cDNA ENCODING GROWTH HORMONE FROM HUMBACK GROUPER (CROMILEPTES ALTIVELIS)

MOCHAMAD SYAIFUDIN1, ALIMUDDIN3, UTUT WIDYASTUTP2, AGUS OMAN SUDRAJAT3, KOMAR SUMANTADINATA3, RATU SITI ALIAH4

1 Department of Aquaculture, Faculty of Agriculture, Sriwijaya University, South of Sumatera, Indonesia
2 Department of Biology, Faculty of Mathematic and Nature Science, Bogor Agricultural Institute (IPB), Indonesia
3 Department of Aquaculture, Faculty of Fisheries and Marine Science, Bogor Agricultural Institute (IPB), Indonesia
4 Agency for the Assessment and Application Technology

ABSTRACT

Growth hormone (GH) that plays an important role in growth, reproduction, seawater adaptation, and immune function was isolated and sequenced from humpback grouper, Cromileptes altivelis. The cDNA was isolated from pituitary using RT-PCR. The 618 bp open reading frame encodes a 205 amino acid (aa) protein, which represents an 18 aa signal peptide followed by a 187 aa mature GH polypeptide. The fragment contained conserved domain of somatotropin-1, somatotropin-2, casein kinase II phosphorylation, protein kinase C phosphorylation, N- and C-myristoylation and N- and glycosylation. The similarity of deduced protein of humpback grouper GH was 65.0 - 89.5% with other fishes.

Key words: isolation, cloning, sequencing, growth hormone cDNA, Cromileptes altivelis

INTRODUCTION

Growth hormone (GH) is a 22-kDa protein of pituitary origin that has conserved a pleiotropic action throughout the evolution of vertebrates. There is evidence for the involvement of fish GH in growth, seawater adaptation, reproduction and immune system (Calduch-Giner et al. 2000). The secretion of this hormone was regulated by growth hormone releasing hormone (GHRH) and inhibiting hormone (somatostatin) (Anderson et al. 2004). Isolation of cDNA encoding growth hormone has been done in Europe such as from rainbow trout (Oncorhynchus mykiss) (Yao et al. 1991), red sea bream, and salmonid (Voigt and Botta 1990). Growth hormone cDNAs from
the catfishes like *Ictalurus punctatus* (Tang et al. 1993), *Pangasius gigas* (Lemaire et al. 1994) and *P. pangasius* (Lemaire and Panyim 1993) have been cloned, sequenced and characterized.

Humpback grouper is one of the high economic value seawater fish. In Indonesia, the humpback grouper popularly known as "kerapu bebek" could be found in coral reefs in Banten Bay, Ujung Kulon, Madura, Kalimantan and Nusa Tenggara. It could also be found at Riau, Seribu and Karimunjawa Archipelagoes (Heemstra and Randall 1993). The growth of this fish is slow; therefore to understand the role of GH in regulating the growth of fish, the GH cDNA was isolated, cloned and sequenced.

MATERIALS AND METHODS

RNA Extraction

Pituitary glands were collected from six adult *C. altivelis* of 0.5 kg in weight and quick frozen in liquid nitrogen. Total RNA was extracted following guanidine isothiocyanate (GIT) method (Suharsono et al. 2002). All solutions were prepared from diethylpyrocarbonate (DEPC)-treated autoclaved to avoid the high levels of RNase activity. The visualization of RNA was detected by GelDoc (labquip) transluminator and captured by f1.8 full bright (Olympus) digital camera. RNA pellet was dissolved in DEPC-treated autoclaved, distilled water and stored at -70oC.

cDNA Synthesis

The synthesis of growth hormone cDNA used SuperScript™ Double-Strand cDNA Synthesis Kit from Invitrogen. This kit had an ability of Superscript™ II RNase H- Reverse Transcriptase at the first strand reaction. Reverse Transcripitate-Polymerization Chain Reaction (RT-PCR) of total RNA from *C. altivelis* pituitary used the conserved specific primer that were designed according to 6 GH gene sequences from GenBank database: Epinephelus aukaara (accession number: AY326406), *E. awoara* (AF232711), *E. coioides* (AY038606, AY513647, AF376771) and *Sebastes schlegeli* (AY542548). Those conserved sequences were selected by multiple sequence alignment and analyzed by primer 3 software. The primers designed were IKF Forward 5'-cagacctgatccccagacca-3' (19 bp) and IKR Reverse 5'-ctacaggtacagttggcctca-3' (22 bp).

