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Abstract. Three partially pre-stressed interior beam-column sub-assemblages 

(SI) and two partially pre-stressed exterior beam-column sub-assemblages (SE) 

made of reactive powder concrete as test specimens were numerically modeled 

using a finite element program. The objective of this study was to investigate the 

behavior of the SI and SE numerical models. The numerical model inputs were: 

material data, details of test specimen dimensions, and test specimen 

reinforcements. The numerical models were subjected to the same loads as those 

applied experimentally. The numerical modeling results were hysteretic and 

backbone curves and stress distribution contours. The numerical model outputs 

showed good similarity with the experimental results. The stress distribution 

contours of the numerical models correlated with the crack patterns in the joint 

zone of the test specimens. The behavior of the SI numerical models differed 

from the SE numerical models due to various stresses on the beam plastic joints 

and the joint zones. 

Keywords: crack pattern; finite element numerical model; partially pre-stressed; 

reactive powder concrete; stress distribution.  

1 Introduction 

Five partially pre-stressed beam-column sub-assemblage test specimens were 

numerically modeled to investigate the hysteretic curves, stress distribution 

contours, and their relation to the behavior of the test specimens. The concrete 

material used for all test specimens was reactive powder concrete (RPC), using 

local materials and polypropylene microfibers with a compressive strength of 

101.79 MPa [1]. RPC is more compact than normal concrete to provide higher 

compressive strength. This compactness causes brittle behavior, so that addition 

of microfibers is required to maintain proper ductility. The use of polypropylene 

microfibers can significantly increase flexural strength, tensile strength and 

shear strength [2]. All beams of the test specimens were partially pre-stressed 
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reinforced and the columns were fully mild steel reinforced. The loads in the 

numerical modeling were the same as the loads applied experimentally, i.e. a 

combination of cyclic lateral and constant axial compressive loads at the top end 

of the column [1,3]. The experiments were conducted in the Laboratory of 

Structure and Building Construction, Center of Research and Development on 

People Housing, Ministry of Public Works and Housing. The numerical models 

represented three interior beam-column sub-assemblages (SI’s) and two exterior 

beam-column sub-assemblages (SE’s) with partial pre-stressed ratio of 33.79% 

and 22.78%. The numerical modeling used a program that supported finite 

element analysis. 

2 Finite Element Method Model 

The ANSYS program was used to perform the finite element analysis of the 

partially pre-stressed beam-column sub-assemblage numerical models. The 

RPC, mild steel bars, and pre-stressed strands were numerically modeled using 

elements that provided appropriate degrees of freedom numbers.  

2.1 Finite Element Equation Solution 

The relation between strain and nodal displacement is expressed in Eqs. (1) to 

(3). 

 {𝜀} =  [𝐵]{𝑢} (1) 

where [B] is the strain-displacement matrix based on the element shape function 

and {u} is the node displacement vector. 

The relation of stiffness matrix [K] and [B] is as follows: 

 [𝐾] = ∫ [𝐵]𝑇[𝐷][𝐵]{𝑢}𝑑𝑑𝑉  (2) 

The relation between stiffness, deformation, and load {p} is as follows: 

 [𝐾]{𝑢} = {𝑝} (3) 

2.2 Numerical Models 

2.2.1 Concrete Numerical Model 

In the ANSYS program, the concrete elements were numerically modeled using 

SOLID65 element as 8-node three-dimensional brick elements [4]. Each node 

had three degrees of freedom of translation to the X, Y, and Z axes. The 

SOLID65 element was modeled as an element cracked due to tensile stress, 

crushed due to compressive stress, plastic deformation, and creep. 
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a. Isotropic Condition 

In an isotropic material, the stress matrix {σ} and strain matrix {ε} are 

connected by the operator matrix [D] as in the following elasticity matrix:  

 {σ} = [D]{ε} (4) 

The inverse matrix of elasticity [D]
-1

 is expressed in Eq. (5): 

