
EVALUATING TRUSTWORTHINESS OF SOFTWARE COMPONENT

Beni Suranto

Department of Informatics, Faculty of Industrial Technology, Universitas Islam Indonesia

Jalan Kaliurang Km.14,5 Sleman, Yogyakarta 55184

beni.suranto@uii.ac.id

ABSTRAK

Makalah ini membahas tentang konsep keterpercayaan komponen perangkat lunak

yang merupakan salah satu pertimbangan utama bagi pengembang perangkat lunak dalam

mengimplementasikan metode pengembangan perangkat lunak berbasis komponen. Pada

bagian awal makalah, penulis menjelaskan mengenai konsep penggunaan ulang perangkat

lunak dan kaitannya dengan keterpercayaan komponen perangkat lunak. Selanjutnya, bagian

inti makalah membahas secara detail mengenai metode pengujian komponen perangkat

lunak dan 4 (empat) metode yang dapat digunakan untuk mengevaluasi tingkat

keterpercayaan dari komponen perangkat lunak. Di akhir makalah, penulis memberi

gambaran mengenai proses seleksi komponen perangkat lunak pada domain industri.

Kata kunci: penggunaan ulang perangkat lunak, pengembangan perangkat lunak berbasis

komponen, keterpercayaan komponen, seleksi komponen

1. COMPONENT-BASED SOFT-

WARE ENGINEERING

Today, software has an important role
in many industrial systems. Software
provides added value for products and can
be used to effectively reduce the
production cost. The use of software is
now essential in manufacturing, medical
systems, automotive, and process control
industries. Generally, products in the
current industry are systems consisting of
software and hardware. The software part
is a software system incorporating many
software programs or applications that
must cooperate to provide the intended
functionalities without any defects. The
most critical concern for software
organizations is capability to deliver a
software product on time, within budget,
and to an agreed level of quality. In this
context, underestimating software costs
will lead to detrimental effects on the
quality of the software product and thus on
D� FRPSDQ\¶V� EXVLQHVV� UHSXWDWLRQ� DQG�

competitiveness. On the other hand, the

opportunities to funds in other projects
will be missed when the company
overestimates the software
cost(Andreessen, 2011).

Component-based Software Enginee-
ring (CBSE) is a popular concept in
software engineering field which
represents a technology for rapid assembly
of flexible software systems. CBSE relies
on software reuse and combines elements
of software architecture, modular software
design, software verification, configuration
and deployment. Actually, software
development approach with CBSE
emerged from the failure of object-
oriented development to support effective
software reuse. Components can be
considered to be standalone service
providers and are more abstract than object
classes. In CBSE, a software product are
built as an assembly of software
components already developed and
prepared for integration. The main
advantages of the this approach include
increased productivity, effective
management of complexity, a wider range

of usability and extendibility, a greater
degree of consistency, and reduced time to
market(Kaur & Mann, 2010).

CBSE adopts the component-based
engineering method from other
reengineering fields (e.g. mechanical or
electrical engineering). In context of
CBSE comes Component-Based
Development (CBD) with the main task is
to build systems from software units or
components which are already built. By
composing a system from prebuilt or
existing components, this development
method reduces both production cost and
production time. Also, the already prebuilt
components can be reused in many
different software systems(Panunzio &
Vardanega, 2009).

To realize the great benefits of CBD
technology, it is necessary to have
software components that can be easily
reused and can be integrated in a
systematic way. As CBSE is based on the
concept of component. The most
commonly used definition for software
component was proposed by Szyperski et.
al. (2002):

³A software component is a unit of

composition with contractually specified

interfaces and explicit context

dependencies only. A software component

can be deployed independently and is

subject to composition by third parties´�
For software engineers, the main

challenge is reusing software components
fot building the intended systems. A
software component has to maintains its
functionality as it deployed and executed
after installation in different systems.
Software engineers have to use a
mechanism for connecting software
components at run-time or dynamically. In
the other words, a software component
must be independently deployable. This
approach allows software engineers to use
the software components as and when
required for maximizing the utilization of
resources(Shareef & Pandey, 2012).

2. SOFTWARE COMPONENT

TESTING

It is sure that where will be great
benefits in effectiveness of project
development when component based
software engineering techniques are used,
however, both reliability of selected
components and safety when components
communicate with each other should be
concerned. Moreover, if software defects
are discovered in the late part of life cycle
of software development, great cost
including time, labour and budget will be
spent on correcting those software faults
with no promise that those faults will be
fixed perfectly. Thus testing in component
based software engineering should be
implemented during both individual
component development and component
integration (Bertolino, 2007).

