PERBANDINGAN PENGARUH TEKNIK PEMODELAN ENTITY-RELATIONSHIP MODEL DAN RESOURCES-EVENTS-AGENTS MODEL ATAS PERANCANGAN DATABASE PERUSAHAAN

Michael Iskandar
Fakultas Ekonomi Universitas Katolik Parahyangan

Abstract

Databases are an important part of most computer-based information systems. As such, the design of a database has also gained importance because a bad design will compromise data integrity as well as make it inefficient in its use of resources. This paper compares the effect of two data modeling approaches on the design of a database, specifically the Entity-Relationship Model (ER Model) and the Resources-Events-Agents Model (REA Model). First, the sales/collection cycle of a fictional case study is described. Then, an ER Model and a REA Model are independently created based on this case study. Finally, one database design is created based on the ER Model, and another database design is created based on the REA Model. The outcome of this experiment shows that both approaches produced similar database designs, but the design processes were different in their complexity, structurality, and completeness. A significant difference is that the ER Model closely followed those aspects that were already laid out by the case study, while the REA Model started out by building a most complete data model, over and above the one described in the case study.

Keywords: database, data modeling, ER Model, REA Model

1. Pendahuluan

Database merupakan bagian yang sangat penting dari sistem informasi berbasis komputer. Dari sekian banyak jenis sistem informasi yang sekarang dipergunakan dalam dunia usaha, hanya sebagian kecil yang tidak memiliki database, yaitu sistem informasi yang hanya dapat mengalirkan data atau informasi seperti halnya telepon, intercom, dan Facsimile. Sistem-sistem lain umumnya mengharuskan agar data atau informasi dicatat terlebih dahulu dalam sebuah database sebelum diolah, dialirkan, ditampilkan di layar monitor atau dicetak melalui printer.

Terkait dengan peran database yang sangat penting bagi sistem informasi, maka perancangan database secara benar juga menjadi sangat penting. Tugas perancangan database itu menjadi lebih sulit lagi dikarenakan skala operasi perusahaan-perusahaan yang semakin besar sehingga database-nya pun menjadi semakin kompleks. Makalah ini membandingkan dua teknik pemodelan data, yaitu ER Model dan REA Model, untuk mengetahui pengaruhnya atas perancangan database perusahaan.
2. Usaha-usaha Pemodelan Data dan Perancangan Database

Database yang dikembangkan berdasarkan relational data model disebut relational database. Agar rancangan database ini memenuhi syarat keandalan dan efisiensi, maka proses perancangan database tersebut harus melalui sebuah proses yang disebut normalisasi data. Pada mulanya, normalisasi data dilakukan melalui tiga tahap berurutan yang menghasilkan bentuk normal First Normal Form (1NF), Second Normal Form (2NF), dan Third Normal Form (3NF). Belakangan, Boyce dan Codd mengusulkan sebuah langkah yang akan langsung menghasilkan bentuk setara dengan 3NF tanpa perlu melalui bentuk normal sebelumnya, disebut dengan istilah Boyce-Codd Normal Form (BCNF) [Mannino, 2007:223-229].

Kadang-kadang sebuah database bahkan membutuhkan bentuk normal yang lebih tinggi lagi, yaitu 4NF. Seperti halnya dalam pencapaian 3NF/BCNF, hal ini ternyata juga dapat dilakukan dengan cara bertahap atau dengan cara langsung. Untuk mencapai 4NF terdapat dua pendekatan, di mana yang satu merupakan pendekatan dengan langkah-langkah lebih banyak namun lebih mudah dilaksanakan, serta pendekatan yang lain yang lebih singkat namun membutuhkan kemampuan analisis lebih tinggi [Iskandar, 2003:87-99].