[𝐷]−1 =

⎣⎢⎢
⎢⎢⎢
⎡
 

1/𝐸𝑥 −𝜐𝑥𝑥/𝐸𝑥 −𝜐𝑥𝑥/𝐸𝑥−𝜐𝑥𝑥/𝐸𝑥 1/𝐸𝑥 −𝜐𝑥𝑥/𝐸𝑥−𝜐𝑥𝑥/𝐸𝑥 −𝜐𝑥𝑥/𝐸𝑥 1/𝐸𝑥   
0         0         0

0         0         0

0        0         0

0               0                0

0               0                0

0               0                0

1/𝐺𝑥𝑥  0   0

0 1/𝐺𝑥𝑥   0

0  0 1/𝐺𝑥𝑥⎦⎥⎥
⎥⎥⎥
⎤
 (5) 

where 𝐸𝑥, 𝜈𝑥𝑥, 𝜈𝑥𝑥, and 𝐺𝑥𝑥 are the Young modulus on the x-axis, the major 

Poisson ratio, the minor Poisson ratio, and the shear modulus in the x-y plane, 

respectively. 

b. Crack Behavior on Concrete Element 

The material stiffness matrix under isotropic material conditions is in Eq. (6) as 

follows:  

D
c
 = 

𝐸
(1+𝜐)(1−2𝜐)

 . 

⎣⎢⎢
⎢⎢⎡(1 − 𝜐)𝜐𝜐

0

0

0

𝜐
(1 − 𝜐)𝜐

0

0

0

𝜐𝜐
(1 − 𝜐)

0

0

0

0

0

0
(1−2𝜐)2

0

0

0

0

0
0

(1−2𝜐)2
0

0

0

0
0

0
(1−2𝜐)2 ⎦⎥⎥

⎥⎥⎤  (6) 

where E is the concrete elastic modulus (MPa) and υ is the Poisson ratio of 

concrete. The matrix of material stiffness based on the stress-strain correlation 

for materials considered to be cracked in one direction is shown in Eq. (7): 

 𝐷𝑐𝑐𝑐 =.
𝐸

(1+𝜐)
. 

⎣⎢⎢
⎢⎢⎢
⎡𝑅𝑡(1−𝜐)𝐸

0

0
0

0

0

01
(1−𝜐)𝜐
(1−𝜐)

0

0

0

0𝜐
(1−𝜐)1
(1−𝜐)

0

0

0

0

0

0𝛽𝑡2
0

0

  

0

0

0
  0  12

0

 

0

0

0
0

0𝛽𝑡2 ⎦⎥⎥
⎥⎥⎥
⎤
  (7)                      

If the crack is closed due to unloading, the compressive stresses perpendicular 

to the crack plane will be forwarded to the crack and there is only shear transfer 

coefficient βc. Then the stiffness matrix becomes as in Eq. (8): 
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𝐷𝑐𝑐𝑐 =. 
𝐸

(1+𝜐)(1−2𝜐)
. 

⎣⎢⎢
⎢⎢⎡(1 − 𝜐)𝜐𝜐

0

0

0

𝜐
(1 − 𝜐)𝜐

0

0

0

𝜐𝜐
(1 − 𝜐)

0

0

0

0

0

0𝛽𝑐(1−2𝜐)2
0

0

0

0

0
0𝛽𝑐(1−2𝜐)2
0

0

0

0
0

0𝛽𝑐(1−2𝜐)2 ⎦⎥⎥
⎥⎥⎤ (8) 

2.2.2  Mild Steel and Strand Numerical Models 

In the ANSYS program, a longitudinal or transversal mild steel bar was 

numerically modeled using the LINK8 element [4]. The element was formed by 

two points at the ends of the bar in an X, Y, Z Cartesian coordinate system. 

Each point had three degrees of freedom of translation toward the X, Y, and Z 

axes. The element did not resist moment and the stress was assumed to be equal 

along the bar element. The element’s stiffness matrix is as in Eq. (9): 

 [𝐾] =. 
𝐴𝐸𝑠𝐿 . ⎣⎢⎢

⎢⎢⎡1 0 0

0 0 0

0 0 0

   
−1 0 0

0 0 0

0 0 0−1 0 0

0 0 0

0 0 0

   
1 0 0

0 0 0

0 0 0⎦⎥⎥
⎥⎥⎤ (9) 

where A is the cross-sectional area of the element (mm
2
), Es is the steel elastic 

modulus (MPa), and L is the elemental length (mm). 

