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Abstract. This paper presents the application of an improved firefly algorithm 
(IFA) for minimizing total electricity generation fuel cost while all loads are 
supplied by thermal generating units. The proposed IFA was developed by 
combining two proposed improvements of the firefly algorithm (FA), i.e. 
improvement of the distance between two considered solutions and improvement 
of the new-solution production technique. The effect of each proposed 
improvement on the conventional firefly algorithm (FA) and the performance of 
IFA were investigated in two study cases, i.e. single- and multi-fuel option based 
thermal generating units. In the first case, three different systems with three, six 
and twenty units were employed, while a ten-unit system with four different 
loads was tested in the second case. The comparison results between IFA and 
existing methods, including three other FA variants, revealed that the two 
proposed improvements of FA are very efficient and make IFA a very promising 
meta-heuristic algorithm for minimizing fuel cost of thermal generating units. 

Keywords: improved firefly algorithm; multi-fuel; single-fuel; thermal generating 

units; total fuel. 

1 Introduction 

The world is currently experiencing rapid population growth, while many 
countries are confronted with high rates of urbanization. Thus, the question how 
to meet the increasing demands of essential products, energy and services – the 
main challenge of this century – needs to be considered. To solve this matter, a 
large power source is required to supply services and daily energy consumption. 
Hence, the electrical power market will become more competitive and more 
complicated than ever before. The solution is to distribute the power system 
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load to generation units so that the lowest fuel cost function is accomplished 
while satisfying the system constraints, an approach that is known as optimal 
operation of thermal generating units (ELD) [1]. In the system operation 
conditions of the ELD problem, the fuel resources of the thermal units can be 
supplied according to two cases. The first case is single-fuel, where the fuel cost 
function of each generator can be represented approximately by a single 
quadratic function [2]. The second case is multi-fuel (coal, natural gas and oil), 
where the generator can be represented by a segmented-piecewise quadratic 
function [3-11]. Traditionally, a wide range of deterministic methods have been 
used to solve the ELD problem, namely the Lagrangian relaxation algorithm 
[12], the gradient method [13], the lambda iteration method [14] and the 
Hopfield model (HNN) [1,3,15-17]. These methods share the same advantages, 
such as requiring only a short execution time, having a small number of control 
parameters and providing a single optimal solution. However, there are some 
drawbacks when handling the problems related to complex multi-fuel 
constraints, large power systems and a non-differentiable objective.  

 
During the previous decades several approaches have been adopted to deal with 
the ELD problem, such as Tabu Search (TS) [18], differential evolution (DE) 
[19], Non-dominated Sorting Genetic Algorithm II (NSGA-II) [20], 
biogeography-based optimization (BBO) [21-22], the Fuzzy Logic Controlled 
Genetic Algorithm (FCGA) [23], and the Cuckoo Search Algorithm (CSA) [24-
25]. Among these, DE is one of the most popular methods and has been widely 
and successfully applied. DE can handle difficult problems with nonlinear 
constraints and complicated objective functions. In addition, it has a small 
number of control parameters that lie within a predetermined range. However, 
the task of finding the best values for these control parameters by tuning is 
time-consuming and needs a large number of evaluations for different results 
from different sets of control parameters [26]. In fact, DE has two main factors, 
the crossover factor and the mutation factor, where the first is from zero to 2 
while the latter is from zero to 1. In addition, the new-solution generation 
method is based on the same formula, which has high probability of converging 
to a local optimum solution with low quality.  
 
BBO has better characteristics than DE since it uses two generations per 
iteration but only one evaluation time. Thus, BBO can overcome the 
shortcoming of easily converging to a local optimum but it has difficulty in 
coping with the selection of the control parameters. BBO has more control 
parameters, i.e. population size, iterations, maximum immigration rate, 
mutation coefficient, maximum emigration rate, retaining rate and habitat 
modification probability. CSA can overcome the limitations of these two 
methods. CSA can avoid falling into local optimum zones and finding lower 
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quality solutions by using two mechanisms: exploration via Levy flights and 
exploitation via mutation. The Levy flights mechanism can explore large search 
zones while the mutation operation focuses on narrow zones. Furthermore, CSA 
has a small number of adjustment parameters, i.e. population size, iterations and 
probability of mutation performance. The first two are popular parameters that 
all metaheuristic algorithms also have, while the third one is very a simple one 
for tuning within the range from 0 to 1. The firefly algorithm is a population 
based meta-heuristic algorithm similar to PSO, DE, CSA, etc. It was built by 
Yang in 2008 for solving optimization problems [27]. The configuration of FA 
consists of three procedures for updating the distance between two considered 
fireflies, updating the step size and updating the solutions.  
 