One microgram of total RNA was used as a template for RT-PCR, then added with 2 x 25 μl of reaction buffer, 0.5 μl of each forward and reverse primers (20 pmol), 1 μl of Taq polymerase, 1.2 μl of MgSO4 (2.5 mM) and added DEPC water until 50 μl final volumes. The RT-PCR (PTC-100TM from MJ Research Inc.) protocols was as follows: 45oC for 30 min and 92oC for 2 min-denaturation, 92oC for 15 s, 45oC for 30 s-annealing, 68oC for 90 s-extension for 35 cycles and a final extension at 72oC for 5 min.
Cloning of GH cDNA to pGEM T-Easy vector
GH cDNA were ligated to pGEM T-Easy following procedure of Promega (2003). pGEM T-Easy vector and DNA insert control tube were centrifuged briefly to collect contents at the bottom of tube. Ligation reaction follows as 5 μl 2 x of rapid ligation buffer, 1 μl of vector pGEM T-Easy (50 ng), 1 μl of T4 DNA ligase (3 Weiss units/μl) and 3 μl of RT-PCR template. The reactions were mixed by pipetting and incubated overnight at 4°C.

Transformation to E. coli DH5α
E. coli DH5α were made competence following the method of Suharsono (2002). A hundred μl of competent cell were added to 10-μl template of GH cDNA (10-50 ng) and incubated on ice for 20-25 min. The mixture was heat-shocked at 42°C for 20-25 min and placed on ice for 5 min, then moved it at room temperature. The medium 2xYT (Yeast extract and Tripton) 100 μl was added to the mixture and incubated in rotary shaker at 250 rpm for 20 min and 37°C. Plasmid-containing GH cDNA are selected by growth on agar containing ampicillin. The bacteria of 100-150 μl were spread in selective medium containing ampicillin (100 μg/ml).

Transformation identification
Non-transformed cells cannot grow in the presence of ampicillin. The competent cell that contained DNA recombinant grew with ampicillin medium and produced white colonies. The white colony from transformation was replicated and checked by PCR to ensure the plasmid-containing GH cDNA. The reaction of PCR was as follows: a white colony that had been replicated, mixed with a tube containing ddH2O 7.15 μl, then done the hot start PCR at 95°C for 10 min and 15°C for 5 min. Then, it was added with buffer 1 μl, forward and reverse primer (20 pmol/μl) 0.5 μl, Taq enzyme (5 U/μl) 0.05 μl and dNTP (25 mM) 0.8 μl. The PCR reactions were run at 94°C, 2 min-initial denaturation for 1 cycle, 94°C for 30 s-denaturation, 45°C for 30 s-annealing, 68°C for 90 s-extension for 30 cycles and a final extension at 72°C for 5 min.

Plasmid isolation and sequencing
pGEM T-Easy plasmid that contained GH cDNA in E. coli DH5α was isolated by the method described by Suharsono et al. (2002). Plasmid cDNA that contained cDNA GH were sequenced following Sanger et al. (1977) in automated sequencer ABI PRISM 310.

Sequence analysis
Nucleotide and deduced amino acid sequences were analyzed by Bioedit package and BLAST searches (http://www.ncbi.nlm.nih.gov/blast). The potential domains were analyzed with prosite database program at the ExPASy server http://www.expasy.
RESULTS AND DISCUSSION

The result of sequencing showed that GH cDNA of C. altivelis contained 618 bp encoded 205 amino acids, protein, which represents an 18 amino acid signal peptide followed by 187 bp amino acid mature GH polypeptide. GH cDNA sequence of C. altivelis can be accessed in GenBank database using accession number EU003991. The four Cys residues in humpback grouper GH are located at conserved position (70, 178, 195, and 203) (Figure 1). The sequence was compared with GH nucleotide of other fishes with 50 alignments. The comparison showed 80.5-96.9% similarity with marine and freshwater fishes. The closest similarity is with Epinephelus coioides (96.9%), then E. awoara (95.3%), E. aakaara (94.8%), Lepomis cyanellus (88.9%) and Acantobagrus latus (88.9%). The farthest similarity is Siniperca kneri (80.5%), then Lateolabrax japonicus (81.5%), Mugil planatus (81.7%), Oreochromis niloticus (82.3%) and Monopterus albus (84.6%).

F (19 bp)

