PEMILIHAN PELARUT PADA PEMURNIAN EKSTRAK LENGKUAS
(Alpinia galanga) SECARA EKSTRAKSI

Hernani, Tri Marwati dan Christina Winarti

Balai Besar Penelitian dan Pengembangan Pascapanen Pertanian
Jl. Tentara Pelajar 12 A Bogor
email : hh_pascapanen@libbangdeptan.go.id, hh_pascapanen@cbn.net.id

Lengkuas (Alpinia galanga) merupakan salah satu tanaman biofarmaka. Secara farmakologis, ekstrak lengkuas mempunyai aktivitas sebagai anti jamur, anti kanker, anti tumor, antioksidan, sitotoksik, karminatif, dan anti ulcer. Untuk mendapatkan produk biofarmaka dari ekstrak murni lengkuas diperlukan proses pemurnian, antara lain dengan ekstraksi pelarut. Penelitian ini dilakukan dengan tujuan memilih jenis pelarut yang tepat untuk pemurnian ekstrak lengkuas secara ekstraksi pelarut, dengan mempelajari parameter rendemen, mutu dan kadar senyawa aktif dari ekstrak murni yang dihasilkan. Percobaan dilakukan dengan menggunakan 2 jenis pelarut yaitu heksan dan toluene dengan konsentrasi 60, 70 dan 80 % yang disusun dalam rancangan acak lengkap. Hasil penelitian menunjukkan bahwa berdasar analisis rendemen, mutu dan kadar bahan aktif ekstrak murni, pelarut yang paling sesuai untuk pemurnian ekstrak lengkuas adalah heksan 80%. Rendemen ekstrak murni lengkuas yang dihasilkan dari pelarut tersebut adalah 57,84 %, dengan komponen mutu yaitu pH 3,94 ; total padatan terlarut 82,89%; sisa pelarut 0,18 % dan kadar senyawa aktif 1'-asetoksikhamilok asetat adalah 0,88 %.

Kata kunci : lengkuas, pemurnian, ekstraksi, 1'-asetoksikhamilok asetat

ABSTRACT. Hernani, T. Marwati and C. Winarti. 2007. Selection of solvent on purification of galangal (Alpinia galanga) extract by extractation. Galangal is one of the medicinal plants since its extract pharmacologically acts as antifungal, anti cancer, anti tumor, antioxidant, cytotoxic, carminative, and anti ulcer. To produce biofarmaceutical product from galangal extract need a further purification process such as solvent extraction. The aim of the research was to find out the proper solvent on galangal extract purification by solvent extraction. Parameters observed were yield, quality and active compound content of the purified extract. The experiments used two solvents, i.e hexane and toluene with the concentration of 60, 70 and 80% and arranged using completely randomized design. The result showed that based on yield, quality and active compound content analyses of purified extract, the proper solvent on extraction process was 80% hexane. By those solvent, purified extract gave 57.84% on yield, quality component such as pH 3.94; 82.89% total soluble solid; 0.18% solvent residue and 0.88% 1'-acetoxychavicol acetate content as active compound

Keywords: galangal, purification, extraction, 1'-acetoxychavicol acetate

PENDAHULUAN

Lengkuas (Alpinia galanga) merupakan salah satu tanaman biofarmaka yang menjadi unggulan Ditjen Hortikultura. Menurut Ditjen Hortikultura, tanaman biofarmaka adalah tanaman yang bermanfaat untuk obat-obatan, dikonsumsi dari bagian tanaman yang berasal dari daun, bunga, buah, umbi (rimpang) ataupun akar (Anonymous, 2004a). Secara umum, ada dua jenis lengkuas yang dikenal, yaitu lengkuas merah dan lengkuas putih. Lengkuas putih biasanya digunakan untuk bumbu dalam masakan dan lengkuas merah dimanfaatkan sebagai obat. Secara farmakologis, ekstrak lengkuas mempunyai aktivitas sebagai anti jamur (Janssen and Scheffer, 1985; Hernani et al., 2005; Khattak et al., 2005), anti kanker (Rusmarilin, 2003), anti tumor (Itoikawa et al., 1987; Kondo et al., 1993), antioksidan yang cukup tinggi (Juntachote and Berghofer., 2005), sitotoksik (Zaocung et al., 2005), karminatif, anti gatal (Morikawa et al., 2005) dan anti ulcer (Mitsui et al., 1976).

