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Abstract. This paper proposes a risk evaluation model based on rough sets (RS) 

and the unascertained measure theory (UMT) for solving the accuracy problem 

of coal and gas outburst prediction with the aim to reduce economic losses and 

casualties in coal mining. The coal and gas outburst prediction problem is 

constrained by the selection of the prediction indexes, the coupling of a single 

index, and the weight of each index. The proposed RS-UMT model applies two 

modified techniques. The first one is a method for index weight determination 

that was improved by rough set theory. The second one is a method for coupling 

a single index that was modified by the unascertained measure theory. The RS-

UMT model not only well solves the problem of coupling a single index of coal 

and gas outbursts, but also solves the problem that the weight is susceptible to 

subjective factors and prior knowledge. The RS-UMT model was used to judge 

the risk degree of outburst of 10 mining faces in the Pingdingshan No. 8 Mine 

and No. 10 Mine. The predictive results of the model were basically identical to 

the actual measured results. The performance of the RS-UMT model was also 

compared to existing methods. Based on the case study it can be concluded that 

the RS-UMT model is an accurate and very promising method for solving the 

coal and gas outburst prediction problem. 

Keywords: coal and gas outburst; geodynamic; prediction; rough set; unascertained 

measure. 

1 Introduction 

Coal and gas outburst is a complex geodynamic phenomenon in coal mines, 

which may lead to the projection of large volumes of fragmented coal and gas 

into the excavation space [1-3]. The occurrence of coal and gas outburst not 

only causes damage to equipment but can also cause a serious threat to the 

safety of miners. A primary task of safety management in coal mines is to 

control the risk of coal and gas outburst accidents. Predicting coal and gas 

outburst is an extremely effective method. Currently, the so-called 

‘comprehensive hypothesis’ provides the mechanism of coal and gas outburst 

most widely accepted by researchers around the world. This hypothesis 

proposes ground stress, gas pressure and content, and coal physical properties as 
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the most important elements that control the occurrence of coal and gas outburst 

[1-3]. Based on this theory, in recent years a considerable number of prediction 

methods have been proposed in the literature to predict a risk rating for such 

outbursts, including single-factor methods, complicated index methods, an 

artificial neural network (ANN) method, the fuzzy comprehensive evaluation 

(FCE) method, and the gray theory prediction (GTP) method. The single-factor 

methods [4,5] and the complicated index methods [4] are mainly based on the 

experience of field technicians and provide a simple and quick solution, but the 

accuracy of the results is too poor to fully meet the prediction requirements. 

Although the artificial neural network (ANN) method [6-7] can improve the 

prediction accuracy, its computational velocity is not high enough and its 

convergence is also poor. An improved ANN method [8] had been proposed by 

using fault tree theory. This method can enhance the computational velocity and 

convergence, but using fault tree to select prediction indexes may lead to 

missing some. The fuzzy comprehensive evaluation [9,10] may generate more 

accurate predictive results, but it requires an accurate weight of each evaluation 

index, which is susceptible to subjective factors and prior knowledge. The gray 

theory prediction [11] also has a weakness: it needs an equal-internal data set to 

initiate the computation and analysis. The BP neural network [12,13] has been 

proven to be effective for predicting outburst, but the studies provided few 

predictive samples. The extension theory [14] yielded accurate predictive 

results, but there was no result comparison in this study. A support vector 

machine was proposed to predict outburst by Chen, et al. [15], but this method 

needs large-scale sample data, which makes modeling more difficult. A genetic 

algorithm has been proposed by Wang, et al. [16], however, it has a strong 

dependence on the selection of the initial population. 

The emergence and development of coal and gas outburst are affected and 

controlled by many factors, including geological structure, gas pressure, in-situ 

stress, and coal mechanical properties [17,18], where quantitative factors 

coexist with qualitative factors [8]. The prediction of coal and gas outburst is a 

multi-index decision-making process with great uncertainty and ambiguity, 

therefore a method that can handle a large amount of uncertain information 

needs to be applied. The unascertained measure theory (UMT) developed by 

Wang [19] and Liu [20] is a method that can reasonably integrate qualitative 

factors with quantitative factors [21,22] and improve the reliability and 

accuracy of risk prediction by a comprehensive quantitative analysis. Thus, this 

method can well meet the above requirements. Wang [22] applied the 

unascertained measure theory to evaluate highway traffic efficiency. It has also 

been applied to evaluate the bench blasting effect by Lei, et al. [23] and it was 

proven to be effective for this problem. Li, et al. [24] established an 

unascertained measure model to evaluate water and mud inrush risk; the 

evaluation results were in good agreement with the actual results. The 
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unascertained measure theory has also been applied successfully in the 

evaluation of construction safety of high-rise buildings [25], mining resource 

environments [26], safety area delimiting of coal mining [27], and safety risk 

evaluation in mine construction sites [28]. 