Di atas 4NF masih terdapat 5NF dan DKNF (domain key normal form) namun keduanya jarang dibutuhkan dalam pengembangan database di dunia nyata [Mannino, 2007:236].
Model Relasional yang diajukan Codd merupakan jawaban atas tuntutan perusahaan selama ini untuk memperoleh tempat penyimpanan data yang efisien dan dapat diandalkan. Namun demikian, karena skala operasi perusahaan-perusahaan semakin besar maka perancangan data model-nya ternyata menjadi semakin rumit. Sebuah pendekatan yang memudahkan perancangan relational data model muncul pada tahun 1976 ketika Peter Chen memperkenalkan Entity-Relationship Model (ER Model) beserta perkakas pendukungnya, yaitu Entity-Relationship Diagram (ERD) [Chen, 1976].

Rob dan Coronel mengobservasi bahwa berangkat dari hierarchical model dan network model, ke relational model dan akhirinya ke ER Model menunjukkan sifat semantik yang semakin tinggi [Rob and Coronel, 2004:53].

3. Pengertian Entity-Relationship Model

Entity-Relationship Model (ER Model) diperkenalkan oleh Chen sebagai pendekatan baru dalam memodelkan data. Chen mengidentifikasi bahwa semua model data terdiri dari dua hal besar, yaitu entity set dan relationship set [Chen, 1976].

Sebuah entity disebut Chen sebagai "a thing which can be distinctly identified" [Chen, 1976:10], misalnya saja seorang pelanggan, sebuah produk yang tersimpan di gudang perusahaan, atau sebuah transaksi penjualan. Dari sini, dapat dipahami bahwa entity set adalah himpunan semua pelanggan, himpunan semua produk di gudang, himpunan semua transaksi penjualan yang dilakukan perusahaan. Pada dasarnya, anggota-anggota sebuah entity set akan memiliki properties atau attributes yang sama, misalnya saja semua pelanggan pasti memiliki nama dan alamat, semua produk pasti memiliki nama produk dan harga jual, semua transaksi penjualan pasti memiliki tanggal penjualan dan nilai penjualan.

Sementara itu, sebuah relationship menurut Chen adalah "an association between entities" [Chen, 1976:10], sehingga relationship set berarti himpunan relasi antara sejumlah entitas. Relasi-relasi ini memiliki cardinality, yang diidentifikasi sebagai one-to-one, one-to-many, dan many-to-many [Mannino, 2007: 137-140].

Bina Ekonomi Majalah Ilmiah Fakultas Ekonomi Unpar 65
Gambar 1. Contoh ERD Sederhana

4. Pengertian Resources-Events-Agents Model

Gambar 2. Contoh Core REA Pattern
Meskipun relasi-relasi yang ditampilkan dalam Core REA Pattern pada umumnya menggunakan istilah generik yaitu duality, stockflow, serta participation, dalam kondisi-kondisi khusus istilah-istilah lain dapat dipergunakan. Hal ini dapat dilihat dalam Tabel 1.

<table>
<thead>
<tr>
<th>Tabel 1. Istilah Relasi Generik dan Khusus Pada Core REA Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kondisi</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>Antara: Event dengan Event</td>
</tr>
<tr>
<td>Generik</td>
</tr>
<tr>
<td>Khusus</td>
</tr>
<tr>
<td>Khusus</td>
</tr>
<tr>
<td>Antara: Event dengan Resource</td>
</tr>
<tr>
<td>Generik</td>
</tr>
<tr>
<td>Khusus</td>
</tr>
<tr>
<td>Khusus</td>
</tr>
<tr>
<td>Khusus</td>
</tr>
<tr>
<td>Antara: Event dengan Agent</td>
</tr>
<tr>
<td>Generik</td>
</tr>
<tr>
<td>Khusus</td>
</tr>
<tr>
<td>Antara: Agent dengan Agent</td>
</tr>
<tr>
<td>Khusus</td>
</tr>
<tr>
<td>Khusus</td>
</tr>
</tbody>
</table>