On 4th June 1996, the Ariane 5 rocket
veered off and exploded disastrously 40
seconds after initiation of its flight
sequence, costing nearly $370 million
directly. An Inquiry Board led by
Professor J. L. Lions was convoked by the
Chairman of CNES and the Director
General of ESA to identify the reasons for
the launch failure(Lann, 2007). One month
later, an analysis report presented by the
team demonstrated that insufficient
software testing when software engineers
reused software from the Ariane 4 as a
component cause this explosion. The
development team did not test the value of
horizontal velocity which the Ariane 5
could reach 40 seconds after initiation to
check whether that value might be out of
calculation boundary set in the software of
the Ariane 4 after changing the ignition
hardware into a high initial acceleration
system. Consequently, an exception failed
to be caught when an out of calculation
boundary value was past to the software
method, which led to the crash of the
Ariane 5 system catastrophically. The
analysis report strongly recommended that
entire simulations should be fully tested
before any real mission. Unfortunately,

software engineers omitted those test
cases, which led to the launch
failure(Lions, 1996).

There are three steps through which
component based software should be
tested. First, each component should be
tested fully when it is developed as an
individual unit. Secondly, integration
testing should be applied on subsystems
which consist of no-defect-found
components as single items after unit
testing. Thirdly, once all the subsystems
have been integrated into a whole system,
the system should be tested fully and
sufficiently to check whether all the
components work well together in terms of
their requirements. Additionally, systems
which are developed by using the
component based software techniques can
also be tested by some other testing
methodology such as stability testing,
reliability testing, robustness testing,
loading testing and so on which may all be
helpful in identifying the quality of the
systems.

The source codes of component may
not be available in many circumstances
such as using in-house components or
purchasing commercial off-the-shelf
components (Bertolino, 2007).
Consequently difficulties may be brought
into component testing because those
software engineers who hardly familiar
with the inner-construction of components
can only use black-box testing instead of
white-box testing, which implies that test
cases may not be chosen properly or
sufficiently. This in turn means that
component software testing techniques
should cover the area of non-availability of
source code.

Garlan et. al (1995) identified several
problems when they reuse some
components to generate a new system. In
their report, they demonstrated that there
were a lot of troubles while they tried to
integrate

components together; sometimes
rework on the components might cost
significantly to make sure that those

components met their requirements and
worked properly as a group. Moreover, the
authors also reported that a lot of work
should be done to test and maintain the
integrated system especially when they
attempted to generate appropriate and
sufficient test cases because of the low
level understanding of some reused
components. Consequently, the stability
and reliability of component based
software can be greatly influenced and
hardly controlled.

3. COMPONENT TRUSTWORTHI-

NESS EVALUATION METHODS

3.1. Reference Model for

Trustworthy Proof

By definition, Trusted component is

³a reusable element of software, it has a

quality character which is designed and

guaranteed´(Alvaro, et. al, 2010).
According to this definition, software
engineers have a problem about how they
guarantee and evaluate the trustworthiness
of components.

JiuSong et. al (2009) propose a
reference model which can be used to
investigate trustworthy proof in
component-based development process.
They GHILQH� WUXVWZRUWK\� SURRI� DV� ³DOO� Whe
real facts that is with a specific form,
certificated and used to prove the case of
FRPSRQHQWV¶� TXDOLW\´�� 7KH\� DOVR� GHILQH�

SURRI� LWHP� DV� ³WKH� DVVHPEO\� RI� DOO� WKH�

WUXVWHG�FRPSRQHQWV¶�WUXVWZRUWK\�SURRI´�
Based on the proposed reference

model, there are two level of trustworthy
proof: the first level proof item and second
level proof item. second level proof item is
a smaller granularity of first level.

Trustworthy proof have some specific
characters: objectivity (must be an
objective fact and independent of
VWDNHKROGHUV¶� ZLOO��� UHOHYDQFH� �WKHUH� PXVW�

be significant a relationship between proof
and quality of the component that needs to
be verified), availability (the proof can be
evaluated by a spesific procedure), and

diversity (the proof can exist in many
different forms).

Considering from the view of software
development life cycle, the process of
developing the components affect the
trustworthy of components. The
trustworthy of components then will be
reflected through its character and will
define the user satisfaction. So, from this
perspective, there are three aspect of the
trustworthy proof to verify trusted

components: trustworthy proof of
development phase (to provide and ensure
the trusted components during the process
of componentsdevelopment, requirement
analysis, design and realize), submission
phase (to verify whether components are
correctly usable), application phase (verify
the quality components in the run-time
environtment). The proposed trustworthy
proof reference model is shown in Fig. 1.