In this paper, we propose two modifications of FA in order to tackle several of 
its disadvantages, such as premature convergence to a local optimum solution 
and impossibility of jumping out of a search zone with many local optimum 
solutions. In the first modification, we propose a new formula to update the 
radius between a considered firefly Xi (one solution) and another firefly Xj 
(another solution) with a lower fitness function than the considered solution. 
The proposed radius based on Xi and the best solution XGbest is more effective 
than that based on Xi and Xj in FA. In the second modification, we propose a 
new algorithm for producing new solutions of an old solution by suggesting two 
models for the updated step size. A larger or smaller updated step size will be 
used to find solutions in different zones and to avoid converging to a local 
optimum and getting trapped into a search zone with many local optimums. As 
a result, the new algorithm provides a very considerable improvement compared 
to FA. The application of each modification was evaluated by testing on four 
systems with nine cases, i.e. nine thermal generating units using single-fuel and 
multi-fuel ELD.  

2 Problem Formulation  

2.1 Objective Function 

In single-fuel ELD, the fuel cost of each generating unit is expressed as a 
quadratic function of its power output. The objective of the problem is to 
minimize the total fuel cost of N available units, as shown in Eq. (1):   

 
1

Min ( ),
N

s s
s

F F P


   (1) 

where Ps is the real power output of generator s and Fs is the fuel cost function 
of thermal unit s, which can be represented in Eqs. (2) and (3) corresponding to 
single-fuel and multi-fuel cases. 
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where as, bs, and cs are fuel cost coefficients of unit s with single-fuel option; 
asm, bsm, csm denote fuel cost coefficients for fuel type m of unit s; Psm,min and 
Psm,max denote the lower and upper limits for fuel m of unit s, respectively; Ps,min 
and Ps,max represent the lowest value and the highest generations that thermal 
unit s can produce; Ms represents the number of fuel options of thermal unit s. 

2.2 Set of Constraints 

Active power balance: power from the generating units together with electricity 
load PLD and power losses PTL should satisfy the constraint of Eq. (4): 

 
1

,
N
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where PTL is found by using Eq. (5) [1]: 
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where Bij, B0i, B00 are terms in the transmission power loss coefficient matrix. 

Limitations of the thermal generating units: the power output of each thermal 
generating unit must follow the rule in Eq. (6): 

 ,min ,max .s s sP P P   (6) 

3 Proposed Improved Firefly Algorithm 

3.1 Firefly Algorithm   

Each firefly i is represented by a position Xi corresponding to solution Xi at the 
current iteration. When the fitness function of solution i is higher than that of 
another solution j, the distance between firefly i and j is obtained by using Eq. 
(7): 
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 2( ) .ij i jr X X    (7) 

Then the updated new distance solutions are carried out using Eqs. (8) and (9):  

 
2

0
ijr
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   ,  (8) 

 . ,ijnew i ij iX X X rand      (9) 

where randi is a random solution i, β0 is the attractiveness at zero distance 
(normally set to 1). Xj is a solution with a lower fitness function than Xi; and 

ijX is the updated step size calculated by employing Eq. (10).  

 ( )ij ij iX X X    (10) 

The whole description of FA is shown in detail in the flowchart in Figure 1. 
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Figure 1 Flowchart of implementing FA for a general optimization problem. 
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3.2 Proposed Improved Firefly Algorithm  

In the paper, we propose two improvements regarding the considered radius and 
the updated step size. Instead of using the distance between the considered 
solution i and another better solution to determine the radius, the best solution 
XGbest is recommended to be used for calculating the radius: 

 2( ) .iBest i Gbestr X X   (11) 

where XGbest is the best solution in the population.  

In the second improvement, a novel technique is proposed for producing new 
solutions with higher quality than those of FA. It is clear that the manner of 
producing the updated step size by using Eq. (9) is similar to the mutation 
operation of the differential evolution algorithm (DEA) in which β acts as 
mutation factor, ranging from 0 to 2. Some previous studies [26] have pointed 
out disadvantages of DEA, such as low convergence to a global optimum or 
easily getting trapped in a local optimum. Consequently, the proposed 
improvement aims to tackle the limitations of FA by using Eqs. (12)-(14): 

 1 1 2( ),ij j i r rX X X X X      (12) 

 2 1 ( ),ij ij Gbest WorstX X X X      (13) 
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 (14) 

The definitions in Eq. (14) are as follows: Xr1 and Xr2 are two random solutions 
among the current population that are different from Xi and Xj; XGbest and XWorst 
are the best and the worst solutions among the current population; RNi is a 
random number ranging from 0 to 1, generated for solution i; PT is 
predetermined tolerance, which was set to 0.5 for all cases in this paper to 
ensure that the probability is 50% for each model. The implementation of the 
proposed IFA for a general optimization problem is similar to the flowchart 
shown in Figure 1 of FA. The difference between the two considered algorithms 
is the way in which new solutions are produced. 