Sumber: Dunn, et al., 2005: 63-80, 199-404

Dalam perkembangan selanjutnya, Core REA Pattern diperbaiki menjadi Extended REA Pattern, yaitu dengan memasukkan dua jenis events lagi: commitment event serta instigation event. Sebuah commitment event terjadi sebelum event biasa, yaitu saat transaksi atau pertukaran resources belum terjadi namun sudah terjadi komitmen untuk melakukan transaksi atau pertukaran itu. Sedangkan instigation event merupakan event yang terjadi lebih awal dari commitment event, yaitu event yang mengawali seluruh proses bisnis [Dunn, et al., 2005:82-86]. Contoh dari commitment event adalah Perjanjian Kredit, yang merupakan komitmen sebelum dapat terjadi event Pencairan Kredit. Adapun contoh dari instigation event adalah Pengajuan Kredit, yang terjadi sebelum event Perjanjian Kredit. Jenis-jenis relasi khusus yang ditemui dalam Extended REA Pattern ditampilkan dalam Tabel 2.
<table>
<thead>
<tr>
<th>Antara</th>
<th>Dengan</th>
<th>Nama Relasi</th>
<th>Contoh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commitment Event</td>
<td>Commitment Event</td>
<td>Reciprocal</td>
<td>Material Requisition - Production Order</td>
</tr>
<tr>
<td>Mutual Commitment Event</td>
<td>Noncash Economic Event</td>
<td>Fulfillment</td>
<td>Purchase Order - Purchase</td>
</tr>
<tr>
<td>Mutual Commitment Event</td>
<td>Noncash Resource</td>
<td>Reservation</td>
<td>Purchase Order - Inventory</td>
</tr>
<tr>
<td>Mutual Commitment Event</td>
<td>Cash Resource</td>
<td>Reservation</td>
<td>Purchase Order - Cash</td>
</tr>
<tr>
<td>Instigation Event</td>
<td>Mutual Commitment Event</td>
<td>Fulfillment</td>
<td>Purchase Requisition - Purchase Order</td>
</tr>
<tr>
<td>Instigation Event</td>
<td>Noncash Resource</td>
<td>Proposition</td>
<td>Purchase Requisition - Inventory</td>
</tr>
<tr>
<td>Resource</td>
<td>Resource</td>
<td>Linkage</td>
<td>Raw Material - Finished Goods</td>
</tr>
<tr>
<td>Resource</td>
<td>Resource Type</td>
<td>Typification</td>
<td>Product - Product Type</td>
</tr>
<tr>
<td>Agent</td>
<td>Agent Type</td>
<td>Typification</td>
<td>Customer - Customer Type</td>
</tr>
<tr>
<td>Agent</td>
<td>Resource</td>
<td>Custody</td>
<td>Warehouse Employee - Inventory</td>
</tr>
</tbody>
</table>

Sumber: Dunn, et al., 2005: 63-80, 199-404

5. Contoh Kasus Untuk Pemodelan Data

Rumah Makan "4 Sehat 5 Sempurna" merupakan sebuah rumah makan yang telah berdiri sejak tahun 2002 dan berlokasi di Bandung. Pemilik rumah makan ini menilai bahwa usahanya tidak terlampau berhasil, terbukti dari tingkat penjualan yang rendah sehingga laba yang dicapai setiap tahun pun hanya sedikit. Dalam usaha untuk mendorong peningkatan penjualan, maka pemilik rumah makan ini memutuskan untuk memulai usaha jasa berlangganan makanan (catering atau "rantangan"). Pemilik rumah makan menentukan bahwa karena baru dimulai, hanya akan diberlakukan satu tarif, yaitu Rp 5.000,- untuk satu porsi makanan. Satu kali pengiriman dapat mencakup lebih dari satu porsi makanan, tergantung permintaan pelanggan.
Target market dari usaha catering ini adalah para pelanggan yang memiliki pantangan tertentu dalam makanan, misalnya orang-orang yang mengidap penyakit diabetes, kadar kolesterol tinggi, dan lain-lain. Oleh karena itu, sistem informasi untuk usaha catering ini harus dapat diandalkan, karena kesalahan pengiriman makanan dapat berakibat fatal. Untuk meyakinkan hal ini, maka pemilik rumah makan memutuskan untuk menggunakan sistem informasi yang sudah berbasis komputer.