Figure 1. The trustworthy proof reference model(JiuSong, 2009)

There are two method defined in this
model which can be used to obtain
trustworthy proof in order to verify the
trusted components:

a. Static obtaining methods: This
method relatively easy to achieve,
involves in more artificial
participations (user feedback,
expert review, the third party
assessment).

b. Dynamic obtaining method: This
method is more difficult to achieve,
involved in fewer artificial
participations (process simulation,
automated testing, QoA
monitoring).

3.2. A Formal Verification Model to

Verify The Trustworthiness of

Component Interface

When software engineers want to
develop component-based systems, they
consider components as black boxes, they
FDQ¶W� DFFHVV� WKH� LQQHU� VWUXFWXUH of
components. Software engineers can only
access components information from their
interfaces. According to this situation,
specification of component interface need
to be defined correctly, otherwise software
engineers will have some problems when
they want to integrate component to their
system. Also, the correctness of
specification of component interface has
strong relationship with the effectiveness
of the reusability of the system.

Dan & Jin (2009) propose a model
which can be used as the basis for the
verification mechanism of the
trustworthiness of software components.
They combine two powerful tools B
Method and UML to model the component

interfaces so the component interfaces can
be correctly verified.

The B method is a popular approach
to specify system based on set theory that
consider the safety and the reliability
aspect. This method using some
mathematical proofs for the basis of three
main processes in the implementation
stage of software development
(specification, design, and coding) to
ensure that the system is coherent and
fault-free. One of the main objectives of B
method is to formalize specification. This
objective is significantly related with the
requirement of correct specification of
components interfaces. One of the
advantage of using B method is that it uses
abstract machine notations to model the
component interfaces, so we can
understand more easily about the
specification of the component interface.
Also, there are some powerful tools for B
method (AtelierB, B-Toolkit, BEditor).

The first step to develop formal
verification model is describe the
component interface using UML class
diagram and state diagram. Those
diagrams can intuitively inform the detail
information of component interface, from
both syntactic and semantic aspect. From
UML class diagram and state diagram of
component interface then we use B
abstract machine to define the formal
specification of component interface. The
final step of this method is verify the
trustworthiness of component connection
using B refinement mechanism [12].

In component-based software
methodology, component have two kinds
of interface to communicate with each
other: required interface (to define what
interfaces component requires from other
components) and provided interface (to
define what interfaces component can be
accessed by another components). An
interface need to be specified based on its
data model and its operations. One tool
that can be used to model the component
interfaces is UML. Nowadays, UML is a
de facto standard notation in object-

oriented system development. The
interface data model can be described by
UML class diagram according to the
definitions of its attribute and its operation.
We can consider component protocols as a
state set and we can use a UML state
diagram to describe the usage protocol of
component interfaces according to some
related informations (pre and post
conditions of the operation, call sequence
of operations, transition rule of component
state)�� 7KH� FODVV� GLDJUDP� IRU� D� ³6WHDP�
%RLOHU� FRQWURO� V\VWHP´� EHQchmark
problem is shown in Fig. 2. And the state
diagram is shown in Fig. 3.

Figure 2. A class diagram for steam boiler
 control system (Dan & Jing, 2009)

Figure 3. A state diagram for steam boiler
 control system(Dan & Jing, 2009)

From the class diagram and state

diagram we can specify an interface using
B abstract machine notation to describe
both the static and the dynamic
information of component interface. The B
machine of the interface for the steam
boiler control system is shown in Fig. 4.

Figure 4. A B machine for steam boiler
 control system(Dan & Jing, 2009)

In this method, the most important

criteria for the trustworthiness of the
connection between two components is
compatibility of their interfaces. The
compatibility aspect is considered on three
levels: syntactic level (the description of
static information of component interface),
semantic level (the description of dynamic
behaviors of component interface
operations), and protocol level (the
description how to call the component
interface operations).

In B method, refinement technique is
used to create mathematical model of the
system based on its abstract model. We
can verify the compatibility of two
component interfaces by verify the abstract
machine of them. If we can prove that the
³SURYLGHG� LQWHUIDFH´� PDFKLQHLV� D� FRUUHFW�

implementation (i.e. refinement) of the
³UHTXLUHG� LQWHUIDFH´� PDFKLQH� ZH� FDQ� VD\�

that both of them are compatible each
other. The abstract machine and the
corresponding refinement is shown in Fig.
5.