2.2.3 Bond-Slip Interface Numerical Model in the ANSYS Program 

In the ANSYS program input, the stress-strain curves are influenced by bonds 

between the concrete and the mild steel bars or pre-stressed strands. The 

interface between the mild steel bars or pre-stressed strands with concrete was 

numerically modeled using a CONTA178 node to node element with three 

degrees of freedom of translations toward the X, Y, and Z axes, causing slip 

(gap) between the concrete and the mild steel bars or pre-stressed strands [4]. 

The CONTA178 elements were applied along the longitudinal mild steel bars or 

pre-stressed strands, which resisted compressive and tensile forces under cyclic 

lateral loads. 

The properties of the CONTA178 element are expressed by the curve of bond 

stress (τb) and the strain (εb) correlation. The correlation between the concrete 

strain and the mild steel bar or pre-stressed strand transferred to the concrete 

around the mild steel bar or pre-stressed strand is expressed in Eq. (10) [5]: 

 𝜀𝑐 = 𝜀𝑠 − 𝜀𝑏 (10) 
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where εc, εs, and εb are the concrete strains, mild steel bar or pre-stressed strand 

strain, and mild steel bar or pre-stressed strand strain that are transferred to the 

concrete around the mild steel bar or pre-stressed strand (bond strain), 

respectively. If the attachment between the concrete and the mild steel bar or 

pre-stressed strand is reduced or lost due to cracking of the concrete, then slip 

occurs. The correlation between concrete cracks and mild steel bar strain or pre-

stressed strand strain transferred to the concrete around the mild steel bar or pre-

stressed strand is described in Eq. (11): 

 𝜀𝑏 =. 
2 𝛿𝑏𝐶𝑠  (11) 

where δb, Cs and T are slip length (mm), crack width (mm), and tensile force 

(Newton), respectively, as shown in Figure 1.  

 

Figure 1 Specimen of concentric tensile test [6]. 

The crack widths were obtained from the experimental results. The strain 

conditions due to the loss of attachment can be divided into the following three 

conditions [7]: 

1. The condition εb ≤ εb0. The maximum slip distance when the attachment 

breaks down is 0.0317 mm [8]. Then the attachment strain of break-down is 

in Eq. (12)-(15): 

 𝜀𝑏0 =. 
63.4 × 10−3𝐶𝑠   (12) 𝜏𝑏 = [0.0451 𝐶𝑠 𝜀𝑏 − 1.07 (𝐶𝑠𝜀𝑏)2 + 12.5(𝐶𝑠𝜀𝑏)3  −58.2(𝐶𝑠𝜀𝑏)4]�𝑓𝑐′ × 103  (13) 

 𝐸𝑏 =.
𝜏𝑏𝜀𝑏 (14) 𝐸𝑏 = �0.0451 𝐶𝑠 − 1.07 𝐶𝑠2𝜀𝑏0 + 12.5𝐶𝑠3𝜀𝑏02 − 58.2𝐶𝑠4𝜀𝑏03 ��𝑓𝑐′ × 103 (15) 

δb δb δb δb 

T T 

Cs Cs 
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Because: 

 𝐸𝑏 × 𝜀𝑏 −. 
𝑇𝑂 𝐶𝑠 = 0 (16) 

 𝑇 = 𝐴𝑠𝐸𝑠𝜀𝑠 (17) 

then for a pre-stressed strand, if the tensile force that occurs is higher than the 

initial tensile force in the pre-stressing process, Eq.(17) becomes Eq. (18) as 

follows: 

 𝑇𝑝 = 𝐴𝑝𝐸𝑝𝜀𝑝 (18) 

Then: 

[0.0451 𝐶𝑠 𝜀𝑏 − 1.07 (𝐶𝑠𝜀𝑏)2 + 12.5(𝐶𝑠𝜀𝑏)3 − 58.2(𝐶𝑠𝜀𝑏)4] �𝑓𝑐′ × 103 − 𝑇𝑂 𝐶𝑠 = 0  (19) 

where εbo, τb, Eb, O, As, Ap, Es, and Ep are bond strain at break-down, concrete 

stress (MPa), concrete elastic modulus (MPa), circumference of mild steel bar 

or pre-strand strand cross section (mm), mild steel bar cross section area (mm
2
), 

pre-stressed strand cross-section area (mm
2
), elastic modulus (secant) of mild 

steel bar (MPa), and the elastic modulus (secant) of pre-stressed strand (MPa), 

respectively. 