Produk fitofarmaka adalah suatu produk yang dibuat dari tumbuhan atau bagian dari tumbuhan, baik yang segar ataupun yang telah dikeringkan dan telah melalui proses ekstraksi, distilasi atau proses lainnya (Endardonjo, 1999). Bahan dasar pembuatan produk fitofarmaka biasanya berupa ekstrak. Ekstrak merupakan bahan baku produk obat asli Indonesia (OAI) dan memiliki ciri yang sangat khas dan kompleks baik dari aspek fisik atau kimianya, mengandung kumpulan senyawa-senyawa (senyawa aktif dan tidak aktif) dari berbagai golongan yang terlarut dalam pelarut yang sesuai (Sidik dan Mudahar, 2000; Hernani dan Rostiana, 2004). Faktor-faktor yang mempengaruhi mutu ekstrak antara lain, kualitas bahan baku yang digunakan, jenis pelarut yang digunakan dalam proses ekstraksi, metode ekstraksi yang digunakan (maserasi statis atau dinamis, perokolasi, reperkolasi dan ekstraksi arus balik), ukuran partikel bahan, suhu proses ekstraksi, pH ekstrak dan metoda pemurniannya (Endardonjo, 1999; Windono dan Sutarjadi, 2002; Wahono, 2000). Spesifikasi produk fitofarmaka adalah senyawa aktif yang terdapat didalamnya tidak dalam bentuk tunggal, tetapi masih
terdapat zat-zat pendamping lainnya. Senyawa aktif adalah senyawa yang mempunyai khasiat seperti yang diindikasikan, dan senyawa pendamping adalah senyawa yang menunjang khasiat senyawa aktif, seperti stabilitas ekstrak, memperbaiki adsorpsi dalam tubuh (Wahyono, 1996). Obat asli Indonesia dalam bentuk ekstrak dapat dikembangkan lebih lanjut menjadi berbagai produk farmasi, baik yang digunakan sebagai makanan kesehatan (health food), makanan tambahan (food supplement) ataupun sebagai obat (natural medicine) (Pramono, 2002).

Ekstrak dapat dibagi dalam dua kategor, yaitu ekstrak kasar dan ekstrak murni. Ekstrak kasar artinya ekstrak yang mengandung semua bahan yang tersari dengan menggunakan pelarut organik, sedangkan ekstrak murni adalah ekstrak kasar yang telah dimurnikan dari senyawa-senyawa inert melalui proses penghilangan lemak, penyaringan menggunakan resin atau adsorben (Wijesekera, 1991). Ekstrak murni lebih disukai karena mempunyai bahan aktif atau komponen kimia yang jauh lebih tinggi dibandingkan ekstrak kasar, sebagai contoh kandungan senyawa aktif dalam ekstrak kasar 20%, setelah dimurnikan senyawa aktif akan meningkat menjadi 60% (Wijesekera, 1991). Dengan demikian, untuk mendapatkan produk biofarmaka dengan kandungan senyawa aktif yang tinggi diperlukan proses pemurnian lebih lanjut dari ekstrak kasar.

Tujuan penelitian adalah untuk memilih jenis pelarut yang tepat pada pemurnian ekstrak lengkuas secara ekstraksi, dengan mempelajari parameter rendemen, mutu (meliputi pH, total padatan terlarut, sisa pelarut) dan kadar senyawa aktif dari ekstrak murni yang dihasilkan. Hipotesis yang diajukan dalam penelitian ini yaitu jenis pelarut yang digunakan untuk pemurnian berpengaruh terhadap rendemen, mutu dan kadar bahan aktif ekstrak murni.

Hasil penelitian ini bermanfaat bagi praktisi di bidang pembuatan produk biofarmaka dalam mendapatkan ekstrak murni dari lengkuas. Dampak yang diharapkan dari penelitian ini adalah berkembangnya industri pembuatan ekstrak murni lengkuas sebagai bahan baku obat dan industri produk biofarmaka lengkuas.