Masalah lain yang muncul dalam pelaksanaan usaha catering ini adalah bahwa ternyata tidak semua pelanggan minta dikirimi makanan setiap hari. Memang, ada yang minta dikirim setiap hari (Senin s/d Minggu), tetapi ada juga yang hanya minta dikirim Senin s/d Jumat sedangkan hari Sabtu dan Minggu tidak dikirim karena pelanggan itu selalu ke luar kota pada akhir pekan. Ada pula yang minta dikirimi hari Senin dan Kamis saja, atau ada pula yang minta dikirimi hari Selasa, Kamis, dan Sabtu. Intinya, setiap pelanggan dapat minta pola pengirimannya masing-masing.

Pelanggan ditagih sekali seminggu atas pengiriman makanan selama pekan yang telah lewat. Namun karena pengiriman setiap pelanggan berbeda-beda, maka setiap hari mungkin saja terjadi penagihan. Sebagai contoh, seseorang yang hanya minta dikirimi makanan setiap Senin dan Kamis saja, akan ditagih pada setiap hari Kamis; orang lain yang minta dikirimi hari Selasa, Kamis, dan Sabtu, akan ditagih pada setiap hari Sabtu.

Gambar 3 adalah Use-Case Diagram dari sistem informasi yang dijalankan pada usaha catering ini.

Gambar 3. Use-Case Diagram Usaha Catering
Berikut adalah Use-Case Scenarios dari berbagai Use-Case yang telah ditampilkan dalam diagram di atas.

Use-Case: Berlangganan

1. Pelanggan menelepon rumah makan dan menyatakan hendak berlangganan makanan.
2. Petugas administrasi mencatat data diri pelanggan dalam Formulir Berlangganan
3. Petugas administrasi mencatat pantangan-pantangan makanan bagi pelanggan tersebut dalam formulir yang sama.
4. Petugas administrasi mencatat hari-hari apa saja (Senin, Selasa, dst.) pelanggan minta dikirim makanan dalam formulir yang sama.
5. Petugas administrasi menginput data yang telah dicatatnya ke komputer.

Use-Case: Penyiapan makanan

1. Setiap pagi, Juru Masak mencetak lembar Jumlah Kebutuhan Makanan, yaitu sebuah printout di mana tercantum jumlah porsi makanan untuk pasien diabetes, berapa porsi makanan untuk yang berkolesterol tinggi, berapa porsi makanan vegetarian, dan lain-lain, yang harus dikirimkan ke pelanggan-pelanggan pada hari itu.

Use-Case: Pendistribusian

1. Petugas Distribusi mencetak Lembar Pengiriman untuk hari itu, di mana dalam lembar tersebut tercantum nama dan alamat pelanggan yang harus dikirim makanan pada hari itu, beserta pantangan-pantangan makanan dari masing-masing pelanggan.
2. Petugas Distribusi mencetak label nama dan alamat pelanggan yang harus dikirim makanan pada hari itu. Penentuan pelanggan yang label namanya akan dicetak dilakukan otomatis oleh komputer, jadi Petugas Distribusi tidak perlu mengindikasikan satu per satu pelanggan mana yang perlu dicetak labelnya.
5. Apabila telah disetujui, maka Pemilik membubuhkan paraf pada lembar Pengiriman dan mengembalikannya kepada Petugas Distribusi.
6. Petugas Distribusi memberikan bungkus-bungkus makanan yang telah diberi label kepada Pengirim untuk didistribusikan kepada Pelanggan.
7. Petugas Distribusi menyimpan Lembar Pengiriman dalam arsip.