\[
\begin{align*}
1 & \text{1}AGC\text{2AAC}\text{3TGT}\text{4GTC}\text{5GTC}\text{6CTT}\text{7GCT}\text{8GTT}\text{9GAA}\text{10GTA}\text{11GTC}\text{12TCC}\text{13CTC}\text{14TAT}\text{15GCT}\text{16TTT}\text{17AGA}\text{18CAG}\text{19GTA} \\
2 & \text{1}\text{HCA}\text{2ASN}\text{3CYS}\text{4VAL}\text{5VAL}\text{6LEU}\text{7PRO}\text{8ALA}\text{9VAL}\text{10GLN}\text{11VAL}\text{12SER}\text{13GLY} \\
3 & \text{16GTT}\text{21TCC}\text{22TCT}\text{23CAG}\text{24GGA}\text{25ATC}\text{26AGA}\text{27GAC}\text{28GGC}\text{29CGT}\text{30GAT}\text{31GAA}\text{32TGT}\text{33GCT}\text{34AGA}\text{35CGA}\text{36TGT}\text{37TGT}\text{38CTC} \\
4 & \text{39CTG}\text{40GTC}\text{41CTG}\text{42ATG}\text{43GTT}\text{44GAA}\text{45GTA}\text{46GTG}\text{47TCC}\text{48TCT}\text{49AGT}\text{50CAT}\text{51CTC}\text{52AGC}\text{53GGT}\text{54GATT}\text{55CTC}\text{56AGA} \\
5 & \text{57GTA}\text{58VAL}\text{59SER}\text{60ARG}\text{61VAL}\text{62GLN}\text{63HIS}\text{64LEU}\text{65LEU}\text{66ALA}\text{67GLN}\text{68ARG}\text{69LEU} \\
6 & \text{116TCC}\text{121TCT}\text{122GCT}\text{123TTG}\text{124AGG}\text{125CTG}\text{126AGC}\text{127GAC}\text{128GGC}\text{129CGA}\text{130CTG}\text{131AGT}\text{132GTT}\text{133GAT}\text{134GCA} \\
7 & \text{135GGT}\text{136TTA}\text{137AGC}\text{138GGC}\text{139AAG}\text{140CAG}\text{141GAC}\text{142GGC}\text{143CGA}\text{144CTG}\text{145AGT}\text{146GTT}\text{147GAT}\text{148GCA} \\
8 & \text{149GGT}\text{150TCC}\text{151TCT}\text{152AGC}\text{153GAC}\text{154GGC}\text{155CGA}\text{156CTG}\text{157AGT}\text{158GTT}\text{159GAT}\text{160GCA} \\
9 & \text{161CTC}\text{162AAC}\text{163AATC}\text{164TTT}\text{165AGG}\text{166CAG}\text{167GAC}\text{168GGC}\text{169CTG}\text{170AGT}\text{171GTT}\text{172GAT}\text{173GCA} \\
10 & \text{174GGT}\text{175TCC}\text{176TCT}\text{177AGC}\text{178GAC}\text{179GGC}\text{180CTG}\text{181AGT}\text{182GTT}\text{183GAT}\text{184GCA} \\
11 & \text{185CTT}\text{186TCC}\text{187TCT}\text{188AGC}\text{189GAC}\text{190GGC}\text{191CTG}\text{192AGT}\text{193GTT}\text{194GAT}\text{195GCA} \\
12 & \text{196CTG}\text{197GTC}\text{198CTG}\text{199ATG}\text{200GTT}\text{201GAA}\text{202GTA}\text{203GTG}\text{204TCC}\text{205AGA} \\
\end{align*}
\]

Figure 1. The complete nucleotide sequence and deduced amino acids of humpback grouper (Cromileptes altivelis). Four Cys residues are boxed. Marked (___) start codon; Marked (_____) stop codon; F (forward primer); R (reverse primer).
Deduced protein of GH cDNA was analyzed based on BLASTP showed high similarity with marine and freshwater fishes (66.0-89.5%). The highest similarity is with *E. coioides* (89.5%), followed by *E. awoara* (88.6%), *E. akaara* (88.2%), *Siniperca kuerti* (87.7%) and *Leponis cyanellus* (86.8%). The farthest similarity of GH protein is *Limanda yokohamae* (65.1%), followed by *Platichthys bicoloratus* (65.6%), *Hippoglossus hippoglossus* (66.0%), *Fugu rubripes* (70.1%) and *Sciaenops ocellatus* (71.4%).

Proteins or more correctly some of the amino acids they contain are an essential component of the diet for all animals (Houlihan, *et al.*, 2001). Essential amino acids are those that animals were not able to synthesize, or synthesized insufficient quantity to enable the maintenance of good growth rates, whereas non-essential, or dispensable, amino acids can be synthesized de novo from other compounds.

Deduced protein of GH cDNA encoded 205 amino acids with molecular weight is 23.042 kDa. The biggest amino acid composition of GH is leucine (14.63%), serine (12.20%) and glutamine (6.83%). The smallest composition is tryptophan (0.49%). Based on amino acids composition, *C. altivelis* needed 10 essential amino acids: leucine (14.63%), valine (5.85%), arginine (5.85%), isoleucine (4.88%), lysine (4.39%), threonine (4.39%), phenylalanine (3.90%), histidine (1.95%), methionine (0.98%) and tryptophan (0.49%). Non-essential amino acids compositions of GH of *C. altivelis* are serine (12.20%), glutamine (6.83%), alanine (5.85%), glutamic acid (5.85%), aspartic acid (4.88%), proline (4.39%), glycine (3.90%), tyrosine (3.41%), asparagines (2.93%) and cysteine (2.44%). The restriction site of GH nucleotide of *C. altivelis* showed many sites *i.e.*: *BamHI, BanII, SalI, BsaI, NspI* and *BaiI* (Figure 2).