BAHAN DAN METODE

A. Bahan

B. Metode
1. **Analisis mutu rimpang lengkuas**

2. **Pembuatan ekstrak**
Ekstrak lengkuas
Galangal extract

→ Ekstraksi dengan:
a. heksan, b. toluen
Extraction with solvent
a. hexane, b. toluene

→ Evaporasi
Evaporation → Pelarut
Solvent

Ekstrak murni lengkuas
Galangal purified extract

Gambar 1. Diagram alur pemurnian ekstrak lengkuas dengan metode ekstraksi pelarut
Figure 1. Flow chart of galangal extracts purification by solvent extraction method

3. Perlakuan percobaan dan prosedur pemurnian ekstrak

Percobaan pemurnian secara ekstraksi dilakukan dengan menggunakan 2 jenis pelarut yaitu heksan dan toluen dengan 3 tingkat konsentrasi, yaitu 60, 70 dan 80%. Percobaan disusun dengan 6 perlakuan, yaitu heksan 60%, heksan 70%, heksan 80%, toluen 60%, toluen 70%, dan toluen 80%.

4. Analisis ekstrak murni lengkuas

Pada ekstrak murni lengkuas yang dihasilkan akan dilakukan pengamatan terhadap rendemen (Anonymous,1995), mutu (pH, total padatan terlarut, sisa pelarut) menurut AOAC (1980) dan kadar senyawa aktif menggunakan GC-MS. Tipe alat GC-MS yang digunakan dari jenis QP 2010 Shimadzu. Kondisi alat yang digunakan sebagai berikut, jenis kolom : DB-MSI, kapiler, panjang kolom 60 m dan diameter kolom 0,25 mm, suhu kolom: terprogram, 50-230/5°C/minute, dan suhu injektor 225°C.

HASIL DAN PEMBAHASAN

A. Mutu bahan baku rimpang lengkuas

Mutu bahan baku memegang peranan yang cukup penting, karena setiap bahan baku akan memberikan kandungan dan komposisi senyawa aktif yang sangat spesifik (Trisnamurti dan Basuki, 2005). Hasil analisis terhadap rimpang lengkuas merah menunjukkan bahwa dari semua komponen yang dipersyaratkan oleh Materia Medika Indonesia / MMI (Standar acuan untuk kualitas tanaman obat yang dikeluarkan oleh Depkes) ternyata semuauanya telah memenuhi yang dipersyaratkan, bahkan mempunyai nilai yang jauh lebih tinggi (Tabel 1). Kadar air bahan tidak dipersyaratkan, tetapi lebih diinginkan kadar air yang rendah (< 12). Untuk kadar abu ternyata

Tabel 1. Karakteristik lengkuas merah dari kebun percobaan Cibinong, Bogor yang digunakan dalam penelitian dibandingkan dengan standar mutu lengkuas menurut MMI

<table>
<thead>
<tr>
<th>Karakteristik</th>
<th>Hasil * Result</th>
<th>Mutu lengkuas menurut MMI ** Galangal quality by MMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kadar air/ Moisture content (%)</td>
<td>7,80 ± 0,28</td>
<td>-</td>
</tr>
<tr>
<td>Kadar abu/ Ash content (%)</td>
<td>9,12 ± 0,02</td>
<td>Maks. 3,9</td>
</tr>
<tr>
<td>Kadar abu tak larut asam/ Ash insoluble in acid (%)</td>
<td>2,93 ± 0,02</td>
<td>Maks. 3,7</td>
</tr>
<tr>
<td>Kadar sari yang larut dalam air/ Water soluble extractive (%)</td>
<td>31,22 ± 7,62</td>
<td>Min. 5,7</td>
</tr>
<tr>
<td>Kadar sari yang larut dalam alkohol/ Alcohol soluble extractive (%)</td>
<td>21,60 ± 0,57</td>
<td>Min. 1,7</td>
</tr>
</tbody>
</table>

Keterangan/Remarks:
*) Basis basah/Wet basis
**) Anonymous (1989)
- tidak dipersyaratkan/unconditional
mempunyai harga yang melebihi ketentuan, diduga karena kandungan senyawa anorganiknya cukup tinggi atau tersisa kotoran dalam ramping lengkuas akibat pencucian tidak sempurna. Kadar abu merupakan indikator terhadap adanya cemaran bahan anorganik atau fisik seperti partikel tanah dan pasir atau gambaran terhadap proses penyapian simplisia/bahan yang tidak sempurna (Wahyono, 1996).