Figure 5. An abstrat machine and
refinement for steam boiler control

system(Dan & Jing, 2009)

3.3. Thrustworthiness Evaluation

Method Using Entropy

Once software engineers finish their

code, they need to perform design review
to evaluate the code and remove defects in
their code. Bacchelli & Bird (2013) found
that almost all the software engineers
included finding defects as one of the
reasons for doing code reviews.

At present, its difficult to measure the
trustworthiness of software components
because there are very small number of
standard methods and techniques to do
that. Also, components are exists in
different hierarchies in the system and
could be applied in various domain of
business.

Zhang et. al (2011) propose the
method to measure the trustworthiness of
software components using information
entropy index as the parameter.

According to TCG, the system is
trustworthy if its behavior and its results
are always expected and controllable.
Currently, various type of data are
produced massively every day. Those data
have important role in lot of business
process in our daily life. Therefore,
essentially we need to process data
effectively and efficiently. In this context,
there are four kinds of components in data
processing area: data conversion
components, data analysis components and
data display components.

When we want to measure the
trustworthiness of components we must
consider about trustworthy proof. There
are two kinds of trustworthy proofs need to
be reported during the component
development: process proofs and testing
proofs. Testing proofs is reported in the
testing environment. The component
trustworthiness will be guaranteed only
when both of process proofs and testing
proofs meet the trustworthiness
requirement. The component with
guaranteed trustworthiness then can be
stored in the component library for future
use. The framework for trustworthiness
measurement is shown in Fig. 6.

Figure 6. Trustworthiness measurement
 framework (Zhang et. al, 2011)

A system usually consists of some

various factors and each factor in a system
has an uncertainty. From this concept we
can define the uncertainty of the system is
WKH� ZHLJKWHG� DYHUDJH� RI� IDFWRUV¶�

uncertainties. Claude E. Shannon in his
����� SDSHU� ³$� 0DWKHPDWLFDO� 7KHory of
&RPPXQLFDWLRQ´� UHSUHVHQWLQJ� D� PHDVXUH�

of unpredictability of a system using the
formula of entropy.

The formula: Entropy = ä log pi (1)

Based on the definition of the
trustworthiness we can ensure the system
is trustworthy if its behavior and its result
is always controllable and satisfy the
expectation. In other word we can say that
the trustworthiness level is equal with the
match condition between the result from
the system result and the user expectation.
In the software development process we
can consider the component as a function.
We can ensure that there must be
ascertained output data if input data have
been ascertained. Therefore, the
understanding level of the component can
be verified based on the matching
condition between the result and
expectation.

This method suggest entropy for the
criteria tomeasure the component
trustworthiness. The correlation between
trustworthiness and the entropy is
negative, the component has high
trustworthiness level if its entropy is small.

To measure the entropy of the
component we must consider all of four
stage In the component development
stages: the component requirement stage,
the component design stage, the
component code implementation stage,
and the component testing stage. We apply
the entropy formula (1) to calculate the
component entropy at every step. The
trustworthiness tree in trustworthiness
measurement is shown in Fig. 7.

Figure 7. Trustworthiness tree(Zhang et.

al, 2011)

3.4. Thrustworthiness Evaluation of

Open Source Components

One of the main consideration of the

integrators when developing software
system using ready-made components is
the quality of the component. When we
develop system using Open Source
Components (OCSs) we have to evaluate
the reliability of OSCs. This is very
important because if OSCs are not reliable
they can cause some significant faults and
reliability problems to the system.
Evaluation of the reliability of OSCs is
quite difficult because the only available
artifact is the source code.

Immonen & Palviainen (2007)
propose evaluation and testing method to
validate the trustworthiness of OCSs. They

define the software trusWZRUWKLQHVV�DV�³the

degree of confidence that exist that it

meets a set of requirement´�� 7R� HYDOXDWH�

the trustworthiness in software
development process, they suggest two
type of evaluation: The technical and the
non-technical evaluation.

The technical trustworthiness
evaluation verify the software
trustworthiness using quantitative
reliability analysis in three level: the
component level, the architecture level,
and the system level. The non-technical
trustworthiness evaluation combine some
artifacts such as history and reputation of
OSC, the evaluation of user communities,
quality of OSC development process, and
the property of OSC provider (see Table
1).