2. The condition |𝜀𝑏𝑏| < |𝜀𝑏| ≤ 𝛿1|𝜀𝑏𝑏|, when the attachment starts being 

damaged. δ1 is 3. 𝜏𝑏,𝑚𝑚𝑥 = [0.0451 𝐶𝑠 𝜀𝑏 − 1.07 (𝐶𝑠𝜀𝑏)2 + 12.5(𝐶𝑠𝜀𝑏)3   −58.2(𝐶𝑠𝜀𝑏)4]�𝑓𝑐′ × 103  (20) 

 εc =. 
𝑂 𝐶𝑠 𝜏𝑏,𝑚𝑚𝑚𝐴𝑠𝐸𝑠   (21) 

where εc is the concrete strain (constant) and τb,max is the maximum attachment 

stress transferred to the concrete (MPa). 

3. The condition 𝛿1|𝜀𝑏𝑏| < |𝜀𝑏| ≤ 𝛿2|𝜀𝑏𝑏|, when the attachment has been 

damaged. Concrete stress on the descending branch of the stress-strain 

curve: 

 𝜏𝑏,𝑠𝑠𝑠𝑝 = 𝜏𝑏,𝑚𝑚𝑥.�1− 0.9 (𝜀𝑏−𝛿1𝜀𝑏0)𝜀𝑏0(𝛿2−𝛿1)
 �  �𝑓𝑐′  (22) 

 𝜀𝑐 =. 
𝑂 𝐶𝑠 𝜏𝑏,𝑠𝑠𝑠𝑠𝐴𝑠𝐸𝑠  (23) 

where τb,slip is the attachment stress when the slip is transferred to the concrete 

(MPa) and δ2 is 1.7516. 
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4. The condition 𝛿2|𝜀𝑏𝑏| < |𝜀𝑏|, when the attachment does not work at all.  

 𝜏𝑏 = 0.1 𝜏𝑏,𝑚𝑚𝑥 (24)  

2.3 Non-linear Equation Numerical Model 

The equilibrium equation for a linear system is expressed in Eq. (25) as: 

 [𝐾]{𝑢} = {𝐹𝑚} (25) 

where [𝐾], {𝑢}, and {𝐹𝑚} are structural stiffness matrix, degrees of freedom 

vector, and working load vector, respectively. 

In nonlinear cases, the Newton-Raphson iteration process is required to solve 

Eq. (26). It performs iterations for solving each incremental equilibrium: 

 �𝐾𝑠𝑇�{∆𝑢𝑠} = {𝐹𝑚} − {𝐹𝑠𝑛𝑛} (26) 

 {𝑢𝑠+1} = {𝑢𝑠} + {∆𝑢𝑠} (27) 

where [𝐾𝑠𝑇], {𝑢𝑠}, and {𝐹𝑠𝑛𝑛} are the structural stiffness matrix, degrees of 

freedom vector, and working load vector, respectively. 

For a convergent solution, multiple iterations with the following steps are 

needed: 

1. Assume the value of {𝑢𝑏}. Usually, {𝑢𝑏} is the solution of the previous 

iteration step, then in the first iteration, {𝑢𝑏} = {0} 

2. Create [𝐾𝑠𝑇] matrix, {𝐹𝑠𝑛𝑛} from confirmed {𝑢𝑠}. 

3. Determine {∆𝑢𝑠}. 

4. Add {∆𝑢𝑠} to {𝑢𝑠} to obtain {𝑢𝑠+1} 

3 Numerical Modeling of the Test Specimens 

Numerical modeling of the three SI and two SE test specimens was conducted 

using the finite element method. The numerical model inputs referred to the 

material test results of RPC, mild steel bars and pre-stressed strands, the details 

of the test specimen dimensions, and the test specimen reinforcement. 