4 Implementation of IFA for ELD Problem  

4.1 Dealing with Load Demand- Supply Balance Constraint  

In order to deal with the load demand-supply balance constraint, one thermal 
generating unit must be considered as dependent variable while the rest are 
decision variables, which are included in the position of each firefly in the 
initialization step and are updated in each iteration by using the search strategy 
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of IFA. Consequently, the position of firefly i will go from thermal generating 
unit 1 to unit N-1 as shown in Eq. (15): 

 Xi=[P1,i, P2,i, …., PN-1,i]; i=1, …, Npop, (15) 

where Xi must always meet the constraint of Eqs. (16)-(18): 

 min max ,iX X X    (16) 

 Xmin=[P1,min, P2,min, …., PN-1,min], (17) 

 Xmax=[P1,max, P2,max, …., PN-1,max]. (18) 

As a result, the load demand-supply balance constraint can be dealt with 
successfully by using the dependent variable PN,i obtained by Eq. (19) [25].  
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4.2 Penalizing Violations by PN,I  

Eq. (20) indicates that there is a possibility that PN,i violates its limitations, i.e. 
being lower than the lowest generation or higher than the highest generation. 
Therefore, the violation must be controlled and considered in the quality 
evaluation of the solutions. This is done by calculating the penalty term as 
indicated in Eq. (20): 
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4.3 Fitness Function  

The fitness function of all solutions should be determined to arrange the 
effectiveness of all the solutions. The fitness function, which considers the 
objective function and the penalty term, is shown in Eq. (21): 

 2

1

( ) ( ) ,
N

i s s i
s

FT F P PF Penalty


    (21) 

where FTi is the fitness function of solution i and PF is the penalty factor used 
to amplify the violation of the dependent variable. 

5 Numerical Results 

The proposed IFA, FA and two other improved versions corresponding to the 
first improvement (called IFA1) and the second improvement (called IFA2) 
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were tested in four cases, where the first three cases considered thermal 
generating units using only the single-fuel option while the last one took 
thermal generating units using the multi-fuel option into consideration. The 
details of the four test systems were as follows: 

Case 1: Three thermal generating unit test systems with a load of 850 MW [18]. 
Case 2: Six thermal generating unit test systems with varying loads, i.e. 800 
MW, 1200 MW and 1800 MW corresponding to cases 2.1, 2.2 and 2.3 [23]. 
Case 3: Twenty thermal generating unit test systems with a load of 2500 MW 
[15]. 
Case 4: Ten thermal generating units with varying loads, i.e. 2400 MW, 2500 
MW, 2600 MW and 2700 MW corresponding to cases 4.1, 4.2, 4.3 and 4.4 [6]. 

In addition, the population size and the highest iteration number selected for 
implementation of IFA, FA, IFA1 and IFA2 were identical, as shown in 
Table 1. In all four cases, each method was run in fifty independent trials using 
Matlab and a computer with 4GB of RAM and a 2.4 Ghz processor.  

Table 1 Selection of population size and highest iteration number. 

Type of fuel Case Npop NIter 

Single-fuel 
1 10 15 
2 10 40 
3 20 500 

Multi-fuel 4 15 200 

5.1 Impact of Proposed Modifications on Obtained Results 

In this section, the impact of each modificaiton on the performance of the 
proposed method is discussed as well as the advantages of the proposed method 
over FA. Thus, four FA variants were run in cases 1, 2 and 3. The results, 
consisting of minimum cost, average cost, maximum cost and standard 
deviation cost, are reported in Tables 2 and 3.  

The comparison of best cost reflects the best optimal solution and the 
comparison of standard deviation cost reflects the stabilization of the search 
ability. The two comparison criteria are both essential to indicate the 
performance of each method. In case 1 with the 3-TGU system, the proposed 
method obtained lower best cost than FA, IFA1 and IFA2 by $0.034, $0.014 
and $0.006 respectively. Similarly, the standard deviation cost of IFA was 
lower than that of FA, IFA1 and IFA2 by $55.3, $1.16, $0.085 respectively.  