Kadar sari yang larut dalam alkohol dan air lengan ternyata cukup tinggi dibandingkan ketentuan dalam MMI, hal ini menunjukkan bahwa kandungan zat berkhasiat yang ada cukup tinggi. Kadar sari yang larut dalam alkohol dan air merupakan petunjuk terhadap kualitas tanaman yang dipengaruhi oleh daerah umbuh atau baik tidaknya proses agronomi terhadap tanaman tersebut (Soematri, 1993). Kadar sari yang larut dalam alkohol dan air selain mengandung zat berkhasiat yang spesifik, biasanya juga mengandung senyawa-senyawa yang kurang spesifik atau disebut sebagai zat balas seperti tanin, gum, amlium, gula, lendir, lemak, dan damar (Sinambela, 2003; Soematri, 1993).

B. Rendemen ekstrak murni lengkuas

Rendemen yang dihasilkan dari pelarut heksan dengan konsentrasi 70 dan 80% berbeda nyata dengan pelarut toluen pada konsentrasi yang sama. Untuk rendemen pada konsentrasi heksan 60 % ternyata tidak berbeda nyata. Rendemen yang dihasilkan merupakan jumlah senyawa yang terekstrak oleh berbagai macam pelarut dengan tingkat kepolaran yang berbeda (Syahbiring et al., 2005). Dari Tabel 2 terlihat bahwa rendemen yang dihasilkan oleh pelarut heksan cenderung lebih tinggi dibandingkan dengan pelarut toluen. Dalam proses ekstraksi ternyata pelarut heksan cukup mampu menarik resin, gula dan gum, sedangkan pelarut toluen kemungkinan bisa menarik pati, karbohidrat dan kotoran lainnya atau senyawa makromolekul, hal ini terlihat dari kotoran yang dihasilkan. Kotoran dari pelarut heksan bersifat sangat lengket seperti gum, sedangkan pelarut toluen hanya berupa endapan putih saja (Gambar 2). Dalam proses ekstraksi, pigmen juga akan terbentuk dari sebagian lemak, air, resin, enzim, asam dan partikel-partikel pengotor lainnya sehingga pigmen akan terdegradasi (Kusuma et al., 1998).

Dalam pelarut heksan ada kecenderungan bahwa semakin tinggi konsentrasi, rendemen ekstrak murni lengkuas semakin meningkat. Kemungkinan yang terjadi adalah semakin tinggi konsentrasi berarti polaritasnya semakin rendah atau bersifat lebih tidak polar dengan komposisi air yang menurun. Dengan demikian maka kemampuan mengikat zat balas seperti karbohidrat dan pati melalui ikatan hidrogen semakin berkurang, sehingga senyawa tersebut masih banyak tertinggal dalam larutan. Hal ini akan mempengaruhi rendemen yang dihasilkan. Untuk pelarut toluen terjadi hal sebaliknya, semakin tinggi konsentrasi, rendemen ekstrak murni lengkuas yang dihasilkan semakin rendah (Wahyono et al., 2002; Juntachotedan Berghofer, 2005). Kelarutan heksan dalam air jauh lebih kecil dibandingkan toluen (Anonymous, 2007), sehingga kemampuan toluen melarutkan senyawa makromolekul lebih besar, dan ini akan mempengaruhi rendemen yang dihasilkan akan lebih kecil.