3.1 Test Specimen Details 

All test specimens were designed to resist seismic loads. The reinforcement of 

the beams consisted of mild steel bars and pre-stressed strands, while the 

columns were reinforced by mild steel bars. The partial pre-stressed ratio (PPR) 

levels on the beams were 22.78% and 33.79% and the strands were placed 
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unbondedly in the plastic hinge of the beams to reduce strain and slow down the 

damaging due to cyclic lateral forces [9,10]. 

The details of the reinforcements are shown in Figures 2, 3, and 4. Each test 

specimen was placed on a loading frame and resisted loads from vertical and 

horizontal hydrolic jacks as shown in Figure 5. 

 

Figure 2 SI-A-33.79, SI-B-33.79, and SI-B-22.78 test specimens [1]. 

 

Figure 3 SE-A-33.79 and SE-B-22.78 test specimens [1]. 
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Figure 4 Sections of all test specimens. 

 

 

Figure 5 A specimen on the loading frame. 

Reaction Frame 

Hydraulic Jack; 

Lateral capacity: 1000 kN 

Hydraulic Jack; 

Axial capacity: 2000 kN 

Load Cell 

Linear Variable 

Displacement 

Transducer 

(LVDT) 

Reaction  

Wall 

Reaction Floor 
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3.2 Numerical Models 

Each numerical model had name, dimensions, reinforcement details, and partial 

pre-stressed ratio (PPR) according to the related test specimen (Table 1). The 

RPC, mild steel bar, and pre-stressed strand elements on the beam-column sub-

assemblages were meshed for finite element analysis.  

Front views of all SI and SE numerical models are shown in Figures 6 and 7. 

Table 1 Five types of beam-column sub-assemblage numerical models. 

Numerical model Type 
Stirrup space on the beam plastic hinges 

s (mm) 
PPR (%) 

SI-A-33.79 Interior 100 33.79 

SI-B-33.79 Interior 50 33.79 

SI-B-22.78 Interior 50 22.78 

SE-A-33.79 Exterior 100 33.79 

SE-B-22.78 Exterior 50 22.78 

 

Figure 6 Front view of the beam-column sub-assemblage numerical model’s 

interior (unit: mm). 

100 

1775 1775 

350 

100 

SOLID65 (Reactive 

Powder Concrete) 

LINK180  

(Mild steel bar) 

LINK180  

(Pre-stressed Strand) 

50 

1325 

1325 



38 Ba mb a ng  Bud io no , e t a l. 

  

 

Figure 7 Front view of the beam-column sub-assemblage numerical model’s 

Exterior (unit: mm). 

3.3 Loading History 

In the numerical modeling, the lateral cyclic loading was based on displacement 

control [3] and applied only in cycle 1. This was because at each drift ratio, the 

output of the lateral force-deflection hysteretic curve in cycle 2 and 3 was 

almost the same as the output of the lateral force-deflection hysteretic curve in 

cycle 1 [11]. To simplify the analysis, the numerical models were performed 

only in cycle 1 at each drift ratio, i.e. 0.20, 0.25, 0.35, 0.50, 0.75, 1.00, 1.40, 

1.75, 2.20, 2.75, 3.50, and 5.00 percent. 

4 Hysteretic Curves 

The verification of the numerical models against the experimental results 

included curve shape and ductility. The hysteretic and backbone curves of all 

numerical models were relatively the same as those of the experimental results. 

Figures 8 to 12 show the hysteretic and backbone curves for the lateral force 

and the displacement relation of the test specimens and the related numerical 

models. The lateral force differences between the numerical models and the test 

specimen curves at some high drift ratios were due to the reduced strength and 
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stiffness of the numerical models. This was caused by the cracked and crushed 

concrete elements of the numerical models. In this condition, the contribution of 

the concrete elements in the numerical models to strength and stiffness is 

decreased significantly [12]. However, the ductility values of the numerical 

modeling results are close to the experimental results [11]. 

