other two controllers the increase of the sudden load affected the system’s 

stability. 

 

Figure 23 Speed response of ANFIS-based PI training data with a sudden load. 

 

Figure 24 Speed response of ANFIS-based PD training data with a sudden 

load. 
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Figure 25  Speed response of ANFIS-based PIPD training data with a sudden 

load. 

  

Figure 26 Speed response of ANFIS-based PIPD training data with a sudden 

load increased 100 times. 

5 Conclusion 

In this study, the performance of ANFIS was assessed according to the feed-

forward data type used to set the rules for the speed controller of an SEDC 

motor. PI, PD, and PIPD models were used to generate the data for the ANFIS. 

The created data were integrated into the ANFIS configuration and operated 

under different conditions to evaluate the transient response parameters while 

absorbing constant and sudden load, and steady-state error. In general, the 

designed ANFIS configuration has several advantages, for instance, the 

simplicity of its structure and learning susceptibility. Implementation of its rules 

is relatively rapid and easy compared to traditional methods. In addition to these 

features, the ANFIS-based PIPD data also showed high robustness under 

changing load and superior performance for speed control. Added to this, it 

showed low oscillation and more accuracy in its speed response. The controller 
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also proved to have a perfect tracking response for the desired speed without 

overshoot and short settling time. The Matlab simulation results proved that the 

ANFIS-based PIPD data provided good performance since they passed all 

different tests conditions and showed high efficiency. Moreover, the controller 

showed a distinct performance increase compared to the ANFIS-based PI or PD 

training data and the controllers previously mentioned in the literature review.  
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