Tabel 2. Rataan rendemen ekstrak murni lengkuas yang diperoleh menggunakan beberapa jenis pelarut

<table>
<thead>
<tr>
<th>Perlakuan Treatments</th>
<th>Rendemen (%)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heksan/Hexane 60%</td>
<td>46,79 ab</td>
<td></td>
</tr>
<tr>
<td>Heksan/Hexane 70%</td>
<td>51,94</td>
<td></td>
</tr>
<tr>
<td>Heksan/Hexane 80%</td>
<td>57,84 *</td>
<td></td>
</tr>
<tr>
<td>Toluene/Toluene 60%</td>
<td>40,53 bc</td>
<td></td>
</tr>
<tr>
<td>Toluene/Toluene 70%</td>
<td>35,47 c</td>
<td></td>
</tr>
<tr>
<td>Toluene/Toluene 80%</td>
<td>32,97 c</td>
<td></td>
</tr>
</tbody>
</table>

Keterangan : Angka-angka yang diikuti huruf yang sama pada kolom yang sama tidak berbeda nyata pada taraf 5% menurut uji Duncan

Remarks : Numbers followed by the same letters in the same column were not significantly different on 5% by Duncan test
Tabel 3. Rataan pH ekstrak murni lengkuas yang diperoleh dengan menggunakan beberapa jenis pelarut

| Perlakuan | pH
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Heksan/Hexane 60%</td>
<td>3.98 ^c</td>
</tr>
<tr>
<td>Heksan/Hexane 70%</td>
<td>3.97 ^c</td>
</tr>
<tr>
<td>Heksan/Hexane 80%</td>
<td>3.94 ^c</td>
</tr>
<tr>
<td>Toluene/Toluene 60%</td>
<td>4.08 ^b</td>
</tr>
<tr>
<td>Toluene/Toluene 70%</td>
<td>4.31 ^a</td>
</tr>
<tr>
<td>Toluene/Toluene 80%</td>
<td>4.36 ^a</td>
</tr>
</tbody>
</table>

Keterangan: Angka-angka yang diikuti huruf yang sama pada kolom yang sama tidak berbeda nyata pada taraf 5% menurut uji Duncan

Remarks: Numbers followed by the same letters in the same column were not significantly different on 5% by Duncan test

C. Mutu ekstrak lengkuas murni

1. pH ekstrak murni lengkuas

Jenis pelarut ternyata berpengaruh sangat nyata terhadap pH ekstrak murni lengkuas yang dihasilkan (Tabel 3). Pelarut heksan pada semua konsentrasi memberikan nilai pH yang lebih kecil dibandingkan nilai pH pelarut toluen. Ekstrak yang mempunyai pH tertinggi dari pelarut toluen 70% dan 80% yang berbeda nyata dengan ekstrak hasil pemurnian menggunakan pelarut heksan pada berbagai konsentrasi dan pelarut toluen 60%. pH merupakan salah satu kriteria yang menentukan mutu ekstrak murni lengkuas karena akan berpengaruh terhadap aktivitas dari ekstrak tersebut (Wijesekera, 1991).

Dari penelitian Junthachote dan Berghofer (2005) terhadap aktivitas antioksidan ekstrak etanol lengkuas menunjukkan bahwa pada ekstrak yang mempunyai pH rendah (pH 3) aktivitas antioksidan sangat lemah, tetapi ekstrak yang mempunyai pH 7 aktivitas antioksidannya cukup tinggi. Berarti bahwa ekstrak yang mempunyai pH yang mendekati pH netral akan mempunyai aktivitas lebih tinggi dibandingkan ekstrak yang mempunyai pH yang rendah. Dalam penelitian ini, ekstrak yang mempunyai pH mendekati netral akan mempunyai kualitas yang baik yang dikaitkan dengan aktivitasonya adalah ekstrak hasil pemurnian dengan pelarut toluen 70 dan 80%.

2. Total padatan terlarut ekstrak

Jenis pelarut ternyata tidak berpengaruh nyata terhadap total padatan terlarut ekstrak murni lengkuas. Pelarut toluen dan heksan termasuk dalam golongan senyawa non polar, karena terdiri dari rantai karbon. Biarpun struktur senyawa kimia dari toluen terdiri dari rantai karbon aromatik (cincin tertutup), sedangkan heksan karbon rantai terbuka sifat kepolarannya tidak berbeda. Dalam hal melarutkan senyawa, ternyata keleratan dalam air, berat jenis, titik didih dan berat molekul dari toluen ternyata lebih tinggi dibandingkan dengan heksan (Anonymous, 2007).