The comparison shows that the proposed method performed the best and FA the 
worst, while IFA2 was better than IFA1. The same outcome was obtained in the 
subcases of case 2 and case 3. Clearly, the first modification has only a slight 
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impact on the results of the proposed method, while the second modification has 
a significant impact. The best cost after fifty runs obtained by the four methods 
for cases 1 and 3 (shown in Figures 2 and 3) shows the superiority of IFA over 
FA by small fluctuations, high stablization and approximate convergence to the 
best solution. For the multi-fuel case, the result comparisons are shown in Table 
4 and the fifty runs of case 4.1 are plotted in Figure 4. The minimum cost 
confirms the better performance of the proposed method over FA, while the 
standard deviation and the figure give evidence of a stable search in the 
proposed method. Consequently, it can be concluded that the proposed method 
is much more effective and robust than FA. 

Table 2 Results ($/h) obtained by FA methods in case 1. 

Method Best cost Mean cost Worst cost Std. dev. 
FA 8344.627 8350.38 8378.291 55.30577 

IFA1 8344.607 8344.71 8349.779 1.16356 
IFA2 8344.599 8344.6 8344.72 0.08551 
IFA 8344.593 8344.59 8344.593 0.00006 

Table 3 Best Cost ($/h) obtained by FA methods in case 2 and case 3. 

Method Case 2.1 Case 2.2 Case 2.3 Case 3 
FA 8243.2632 11482.6 16583.26 62514.98 

IFA1 8230.7388 11480 16581.9 62460.49 
IFA2 8227.5393 11477.3 16579.6 62458.88 
IFA 8227.0986 11477.1 16579.33 62456.64 

 

Figure 2 The best cost after fifty runs obtained by FA and the proposed method 
in case 1. 
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Figure 3 The best cost after fifty runs obtained by FA and the proposed method 
in case 3. 

Table 4 Results ($/h) obtained by FA methods for case 4. 

Method 
Case 4.1 Case 4.2 Case 4.3 Case 4.4 

Min.  Std. Min.  Std. Min.  Std. Min.  Std. 
FA 485.661 6.78 528.11 6.54 577.003 8.89 627.887 3.25 

IFA1 482.821 5.82 528.091 5.27 575.41 5.17 626.73 3.07 
IFA2 481.933 2.1 526.77 3.14 575.03 4.38 624.05 2.43 
IFA 481.723 0.24 526.24 0.33 574.381 1.63 623.81 0.83 

 

 

Figure 4 The best cost after fifty runs obtained by FA and the proposed method 
in case 4.1. 
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5.2 Comparison and Discussion 

In order to further investigate the performance of IFA, comparisons were 
carried out of results obtained by IFA and other optimization tools, such as 
EALHN [1], HNN [3], HRCGA [4], RCGA [4], DE [5], HNUM [6], AHNN 
[7], ELANN [8], IEP [9], AIS [10], HICDEDP [11], Lambda [15], HM [15], TS 
[18], IGA [20], BBO [21-22], CGA [23] FCGA [23], CSA [24-25], and 
ORCSA [26]. In addition to the comparison of best cost, another comparison 
criterion was considered, i.e. the number of fitness evaluations NFES, which is 
shown in Eq. (24): 

 
,FES pop IterN N N  
 (24) 

where ω is the number of generations in each iteration. For some optimization 
algorithms with two new-solution generations, CSA and ORCSA, ω is 2 while 
for the other two, with one new-solution generation, PSO and DE, ω is 1. For 
the proposed IFA, only one new solution is generated in each iteration, thus ω is 
equal to 1. The value of NFES was added to each table for comparison, which 
indicates that methods with a lower NFES are more efficient if its best cost is also 
lower or equal.  

Table 5 shows the best cost, ACTFER and NFES from IFA and other methods for 
case 1. The best cost comparison indicates that IFA has the same solution 
quality as BBO [21] and CSA [24] but better solution quality than TS [18] and 
IGA [20]. The reported time indicates faster search ability of IFA compared to 
CSA. No values were reported by the other methods. However, IGA and BBO 
used a very high number of NFES, 10,000,000 for IGA and 30,000 for BBO, 
whereas the value was very low for IFA (150). Consequently, IFA is a very 
efficient method for case 1.   

Table 5 Result comparisons for case 1. 