However, using only the unascertained measure theory is not sufficient to 

identify the complex index systems of outburst. The degree of reliability of the 

index weight is critical to the accuracy of the evaluation results. At present, the 

methods for determining the index weight can be divided into subjective 

weighting methods and objective weighting methods. Expert scoring and 

analytic hierarchy process are examples of commonly used subjective weighting 

methods. Principal component analysis, gray relational analysis, and entropy 

weighting are examples of commonly used objective weighting methods. Both 

weighting methods have their own weaknesses: the results of subjective 

weighting are susceptible to subjective factors because the weight of the index 

is determined by an expert or an expert team, while objective weighting relies 

on prior knowledge of the decision maker in its application. Rough set theory 

was first introduced by Pawlak in 1982. It can obtain an objective weight 

without any prior knowledge of the decision maker and eliminate the impact of 

subjective factors. In less than four decades, rough set theory has rapidly 

established itself in many real-life applications, such as control algorithm 

acquisition and process control [29-30], malware analysis [31], and the 

automotive industry [32]. This paper proposes to ascertain the weight of the 

index system from the unascertained measure theory by rough set theory.  

In view of the objective of rough set theory and the accuracy of the 

unascertained measure method, a new prediction model based on a coupled 

application of rough set theory and the unascertained measure method is 

proposed in this paper. This model not only well solves the problem of coupling 

a single index of coal and gas outburst, but it also improves the prediction 

accuracy by solving the problem that the weight is susceptible to subjective 

factors and prior knowledge. The new model uses the unascertained measure 

method to construct an unascertained function of the optimal index and predicts 

the degree of coal and gas outburst risk according to the confidence criterion. 

This model was applied to the Pingdingshan No. 8 Mine and No. 10 Mine. The 

results showed that the model could accurately predict the risk of coal and gas 

outburst. 

2 Establishment of the RS-UMT model 

Set ξ1,ξ2,…,ξn, as n evaluated mining faces, then ξ = {ξ1,ξ2,…,ξn} is the 

evaluation object collection. For each evaluation object 

ξi∈ξ(i = 1,2,…,n)，there are m  individual evaluation index spaces 
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Y1,Y2,…,Ym, and Y = (Y1,Y2,…,Ym). Then ξi can be expressed as an m 

dimensional vector ξi = (yi1, yi2,…,yim), where yij is the measured value of the 

coal and gas outburst evaluation index. As for each yij(i = 1,2,…,n; 

j = 1,2,…,m), suppose there are p risk levels, the evaluation space can be 

recorded as d, d = (d1,d2,…,dp). Set dk(k = 1,2…,p) to the k
th
 risk level and the 

risk degree of (k+1)
th
 is lower than k

th
, which can be denoted as dk＞dk+1. If it 

meets d1＞d2＞…＞dp or d1＜d2＜…＜dp, {d1,d2,…,dp} is an ordinal classification 

of evaluation space ξ.  

2.1 Single Index Measure Evaluation Vector 

If μijk = μ(xij∈dk) indicates the level at which yij belongs to dk, and μ must meet 

the following equations ：          

 0 ( ) 1ij ky dµ≤ ∈ ≤                                                                                   (1) 

 ( ) 1ijy Dµ ∈ =                                                                                          (2) 
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Eqs. (1), (2) and (3) are respectively defined as non-negative boundedness, 

normalization and additivity. Satisfying Eqs. (1), (2) and (3) simultaneously can 

be defined as unascertained measurement. The following matrix is a single 

indicator measure evaluation matrix. The j
th
 row vector μij(μj1,μj2,,…,μjp) of the 

matrix is an evaluation vector of the single index measure of xij. Before building 

the matrix (μijk)m×p, a single index measure function must be set up. At present, 

the straight line method, the parabolic curve method, the quadratic curve 

method, and the sinusoidal curve method are typical measurement function 

construction methods. Among them, the linear measure function is the most 

widely used unascertained measure function, so a linear unascertained measure 

function was adopted in this study. A graph of the linear unascertained measure 

function is shown in Figure 1. The expression of the linear unascertained 

measure function on interval [ai,ai+1] is expressed as follows：   

 

1
1

1 1

1

1

1 1

-
        ( )

( )                  

0                                      ( )

0                                    ( )  

( )
      (

i

i i

i i i ii

i

i

i i

i i

i i i i

ax
a x a

a a a ax

x a

x a

x ax
a x a

a a a a

µ

µ

+
+

+ +

+

+

+ +

 + < ≤ - -= 
 >

≤
=

- < ≤
- - 1

            
) +








   

                    (4) 



762 Go ng  We id o ng , e t a l. 

  

 

Boundary of Set X

Lower Approximation of Set X

The Boundary Region of Set X

The Universe of  Object

 

Figure 1 Graph of the linear unascertained 

measure function. 

Figure 2 A rough set. 