  

(a) Hysteretic curves of 0% to 5% drift ratio (b) Backbone curves of 0% to 5% drift ratio 

Figure 8 Hysteretic and backbone curves of SI-A-33.79 test specimen and 

numerical model. 

  

(a) Hysteretic curves of 0% to 5% drift ratio. (b) Backbone curves of 0% to 5% drift ratio 

Figure 9 Hysteretic and backbone curves of SI-B-33.79 test specimen and 

numerical model. 
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(a) Hysteretic curves of 0% to 5% drift ratio. (b) Backbone curves of 0% to 5% drift ratio. 

Figure 10 Hysteretic and backbone curves of SI-B-22.78 test specimen and 

numerical model. 

  

(a) Hysteretic curves of 0% to 5% drift ratio (b) Backbone curves of 0% to 5% drift ratio 

Figure 11 Hysteretic and backbone curves of SE-A-33.79 test specimen and 

numerical model. 
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(a) Hysteretic curves of 0% to 5% drift ratio (b) Backbone curves of 0% to 5% drift ratio 

Figure 12 Hysteretic and backbone curves of SE-B-22.78 test specimen and 

numerical model. 

5 Stress Distribution 

In general, all numerical models began to resist the tensile and the compressive 

stress at 0.20% drift ratio. The tensile stress was less than 5 MPa, lower than the 

primary compressive stress and below the average tensile stress value of the 

material test result of 6.59 MPa. The tensile stress increased along with the drift 

ratio increment. A diagonal strut action occurred on the joint zone of all SI and 

SE numerical models at 0.35% drift ratio. Plastic joints on the beams were 

formed by significantly increased stress. The diagonal strut became wider and 

increased the stress on the next drift ratios. After peak lateral force, degradation 

of strength and stiffness set in. 

In all SI numerical models there were decreased concrete stresses at the center 

of the joint zone when the concrete exceeded its peak compressive strength. The 

low tensile stress of the joint zone centers increased at 5.00% drift ratio. This 

indicates widespread damage when compared to the conditions of 3.50% drift 

ratio (Figures 13, 14, and 15). In the SE numerical models, the stress was over 

43.89 MPa (dark blue) in the middle of the joint zones and began to spread. The 

shape of the diagonal strut began to change and spread until 5.00% drift ratio 

(Figures 16 and 17). The stress on the SE beams was higher than that on the SI 

beams of the numerical models with the same PPR at 3.50% drift ratio, 

especially in the plastic hinge areas. This was indicated by the color of the stress 

contours. The larger stresses led to larger ultimate shear forces on the beams of 
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the SE test specimens, especially in the plastic hinges. The stress was higher in 

the SE numerical model, with a PPR of 33.79%, than in the SE numerical 

model, with a PPR of 22.78%, because of higher lateral forces. 

  

(a) At 1.40% drift ratio: Loading Step (LS)-18; 

increased stress in the center of the joint zone  

diagonal strut (light blue) (25.56 to 37.78 

MPa) 

(b) At 3.50% drift ratio: LS-26; decreased 

compressive stress due to increased concrete 

damage in the middle of the joint zone (red) 

(1.11 MPa); continued strength and stiffness 

degradation 

 

Figure 13 Main stress distribution (σ3) in SI-A-33.79 longitudinal section; push 

load condition (unit: MPa). 

  

(a) At 1.40% drift ratio: LS-18; increased stress 

in the center of the joint zone diagonal strut 

(light blue) (25.56 to 37.78 MPa) 

(b) At 3.50% drift ratio: LS-26; decreased 

compressive stress due to increased 

concrete damage in the middle of the joint 

zone (red) (1.11 MPa); continued 

degradation of strength and stiffness 

 

Figure 14 Main stress distribution (σ3) in SI-B-33.79 longitudinal section; push 
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load condition (unit: MPa). 