Table 1. The levels of trustworthiness evaluation method (Immonen & Palviainen, 2007)

The RAP method is used as the basis
for the technical part of the trustworthiness
evaluation method. The RAP method is
extended to support model-based
reliability analysis and implementation-
based reliability testing. Model-based
reliability analysis is used to evaluate the
level of reliability at two levels, the
component and architecture levels. At the
component level, the analysis use the
probability of failure before component
implementation to predict reliability. The
probability of failure of components then
will be combined with architectural
models and system execution paths to
simulate the system.

Implementation-based reliability
testing use unit tests to evaluate reliability

at the component level and tests the system
when the component is integrated in the
system.

New method and tool was developed
by Immonen and Palviainen based on the
RAP tool to support reliability testing of
OSCs. Eclipse (http://www.eclipse. org/)
was chosen for this method because
Eclipse is able to promote interopability of
tools. Also, Eclipse provide an extensible
application framework which is very
useful for software engineer when thy
want to build a software system. The input
for reliability evaluation is architectural
model which using UML and the testing
environtment is an open Eclipse Test and
Performance Tools Platform (TPTP)

(http://www.eclipse.org/tptp/). Reliability
analysis tool in Eclipse is shown in Fig. 8.

Figure 8. Reliability analysis tool in

Eclipse(Immonen & Palviainen, 2007)

5. COMPONENT SELECTION IN

INDUSTRIAL PRACTICES

At present, the software industry

recognize the approach of reusing third-
party software to build software system as
an significant success factor. Torchiano &
Morisio (2004) in Ayala et. al (2011)
GHILQH� DQ�276�FRPSRQHQW� DV� ³a commer-

cially available or open source piece of

software that other software projects can

reuse and integrate into their own

products´. One kind of software
components is Commercial-Off-The-Shelf
(COTS) software which acquired by a fee.
Companies use COTS to improve their
software development process and achieve
some great advantages for their business
process: cost and time efficiencies,
technology adoption acceleration, and
better quality software. Nowadays, there
are a lot of COTS available for various
application areas.

One of the most important things in
reusing COTS is the ability of the
components integrators to evaluate which
COTSs are appropriate for the system.
Currently, software companies are still
having problems about how to select
appropriate COTSs for their system. The

evidence shows that most of the proposed
PHWKRGV� IURP� WKH� ³UHVHDUFK� DUHD´� DUH�

rarely used in the industrial practice.
Ayala et. al (2011) investigate the

common practices of the COTSs selection
process done by 20 software companies in
Spain, Norway, and Luxembourg. Form
their investigation, it was found that the
most popular process done by software
companies to select COTSs in the soffware
system development is informal evaluation
. Common process used by companies to
select COTSs listed in Table 2.

Most of the companies did not use any
formal evaluation method to select COTSs
for their system. Also, most of companies
select the COTSs without using the
documentation of the COTSs for their
subsequent comparison. For most of
companies, there are two main things that
influence the evaluation process: their
previous experience with the COTSs and
the critically of the COTSs with in the
system to be built. Sometimes, the
companies just use the opinions about the
COTSs from the experiences of people for
the basis of the evaluation process.

Some companies hired consultants for
their COTSs evaluation process, but most
of them only hire consultants for critical
projects. Some companies stated that they
hired a consultant to minimize the
potential risks in critical projects. Some
companies follows specific procedures to
ensure the quality of their system but some
other companies did not have a specific
procedure, they only use a spreadsheet tool
to support the evaluation process.

In general, all companies consulting to
the COTSs provider to search the COTSs
information. Some methods used by the
companies to evaluate the COTSs are
listed in Table 3. From information in
Table 3 we found that the most popular
method used by the companies is testing of
the basic functionalities of the COTSs.

Table 2. Processes to evaluate COTSs (Ayala et. al, 2011)

Table 3. Methods to evaluate COTSs (Ayala et. al, 2011)

6. CONCLUCIONS

The use of reusable software

component have some great advantages
and have a significant role in current
software development practices. This
paper discuss about some important points
related with the concept of the
trustworthiness of software component and
we investigate some proposed methods to
evaluate the trustworthiness of software

components. In this paper we also discuss
about the process to select components in
industrial practices.

We found that there is still a gap
EHWZHHQ� ³UHVHDUFK´� DUHD� DQG� ³LQGXVWU\�

³DUHD´��7KH�IXUWKHU�UHVHDUFK�LV�VWLOO�QHHGHG�

to minimize this gap. We are interested in
applying the proposed methods in some
real project so we can verify wether the
proposed methods are appropriate to
accommodate real industrial needs.