Bina Ekonomi Majalah Ilmiah Fakultas Ekonomi Unpar
Use-Case: Penyelesaian pengiriman

1. Pengirim yang telah selesai mengirimkan makanan melapor kepada Petugas Distribusi.

2. Pengirim membubuhkan tanda tangannya pada Lembar Pengiriman, sebagai bukti tanggung jawabnya bahwa semua pengiriman telah dilaksanakannya dengan benar.

4. Petugas Administrasi menginput data pengiriman itu ke komputer.

5. Petugas Administrasi menyimpan Lembar Pengiriman dalam arsip.

Use-Case: Penagihan

1. Setiap hari, petugas Administrasi mencetak Kuitansi Penagihan.

3. Petugas Administrasi mengambil kuitansi-kuitansi yang belum tertagih dan tercantum dalam Daftar Tagihan dari arsip dan menyatukannya dengan kuitansi-kuitansi yang baru dicetak.

3. Rangkap pertama Daftar Tagihan diberikan kepada Pemilik.

4. Rangkap kedua Daftar Tagihan bersama-sama dengan kuitansi diberikan kepada Pengirim untuk ditagihkan bersama-sama dengan pengiriman makanan pada hari itu.

Use-Case: Penyelesaian penagihan

1. Pengirim yang selesai menagih, melapor kepada Pemilik.

2. Pengirim menyerahkan uang yang diterimanya, dan kuitansi-kuitansi yang tidak berhasil ditagih. (Catatan: pelanggan yang membayar tagihan menerima kuitansi yang sesuai dari Pengirim.)

3. Pemilik menghitung jumlah uang dan jumlah nilai kuitansi yang tidak berhasil ditagih. Angka yang diperolehnya dicocokkan (harus sama) dengan total Daftar Tagihan yang ada padanya.

4. Pemilik menyimpan uang yang berhasil ditagih.

5. Pemilik memberikan tanda "Lunas" pada nama-nama di Daftar Tagihan yang telah membayar.

6. Pemilik menyerahkan kuitansi yang tidak berhasil ditagih beserta Daftar Tagihan kepada Petugas Administrasi.

8. Petugas Administrasi menyimpan kuitansi yang belum tertagih untuk ditagihkan pada kesempatan berikutnya.

6. Pemodelan Data Menggunakan ER Model

Berangkat dari studi kasus perusahaan "4 Sehat 5 Sempurna", penulis menyusun sebuah model data menggunakan ER Model. Hasil yang diperoleh dapat dilihat pada Gambar 4 dan Gambar 6. Gambar 4 menunjukkan ERD yang menampilkan semua entitas, relasi, dan cardinality yang teridentifikasi. Dengan pertimbangan kemudahan pembacaan ERD, maka attributes tidak ditampilkan di Gambar 4, melainkan dalam sebuah ER Grammar Notation (Gambar 6).

7. Pemodelan Data Menggunakan REA Model

8. Temuan-temuan Saat Pemodelan Data

Hasil akhir dari percobaan penyusunan rancangan database bagi perusahaan "4 Sehat 5 Sempurna", baik menggunakan ER Model maupun REA Model, menunjukkan bahwa rancangan database yang diperoleh tidak berbeda. Jadi menggunakan ER Model ataupun REA Model akhirnya menghasilkan rancangan database yang sama saja.

Namun demikian, dalam proses pemodelan data untuk perusahaan ini, ditemukan empat hal yang berbeda, yaitu:

a. ER Model secara semantik lebih intuitif daripada REA Model. Misalnya pada ER Model, Petugas Distribusi - Mendistribusi - Makanan, sangat mudah untuk disusun ataupun dibaca oleh pengguna. Sedangkan dalam REA Model, alur yang sama adalah:
Petugas Distribusi - Participation4 - Pendistribusian Makanan - Stockflow2 - Makanan Terdistribusi, yang mana hal ini lebih non-intuitif untuk disusun ataupun dibaca.