Total padatan terlarut merupakan jumlah padatan yang terdapat dalam ekstrak atau sisa ekstrak setelah air dan pelarutnya diuapkan. Semakin tinggi nilai total padatan terlarutnya, maka kualitas ekstrak tersebut dapat dikatakan semakin baik (Putro, 2006). Dari Tabel 4 terlihat bahwa ada kecenderungan total padatan terlarut dari ekstrak hasil pemurnian dengan toluen menunjukkan harga yang sedikit lebih tinggi dibandingkan pelarut heksan.

3. Sisa pelarut ekstrak murni lengkuas

Jenis pelarut berpengaruh secara signifikan terhadap sisa pelarut (Tabel 5). Sisa pelarut yang diinginkan untuk ekstrak murni adalah yang mempunyai nilai rendah. Pada penelitian ini sisa pelarut terendah diperoleh pada pemurnian dengan heksan 80 %, sehingga pelarut ini dapat dipilih untuk digunakan dalam pemurnian. Hal ini disebabkan semakin tinggi konsentrasi heksan maka kadar

Tabel 4. Rataan total padatan terlarut ekstrak murni lengkuas yang diperoleh dengan menggunakan beberapa jenis pelarut

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Total padatan terlarut (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heksan/Hexane 60%</td>
<td>73,89 ^a</td>
</tr>
<tr>
<td>Heksan/Hexane 70%</td>
<td>69,88 ^b</td>
</tr>
<tr>
<td>Heksan/Hexane 80%</td>
<td>82,89 ^a</td>
</tr>
<tr>
<td>Toluene/Toluene 60%</td>
<td>77,63 ^a</td>
</tr>
<tr>
<td>Toluene/Toluene 70%</td>
<td>75,09 ^a</td>
</tr>
<tr>
<td>Toluene/Toluene 80%</td>
<td>80,05 ^a</td>
</tr>
</tbody>
</table>

Keterangan: Angka-angka yang diikuti huruf yang sama pada kolom yang sama tidak berbeda nyata pada taraf 5% menurut uji Duncan

Remarks: Numbers followed by the same letters in the same column were not significantly different on 5% by Duncan test
Tabel 5. Rataan sisa pelarut ekstrak murni lengkuas yg diperoleh dengan menggunakan beberapa jenis pelarut

<table>
<thead>
<tr>
<th>Perlakuan Treatments</th>
<th>Sisa pelarut (%)</th>
<th>Solvent residue (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heksan/Hexane 60%</td>
<td>0.35 a</td>
<td></td>
</tr>
<tr>
<td>Heksan/Hexane 70%</td>
<td>0.25 b</td>
<td></td>
</tr>
<tr>
<td>Heksan/Hexane 80%</td>
<td>0.18 c</td>
<td></td>
</tr>
<tr>
<td>Toluene/Toluene 60%</td>
<td>0.33 a</td>
<td></td>
</tr>
<tr>
<td>Toluene/Toluene 70%</td>
<td>0.34 a</td>
<td></td>
</tr>
<tr>
<td>Toluene/Toluene 80%</td>
<td>0.24 b</td>
<td></td>
</tr>
</tbody>
</table>

Keterangan: Angka-angka yang diikuti huruf yang sama pada kolom yang sama tidak berbeda nyata pada taraf 5% menurut uji Duncan

Remarks: Numbers followed by the same letters in the same column were not significantly different on 5% by Duncan test

airnya semakin rendah, sehingga pelarut semakin mudah menguap.

Ditinjau dari segi titik didih, ternyata titik didih heksan (69°C) lebih rendah daripada titik didih toluen (111°C), maka pada konsentrasi heksan yang tinggi, heksan akan menguap terlebih dahulu (Susanto et al., 1996; Anonymous, 2004).