REFERENCES

Alvaro, A., Santana de Almeida, E., &
Romero de Lemos Meira, S. (2010).
A software component quality
framework. ACM SIGSOFT

Software Engineering Notes, 35(1),
1-18.

Andreessen, M. (2011). Why Software Is

Eating The World'. Wall Street

Journal, 20.

Bertolino, A. (2007, May). Software

testing research: Achievements,
challenges, dreams. In 2007 Future
of Software Engineering (pp. 85-
103). IEEE Computer Society.

Immonen, A., & Palviainen, M. (2007,

October). Trustworthiness evaluation
and testing of open source
components. In Quality Software,
2007. QSIC'07. Seventh
International Conference on (pp.
316-321). IEEE.

Ayala, C., Hauge, Ø., Conradi, R., Franch,

X., & Li, J. (2011). Selection of third
party software in Off-The-Shelf-
based software development²An
interview study with industrial
practitioners. Journal of Systems and
Software, 84(4), 620-637.

Booch, G., Rumbaugh, J., & Jacobson, I.

�������� 7KH� XQL¿HG� PRGHOLQJ�

language user guide. Reading, UK:
Addison Wesley.

Dan, W., & Jing, Z. (2009, April). A

Formal Verification Model for
Trustworthiness of Component
Interface. In Networks Security,
Wireless Communications and
Trusted Computing, 2009.
NSWCTC'09. International
Conference on (Vol. 2, pp. 643-646).
IEEE.

Garlan, D., Allen, R., & Ockerbloom, J.

(1995, April). Architectural
mismatch or why it's hard to build
systems out of existing parts. In
Software Engineering, 1995. ICSE
1995. 17th International Conference
on (pp. 179-179). IEEE.

JiuSong, H., Hong, H., QinBao, S., &

KeGang, H. (2009, December).
Reference Model of Trustworthy
Proof for Trusted Components. In
Future Information Technology and
Management Engineering, 2009.
FITME'09. Second International
Conference on (pp. 136-139). IEEE.

Jones, G., & Prieto-Diaz, R. (1988,

October). Building and managing
software libraries. In Computer

Software and Applications

Conference, 1988. COMPSAC 88.

Proceedings., Twelfth

International (pp. 228-236). IEEE.

Kaindl, H. (2013, December). Software

Reuse Based on Business Processes
and Requirements. In Software
Engineering Conference (APSEC,
2013 20th Asia-Pacific (pp. 85-86).
IEEE.

Leach, R. J. (2012). Software Reuse:

Methods, Models, Costs. AfterMath.

Le Lann, G. (1997, March). An analysis of

the Ariane 5 flight 501 failure-a
system engineering perspective. In
Engineering of Computer-Based
Systems, 1997. Proceedings.,
International Conference and
Workshop on (pp. 339-346). IEEE.

Lions, J. L. (1996). Ariane 5 flight 501

failure.

Lyu, M. R. (2007, May). Software

reliability engineering: A roadmap.
In 2007 Future of Software

Engineering (pp. 153-170). IEEE
Computer Society.

Meyer, B. (2003, May). The grand

challenge of trusted components. In
Software Engineering, 2003.
Proceedings. 25th International
Conference on (pp. 660-667). IEEE.

Morris, J., Lee, G., Parker, K., Bundell, G.

A., & Lam, C. P. (2001). Software
component certification. Computer,
34(9), 30-36.

Panunzio, M., & Vardanega, T. (2009,

August). On component-based
development and high-integrity real-
time systems. In Embedded and

Real-Time Computing Systems and

Applications, 2009. RTCSA'09. 15th

IEEE International Conference

on (pp. 79-84). IEEE.

Snow, K. Z., Monrose, F., Davi, L.,

Dmitrienko, A., Liebchen, C., &
Sadeghi, A. R. (2013, May). Just-in-
time code reuse: On the
effectiveness of fine-grained address
space layout randomization. In
Security and Privacy (SP), 2013
IEEE Symposium on (pp. 574-588).
IEEE.

Zhang, X., Wu, H., & Lu, Y. (2011,

April). The Exploration of the
Component's Trustworthiness
Measurement Method in the Data
Processing Domain. In ITNG (pp.
186-190).

Kaur, A., & Mann, K. S. (2010).

Component based software
engineering.International Journal of

Computer Applications, 2(1), 105-
108.

Szyperski, C. (2002). Component

software: beyond object-oriented

programming. Pearson Education.

Shareef, J. W., & Pandey, R. K. (2012).
Component-Based Software
Development with Component
Technologies: An Overview.