Method Cost ($) ACTFER (s) Npop NIter NFES 

TS [18] 8344.598 - - - - 
IGA [20] 8344.598 - 500 20,000 10,000,000 
BBO [21] 8344.592 - 100 300 30,000 
CSA [24] 8344.59 0.09 - - - 

IFA 8344.592 0.06 10 15 150 

The comparisons for cases 2.1, 2.2 and 2.3 (Table 6) show that the costs from 
IFA were equal to those from CSA but much lower than those from FCGA [23] 
and CGA [23]: by $3.93 and $5.79 for case 2.1, $2.94 and $16.65 for case 2.2, 
and $6.52 and $9.72 for case 2.3 respectively. Clearly, IFA obtained better 
solutions than CGA and FCGA for the three cases. Furthermore, IFA used only 
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400 fitness evaluations while CGA and FCGA used 10,000 fitness evaluations. 
CSA does not report its population and iterations, thus we cannot calculate its 
NFES. Consequently, IFA is very promising for cases 2.1, 2.2 and 2.3. 
Comparisons with other methods, i.e. Lambda [15], HM [15], BBO [22], CSA 
[25] and ORCSA [25] for case 3, are given in Table 7. The best cost comparison 
shows that the method yielded much better cost than FA and the same or 
approximate solution quality as the other methods. However, Lambda and HM 
had a high error rate (about 10-3), while the other methods and IFA had low 
error rates.  

Table 6 Result comparisons for cases 2.1, 2.2 and 2.3. 

Method 
Case 2.1 Case 2.2 Case 2.3  

NFES Cost ($) Cost ($) Cost ($) 
FCGA [23] 8231.030 11480.030 16585.850 10,000 
CGA [23] 8232.890 11493.740 16589.050 10,000 
CSA [24] 8227.100 14477.090 16579.330 - 

IFA 8227.0986 11477.09 16579.33 400 

Table 7 Result comparisons for case 3. 

Method Cost ($) Npop NIter NFES 

Lambda [15] 624656.639 - - - 
HM [15] 62456.6341 - - - 
CSA [25] 62456.633 10 500 10,000 

ORCSA [25] 62456.633 10 500 10,000 
BBO [22] 62456.7926 50 400 20,000 

IFA 62456.638 20 500 10,000 

Moreover, IFA used the same NFES as CSA, ORCSA but half that of BBO. 
Clearly, IFA is also an effective method for case 3. For the multi-fuel cases, the 
best cost and fitness evaluations are shown in Table 8.  

Table 8 Comparison of best cost (in $/h) for case 4. 

Method Case 4.1 Case 4.2 Case 4.3 Case 4.4 NFES 

EALHN [1] 481.723 526.239 574.381 623.809 - 
HNN [3] 487.780 526.130 574.260 626.120 - 

HRCGA [4] 481.7226 526.2388 574.3808 623.8092 8,000 
RCGA [4] 481.7233 526.2393 574.3966 623.8094 8,000 

DE [5] 481.723 526.239 574.381 623.809 12,000 
HNUM [6] 488.500 526.700 574.030 625.180 - 
AHNN [7] 481.720 526.230 574.370 626.240 - 

ELANN [8] 481.740 526.270 574.410 623.880 - 
IEP [9] 481.779 526.304 574.473 623.851 - 

AIS [10] 481.723 526.24 574.381 623.809 3,000 
HICDEDP [11] 481.723 526.239 574.381 623.809 4,000 

FA 485.661 528.11 577.003 627.887 3,000 
IFA 481.723 526.240 574.381 623.810 3,000 
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The best cost comparison indicates that IFA had the same optimal solution 
quality as most methods, excluding a number of methods that had higher cost, 
i.e. HNN [3], HNUM [6], ELANN [8], and IEP [9]. The proposed method 
especially had much better cost than FA. Furthermore, IFA was one of methods 
with the lowest NFES value (3,000), while RCGA and HRCGA in [4] needed 
8,000, DE [5] needed 12,000 and HICDEDP [11] needed 4,000. Clearly, IFA is 
one of the most efficient methods, being able to find the lowest fuel cost and 
using the smallest number of fitness evaluations. 

6 Conclusions 

In this paper, two improvements of the conventional firefly algorithm were 
proposed. The first improvement was to determine the effective distance 
between two considered solutions and the second improvement was aimed at 
finding an efficient algorithm for generating new solutions. Each improvement 
had a significant impact on the performance of the proposed IFA since IFA1 
(with application of the first improvement) and IFA2 (with application of the 
second improvement) performed better than conventional FA. The proposed 
IFA with both improvements also performed much better than FA.  

Further investigation of the proposed IFA was done by comparing its 
performance with that of several other methods in nine cases, considering the 
single-fuel and multi-fuel options. Result comparisons indicated that IFA can 
obtain high approximate solution quality or better solutions than the other 
methods while using a lower or equal number of fitness evaluations compared 
to these methods. Consequently, the proposed IFA is very promising for solving 
the problem of optimal operation of thermal generating units.   
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