  

(a) At 1.40 drift ratio: LS-18; increased stress 

in the center of the joint zone diagonal strut 

(light blue) (25.56 to 37.78 MPa) 

(b) At 3.50% drift ratio: LS-26; decreased 

compressive stress due to increased 

concrete break-down in the middle of the 

joint zone (red); continued degradation of 

strength and stiffness 

 

Figure 15 Comparison of primary stress distribution (σ3) in SI-B-22.78 and SE-

B-22.78 longitudinal section (unit: MPa). 

… 

  

(a) At 1.40% drift ratio: LS-18; increased stress 

in the center of the joint zone diagonal strut 

(light blue) (25.56 to 37.78 MPa) 

(b) At 3.50% drift ratio: LS-26; the stress 

above 43.89 MPa (dark blue) in the 

middle of the joint zone spread; the shape 

of the diagonal strut started to change and 

spread at 2.75% drift ratio 

 

Figure 16 Comparison of primary stress distribution (σ3) in longitudinal section 

of  SE-A-33.79; push load condition (unit: MPa). 



44 Ba mb a ng  Bud io no , e t a l. 

  

  

(a) At 1.40% drift ratio: LS-18; increased stress in 

the center of the joint zone diagonal strut 

(light blue) (25.56 to 37.78 MPa) 

(b) At 3.50% drift ratio: LS-26; the stress 

above 43.89 MPa (dark blue) in the 

middle of the joint zone spread; the shape 

of the diagonal strut started to change and 

spread at 2.75% drift ratio. 

 

Figure 17 Comparison of primary stress distribution (σ3) in SE-B-22.78 

longitudinal section; push load condition (unit: MPa). 

The stress distribution contours of all SI numerical models corresponded to the 

crack patterns in the joint zone of all SI test specimens due to diagonal cracks 

under cyclic lateral load and damage in the center of the joint zones (Figures 

18(a-c)). The compressive stress on the joint zone increased and did not reach 

peak compressive stress until the end of loading in all SE numerical models. 

This corresponds to the crack patterns of the joint zones of all SE test 

specimens, as there were only a few hair cracks (Figures 18(d-e)). 

  
(a) SI-A-33.79 (b) SI-B-33.79 

Figure 18  Crack patterns in the joint zone of test specimens. 
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(c) SI-B-22.78 

  
(d) SE-A-33.79 (e) SE-B-22.78 

Figure 18  Continued. Crack patterns in the joint zone of test specimens. 

6 Conclusions 

From the numerical modeling results it can be concluded that the hysteretic and 

backbone curves of the numerical models showed good similarity with the test 

specimen curves. The differences were caused by stiffness and strength 

degradation due to cracking and crushing of the concrete elements in the 

numerical models. This condition made the contribution to strength and 

stiffness of the concrete elements in the numerical models decrease 

significantly. However, the numerical model results showed values of ductility 

that were close to those from the experimental results. 

The modeling of test specimens with numerical analysis showed a correlation 

between each numerical model and the related test specimen. The diagonal strut 

shapes and stress distributions in the numerical models performed similarly as 

the crack patterns in the test specimens. The stress distribution showed that 

diagonal strut action formed in the joint zones from the beginning of loading in 

all SI and SE numerical models. The stress continued to increase according to 

the loading history. After achieving peak lateral force, the behavior of the SI 

numerical models began to differ from the SE numerical models. In the SI 
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numerical models, the diagonal strut shapes changed due to spread stress on the 

joint zones, which were followed by decreased stress and then relatively 

constant stress. This corresponded to the crack patterns in all SI test specimens 

because there were many diagonal cracks in the joint zones due to the diagonal 

strut action. The stress continued to increase and then became relatively 

constant. It did not achieve maximum stress in all SE numerical models. This 

corresponded to the crack patterns in all SE test specimens since there were 

almost no diagonal cracks in the joint zones because the maximum stress was 

not achieved. 

7 Recommendations 

Numerical modeling of crack patterns to be compared with experimental results 

can be used to predict the failure behavior of test specimens. Moreover, to 

improve the numerical modeling, finer concrete element dimensions are 

required to avoid premature stiffness and strength degradation due to cracked 

and crushed concrete elements, which significantly decrease the strength and 

stiffness in the numerical models. 
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