b. REA Model lebih terstruktur dalam penentuan entitas maupun relasinya, karena pada REA Model entitas sudah dikategorisasi menjadi Resources, Events, dan Agents; serta relasi-relasi sampai titik tertentu sudah distandardisasi, misalnya dengan menggunakan istilah participation dan stockflow. Sedangkan pada ER Model, karena cara penentuan entitas maupun relasi dibebaskan, maka menurut penulis justru lebih sulit untuk menentukan entitas dan relasi dengan tepat.

c. Pada pemodelan yang telah dilakukan, ternyata ER Model menghasilkan 13 buah entitas dan 15 buah relasi, sedangkan REA Model menghasilkan 16 buah entitas dan 24 buah relasi. Dari sini dapat disimpulkan bahwa REA Model menghasilkan model yang lebih rumit dibandingkan ER Model, sehingga REA Model lebih banyak membutuhkan usaha dari orang yang menyusun model data yang bersangkutan.

d. Pada ER Model, diasumsikan bahwa sistem informasi akuntansi yang modelnya hendak disusun, memang sudah dirancang sebagai sistem informasi akuntansi yang baik. Sedangkan pada REA Model, hal ini tidak diasumsikan, melainkan "dipaksakan" oleh REA Model. Dengan perkataan lain, ER Model dikembangkan berdasarkan sistem informasi yang ada di perusahaan dan tidak berusaha mengkoreksi apa pun atas hal-hal yang hendak dicatat perusahaan, sedangkan REA Model memastikan bahwa semua langkah-langkah dan aspek-aspek dalam sebuah proses bisnis dibuat catatannya. Sebuah sistem informasi akuntansi diharapkan dapat mendukung operasi sehari-hari perusahaan, serta menghasilkan catatan yang cukup akurat, rinci dan lengkap, supaya manajemen perusahaan bisa memperoleh informasi yang dibutuhkannya untuk mengambil keputusan. Jadi REA Model lebih berguna untuk merancang database yang sesuai dengan kriteria sistem informasi akuntansi yang baik, sedangkan ER Model tidak.

Di lain pihak, apabila seluruh hal yang ditampilkan REA Model betul-betul dicatat maka sistem informasi yang dihasilkan akan sangat "birokratis", karena atas setiap langkah dalam proses bisnis harus dilakukan pencatatan. Untuk menghindari hal ini, maka pada saat merancang database menggunakan REA Model, perancang harus berani tegas dalam menghapus hal-hal yang dipandang tidak perlu dicatat.
Gambar 4. Pemodelan Data Menggunakan ER Model
Gambar 5. Pemodelan Data Menggunakan REA Model
<table>
<thead>
<tr>
<th>Entity: Pelanggan</th>
<th>Attributes: KodePg, Nama, Alamat</th>
<th>Identifier: KodePg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entity: Pemilik</td>
<td>Attributes: ID Pemilik</td>
<td>Identifier: ID Pemilik</td>
</tr>
<tr>
<td>Entity: Pengirim</td>
<td>Attributes: NIK, Nama, Alamat</td>
<td>Identifier: NIK</td>
</tr>
<tr>
<td>Entity: Petugas Admin</td>
<td>Attributes: NIK, Nama, Alamat</td>
<td>Identifier: NIK</td>
</tr>
<tr>
<td>Entity: Formulir Berlangganan</td>
<td>Attributes: NoFormulir, TglDaftar, KodePg, NIK, KodePantangan</td>
<td>Identifier: NoFormulir</td>
</tr>
<tr>
<td>Entity: Pantangan</td>
<td>Attributes: KodePantangan, NamaPantangan</td>
<td>Identifier: KodePantangan</td>
</tr>
<tr>
<td>Entity: Pola Pengiriman</td>
<td>Attributes: KodePg, PolaPengiriman</td>
<td>Identifier: KodePg</td>
</tr>
<tr>
<td>Entity: Juru Masak</td>
<td>Attributes: NIK, Nama, Alamat</td>
<td>Identifier: NIK</td>
</tr>
<tr>
<td>Entity: Petugas Distribusi</td>
<td>Attributes: NIK, Nama, Alamat</td>
<td>Identifier: NIK</td>
</tr>
<tr>
<td>Entity: Makanan</td>
<td>Attributes: KodeMakanan, NamaMakanan, TglProduksi, Qty, KodePantangan</td>
<td>Identifier: KodeMakanan</td>
</tr>
<tr>
<td>Entity: Makanan Terdistribusi</td>
<td>Attributes: KodeMakananDist, TglDistribusi, KodePg</td>
<td>Identifier: KodeMakananDist</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relationship: Mendistribusi</th>
<th>Connected Entities: (1) Petugas Distribusi, (M) Makanan, (M) Pantangan, (M) Pola Pengiriman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relationship: Menjadi</td>
<td>Connected Entities: (1) Makanan, (M) Makanan Terdistribusi</td>
</tr>
<tr>
<td>Relationship: Menyetujui</td>
<td>Connected Entities: (1) Pemilik (1), (M) Makanan Terdistribusi, (M) Pantangan, (M) Pola Pengiriman, Attributes: NoKirim</td>
</tr>
<tr>
<td>Relationship: Menerima</td>
<td>Connected Entities: (1) Pengirim (1), (M) Makanan Terdistribusi</td>
</tr>
<tr>
<td>Relationship: Melakukan</td>
<td>Connected Entities: (1) Pengiriman, (M) Pengiriman</td>
</tr>
<tr>
<td>Relationship: Penyampaian</td>
<td>Connected Entities: (M) Pelanggan, (1) Pengiriman</td>
</tr>
<tr>
<td>Relationship: Menghasilkan</td>
<td>Connected Entities: (M) Pengiriman, (1) Tagihan</td>
</tr>
<tr>
<td>Relationship: Menagih</td>
<td>Connected Entities: (1) Pengiriman, (M) Tagihan</td>
</tr>
<tr>
<td>Relationship: Penyelarasan</td>
<td>Connected Entities: (M) Tagihan, (1) Pemilik</td>
</tr>
</tbody>
</table>