D. Kadar senyawa aktif dalam ekstrak murni lengkuas

Senyawa aktif dalam ekstrak lengkuas yang berpotensi sebagai sebagai anti jamur, dan dapat menghambat perkembangan sel-sel kanker dan leukemia pada tikus, dan menunjukkan efek gastroprotective pada tikus dengan ED₅₀ 0,61mg/kg berat badan adalah senyawa 1'-asetoksihavikol asetat (Janssen dan Scheffer, 1985; Ito et al., 2005; Matsuda et al., 2003). Pada penelitian ini senyawa aktif tersebut digunakan sebagai tolok ukuranya, semakin tinggi kadarnya berarti kualitas ekstraknya semakin baik. Dari Tabel 6 menunjukkan bahwa kadar senyawa aktif yang tertinggi dihasilkan dari pemurnian ekstrak menggunakan pelarut heksan 80%. Ada kecenderungan bahwa kadar bahan aktif dari penggunaan pelarut heksan semakin meningkat dengan meningkatnya konsentrasi; sedangkan untuk pelarut toluen terjadi sebaliknya, yaitu kadar bahan aktif akan semakin rendah dengan meningkatnya konsentrasi.

Dilaporkan bahwa senyawa aktif yang bersifat sebagai anti jamur dan dapat menghambat <i>T. mentagrophyte</i> pada lengkuas adalah senyawa golongan fenilpropanoid 1'-asetoksihavikol asetat, 1'-asetosiekugenol asetat, 1'-hidroksihavikol asetat (Janssen dan Scheffer, 1985). Secara kualitatif, aktivitas anti jamur dari suatu ekstrak dapat dilihat berdasarkan zona bening pada media agar, yang dihitung diameternya sebagai daya hambat (Gambar 3b dan 3c). Semakin lebar zona tersebut berarti daya hambat semakin tinggi. Dalam Gambar 3 terlihat perbedaan daya hambat dari suatu ekstrak uji dengan kriteria tidak menghambat (a), daya hambat sedang (b), dan daya hambat tinggi (c).

Dalam ekstrak lengkuas hasil pemurnian ketiga senyawa tersebut juga teridentifikasi dengan kadar yang tertinggi adalah senyawa 1'-asetoksihavikol asetat. Didalam ekstrak murni lengkuas teridentifikasi juga senyawa turunan fenilpropanoid lainnya, yaitu senyawa <i>trans</i>-p-hidroksisinamild ideologies, <i>trans</i>-p-kumaril alkohol, <i>trans</i>-p-hidroksisinamilidehild ideologies dan <i>trans</i>-p-kumarildiasetat

Gambar 3. Kriteria daya hambat pertumbuhan jamur atau mikroba dari ekstrak murni lengkuas (a): tidak menghambat, (b) daya hambat sedang dan (c) daya hambat tinggi

Figure 3. Growth fungus inhibition criteria of galangal extract purified (a) No inhibition, (b) Medium inhibition and (c) Strong inhibition

KESIMPULAN

1. Pemurnian ekstrak kasar lengkuas dapat dilakukan dengan metode ekstraksi pelarut menggunakan pelarut toluen atau heksan pada berbagai konsentrasi (60, 70 dan 80%). Berdasarkan rendemen, mutu dan kadar senyawa aktif ekstrak murni yang dihasilkan, maka pelarut yang paling sesuai untuk pemurnian ekstrak lengkuas adalah pelarut heksan 80% dibandingkan pelarut lainnya.

2. Dengan pelarut heksan, ekstrak murni yang dihasilkan mempunyai rendemen 57,84 %, mutu (meliputi pH 3,94; total padatan terlarut 82,89%; sisa pelarut 0,18 %) dan kadar senyawa aktif 1'S-1'-asetoksikavikol asetat sebesar 0,88%.

3. Ditinjau dari kandungan bahan aktif yang dihasilkan, akan lebih baik bila pelarut yang digunakan adalah heksan dengan konsentrasi yang lebih tinggi dari 80 %, seperti heksan teknis yang berkonsentrasi 95 %.

4. Metoda pemurnian ini bisa diaplikasikan pada pemurnian ekstrak yang berasal dari bahan alami dalam upaya untuk mendapatkan kadar bahan aktif yang lebih tinggi.

DAFTAR PUSTAKA

Putro, H.D. 2006. Kondisi optimum ekstraksi daun sambalito (Andrographis paniculata Nees) dengan pelarut etanol. Skripsi S1. ST MIPA, Bogor. 78 hal.