![Restriction site of GH cDNA of humpback grouper *C. altivelis*](image)

Figure 2.

*NEB single cutter restriction enzymes
- Main non-overlapping, min. 618 as ORFs

C-54%, AT-46%
Deduced protein of GH cDNA contained potential domains: Somatotropin-1, Somatotropin-2, Casein kinase II phosphorylation, Protein kinase C phosphorylation, N-myristoylation and N-glycosylation (Figure 3). Potential domains analysis of deduced protein GH showed that C. altivelis had similar conserved domain with epinephrine (E. coioides, E. ahuara and E. ahuara), but different with P. gigas, Salmo salar, Anguilla anguilla, P. pangasius and Cypinus carpio. N-glycosylation is the most conserved domain with 100% similarity. N-glycosylation contained 4 amino acids: asparagines, cysteine, threonine and leucine.

Casein kinase II (CK-2) is a protein serine/threonine kinase whose activity is independent of cyclic nucleotides and calcium. CK-2 phosphorylates many different proteins (Pinna 1990). CK-2 is a multi function of protein kinase because of its role in function and cellular process, included mitosis and cellular transformation (Promega 2001). Casein kinase II of GH from C. altivelis contained 4 amino acids: serine, aspartic acid, phenylalanine and glutamic acid.

Figure 3. Conserved domain of deduced protein of GH cDNA from humpback grouper (C. altivelis) based on prosite database analysis. Pangasius pangasius (Genbank accession number: M63713), Pangasiusodon gigas (L.27835), Cypinus carpio (X13670), Anguilla anguilla (AY148493), Salmo salar (X14305).
The hormone somatotropin (growth hormone, GH) plays an important role in growth control. Somatotropin-1 is a variety domain (50%-100%). In this domain, *C. altivelis* contained 8 essential amino acid (Ile, Lys, Thr, Val, Leu, Trp, Arg, His). Somatotropin-2 had more conservative domain than somatotropin-1. The similarity was 89.47-100%. The most varied amino acid was at 198th. At this number, threonine in *C. altivelis* was replaced by serine in *P. pangasius* and *Pangasianodon gigas*, lysine in *A. anguilla* and arginine in *C. carpio*. Another difference of amino acid was at 200th and 201st. GH of *C. altivelis* did not contain arginine and serine that may cause the difference in growth characters. Somatotropin-2 of *C. altivelis* contained 7 essential amino acid (Lys, Met, Val, Thr, Leu, Trp, Arg).

N-terminal N-myristoylation is a lipid anchor modification of eukaryotic and viral proteins targeting them to membrane locations, thus changing the cellular function of modified proteins. Protein myristoylation is critical in many pathways; e.g. in signal transduction, apoptosis, or alternative extracellular protein export (Maurer-Stroh et al. 2002). There was less conservative amino acid (16.66–33.33%) in this domain, except in *group* (epinephrine). The more variation in this domain was supposed to be connected with the function as protein modification to membrane function. Modification in this domain was supposed to increase the growth in *C. altivelis*. Serine and aspartic acid were the possible amino acid to be modified with asparagines and glutamate, respectively.

CONCLUSIONS

The cDNA GH of *C. altivelis* contained 618 bp that encoded 205 amino acids with the conserved domain are: Somatotropin-1, Somatotropin-2, Casein kinase II phosphorylation, Protein kinase C phosphorylation, N-myristoylation and N-glycosilation. The similarity of deduced protein GH was 65.0-89.5% with other fishes.

ACKNOWLEDGMENT

We gratefully acknowledge the partially financial support provided by BPPS scholarship program from National Department of Education, Indonesia and Agency for the Assessment and Application of Technology, Jakarta, Indonesia. We thank also Dr. Sony Suharsono director of Center for Biotechnology and Natural Research, Bogor Agriculture University for providing laboratory facilities. The computer facilities provided by BIORIN (Biotechnology Research Indonesian the Netherlands) Indonesia are acknowledged.
REFERENCES

Lemaire C and S Panyim. 1993. Pangasius pangasius growth hormone mRNA complete coding sequence (GenBank Accession number M63713)

Voigt MN and Botta JR. 1990. Advances in Fisheries Technology and Biotechnology for Increased Profitability. Papers from the 34th Atlantic Fisheries Technological Conference and Seafood Biotechnology Workshop, August 27 to September 1, 1989.