Gambar 6. ER Grammar Untuk Pemodelan Menggunakan ER Model

Bina Ekonomi Majalah Ilmiah Fakultas Ekonomi Unpar
<table>
<thead>
<tr>
<th>Entity: Makanan</th>
<th>Attributes: KodeMakanan</th>
<th>Attributes: NIK</th>
<th>Relationship: Stockflow5</th>
</tr>
</thead>
<tbody>
<tr>
<td>NamaMakanan</td>
<td>Nama</td>
<td></td>
<td>Connected Entities:</td>
</tr>
<tr>
<td>KodePantangan</td>
<td>Alamat</td>
<td></td>
<td>(0,N) Kas</td>
</tr>
<tr>
<td>Identifier:</td>
<td></td>
<td></td>
<td>(1,N) Penerimaan Kas</td>
</tr>
<tr>
<td>KodeMakanan</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entity: Makanan Terdistribusi</th>
<th>Attributes: KodeMakananDist</th>
<th>Attributes: NIK</th>
<th>Relationship: Fulfillment</th>
</tr>
</thead>
<tbody>
<tr>
<td>NamaMakanan</td>
<td>Nama</td>
<td></td>
<td>Connected Entities:</td>
</tr>
<tr>
<td>KodePantangan</td>
<td>Alamat</td>
<td></td>
<td>(0,N) Pendaftaran</td>
</tr>
<tr>
<td>NoDaftar</td>
<td>Identifier: NIK</td>
<td></td>
<td>(1,N) Penyediaan Makanan</td>
</tr>
<tr>
<td>Identifier: KodeMakananDist</td>
<td>NoDaftar</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entity: Tagihan</th>
<th>Attributes: NoTagihan</th>
<th>Attributes: NIK</th>
<th>Relationship: Duality2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nama</td>
<td>Alamat</td>
<td></td>
<td>Connected Entities:</td>
</tr>
<tr>
<td>Identifier:</td>
<td></td>
<td></td>
<td>(0,N) Penyediaan Makanan</td>
</tr>
<tr>
<td>NoTagihan</td>
<td></td>
<td></td>
<td>(1,1) Pengiriman Makanan</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entity: Kas</th>
<th>Attributes: Nilai</th>
<th>Attributes: NIK</th>
<th>Relationship: Duality3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nama</td>
<td>Alamat</td>
<td></td>
<td>Connected Entities:</td>
</tr>
<tr>
<td>Identifier:</td>
<td></td>
<td></td>
<td>(0,1) Pengiriman Makanan</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entity: Pendaftaran</th>
<th>Attributes: NoDaftar</th>
<th>Attributes: NIK</th>
<th>Relationship: Duality4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nama</td>
<td>Alamat</td>
<td></td>
<td>Connected Entities:</td>
</tr>
<tr>
<td>Identifier:</td>
<td></td>
<td></td>
<td>(0,N) Penyediaan Makanan</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entity: Penyediaan Makanan</th>
<th>Attributes: TglProduksi</th>
<th>Attributes: NIK</th>
<th>Relationship: Participation1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TglProduksi</td>
<td></td>
<td></td>
<td>Connected Entities:</td>
</tr>
<tr>
<td>NamaMakanan</td>
<td></td>
<td></td>
<td>(0,N) Penerimaan Kas</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entity: PendistribusianMakanan</th>
<th>Attributes: TglDistribusi</th>
<th>Attributes: NIK</th>
<th>Relationship: Participation2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TglDistribusi</td>
<td></td>
<td></td>
<td>Connected Entities:</td>
</tr>
<tr>
<td>KodePantangan</td>
<td></td>
<td></td>
<td>(1,1) Pendaftaran</td>
</tr>
</tbody>
</table>

| Entity: Pengiriman Makanan | Attributes: TglKirim | Attributes: NIK | Relationship: Participation3 |
| TglKirim | | | Connected Entities: |

| Entity: Pemrosesan Piutang | Attributes: TglProses | Attributes: NIK | Relationship: Participation4 |
| TglProses | | | Connected Entities: |

| Entity: Penerimaan Kas | Attributes: TglTerima | Attributes: NIK | Relationship: Authorization |
| TglTerima | | | Connected Entities: |

Entity: Pelanggan	Attributes: KodePlg	Attributes: NIK	Relationship: Participation5
			Connected Entities:
			(1,1) Pengiriman Makanan

| Identifier: | | | (0,N) Pengirim |

| Identifier: | | | |

Gambar 7. ER Grammar Untuk Pemodelan Menggunakan REA Model

78 | Volume 14, Nomor 1, Januari 2010
Gambar 7 (lanjutan)

Gambar 8. Rancangan Database Berdasarkan ER Model

Gambar 9. Rancangan Database Berdasarkan REA Model

Bina Ekonomi Majalah Ilmiah Fakultas Ekonomi Unpar
9. Kesimpulan

Pada akhirnya dapat disimpulkan bahwa baik ER Model maupun REA Model akan menghasilkan rancangan database yang sama, namun proses perancangan tersebut berbeda dalam hal kompleksitasnya, sifat terstrukturnya, dan kelengkapannya. Ada pun pertimbangan yang harus dipergunakan dalam memilih teknik pemodelan data adalah sejauh mana perancang menghendaki teknik itu dapat menampung aspirasi dan kebutuhan yang sudah teridentifikasi dalam sistem informasi yang hendak dikembangkan. Dalam hal ini, perancang akan lebih tepat bila menggunakan ER Model. Namun jika teknik pemodelan data diharapkan dapat menganjurkan data apa saja yang mungkin dicatat oleh sistem informasi yang bersangkutan, maka REA Model yang lebih cocok untuk dipergunakan.

Daftar Pustaka

Munir, R. (2003), Matematika Diskrit, edisi ke-2, Penerbit Informatika, Bandung.