2.2 Determination Weight of the Prediction Indexes  

In this study, the importance of each index of coal and gas outburst was 

calculated by using rough set theory. Supposing that the knowledge sets can be 

represented with a four-group dataset ( , , , )S U R V f= , where U is the whole 

domain, i.e. a finite set m of objects
1 2{ , , , }mX X L X , R C D=   is the collection 

of attribute variables and the subsets C and D are respectively defined as 

conditions attributes and decision attributes，
r

r R

V V
∈

=  is the collection of the 

attribute values, where 
rV  indicates the attribute value of r R∈ , 

:f U R V× →  is an information function such that ( , ) rf x a V∈  for every 

,a R x U∈ ∈ . The indistinguishable relation ( )ind R is the equivalence relation 

defined by attribute set on U : 

 ( )={( , ) : , ( , ) ( , )}ind R x y x y R f x R f y R∈ ∧ =                                    (5) 

/ ( )U ind R  represents the set of all equivalence classes divided by the 

equivalence relation ( )ind R . For any concept X U∈  and attribute subset 

A R∈ , X  is approximated by the R-lower approximation and the R-upper 

approximation using the knowledge of A . The lower approximation of X is the 

collection of elements in that surely belong to , defined as: 

 
{ / }R X Y U R Y X= ∈ ⊆（ ）

                                                               (6) 

The upper approximation of X is the collection of elements in that possibly 

belong to , defined as: 

R

U X

U

X
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           ( ) { / }R X Y U R Y X Φ= ∈ ≠       (7) 

The boundary region may be defined as: ( ) ( ) ( )RBND X R X R X= - . The 

elements in the boundary region may or may not belong to X on the basis of the 

available information, therefore the knowledge about the boundary region is 

vague. The number of elements in this region can serve as a measure of the 

uncertainty. Correspondingly, ( )pos R X
R
= is called the R  positive domain of 

X . The above definitions are clearly depicted in Figure 2. Take ( , )K U S=  as 

the knowledge base, and ,P Q R⊆ , if ( ) ( ) /P Pk Q pos Q Uγ= =  it can be 

guided as Q  is dependent on knowledge P  at degree k . Here, U  is the 

number of elements in U , ( )Ppos Q  is the number of elements in ( )Ppos Q . 

The importance of the attribute subset 
iC C⊆

 
for  may be defined as: 

 
{ }( ) ( ) ( )= ( ) ( ) /

i ii C C C C C CSig C D D pos D D Uposγ γ - -= - -             (8) 

The greater the value of ( )iSig C , the greater the importance of property 
iC . 

According to the concept of attribute importance of rough set theory, the 

importance of each index can be obtained, the weight of each index 
iCω can be 

obtained by normalizing the importance of each index, and finally 
iCω can be 

calculated with Eq. (9): 

  
1

( ) / ( )         
i

n

C i i

i

Sig C Sig Cω
=

= ∑                                                                (9) 

The weighting results of the rough set are taken as the index weights of the 

unascertained measure. According to Eq. (9), the weight of the index can be 

expressed as follows: 

 
1 2

( , , , )
mC C C Cω ω ω ω=                                                                          (10) 

Obviously, 0 1( 1,2, , )
jC j mω≤ ≤ =  , .  

2.3 Multi-Index Comprehensive Measure Evaluation Vector 

Based on the single-index measure matrix and the weight of each index, the 

multi-index comprehensive measure evaluation vector and matrix respectively 

can be obtained as follows: 
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iµ  
expresses the unascertained risk grade. In order to gain the certainty risk 

grade, a risk evaluation is needed. Here = ( )ik i kR dµ µ ∈  indicates the level at 

which 
iξ  belongs to 

kd , and 
kd is the thk risk grade. 

2.4 The Confidence Recognition Criteria  

If 
1 2 pd d d> > > or 

1 2 pd d d< < < , the confidence recognition criteria are 

brought in. Set λ  as the confidence, where 0.5 1λ≤ < . Normally =0.6λ  or =0.7λ
; this paper took =0.6λ .  

If 
0

1

min : ( ) ,1
k

is i

s

k k d k pµ λ
=

 
= ≥ ≤ ≤ 

 
∑

           (12) 

then ξi belongs to grade dki. 

3 Engineering Application of the RS-UMT Model 

3.1 General Situation in the Research Region 

In order to verify the accuracy and reliability of the Rough Set-Unascertained 

Measure Theory Model, the model was applied to evaluate the risk of coal and 

gas outburst in Pingdingshan No. 8 Mine and No. 10 Mine. The mines are 

located in the eastern part of the Pingdingshan mining area, which is located in 

the middle of Henan Province. There have occured 45 outburst accidents during 

the mining of these coal seams in the No. 8 Mine. Since the first coal and gas 

outburst happened in April 1988, 51 outburst accidents have occurred in the No. 

10 Mine. After a statistical analysis of 96 coal and gas outburst cases in the two 

mines, the following common outburst features were obtained: (1) outburst 

accidents always took place in the tunneling working face; (2) most of the 

outburst accidents occurred in the geological tectonic zone, especially the effect 

of small faults on the outburst is obvious; (3) the phenomenon of abnormal gas 

emission always appeared before the occurrences of outburst, which indicates 

gas pressure and gas content were key factors influencing the coal and gas 

outburst; (4) tectonic coal is widely developed in the outburst accident regions. 
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Both the main mining coal and coal types are the same in the two mines. 

Furthermore, the geological conditions of the two mines are similar (medium 

complex). Therefore, The No. 8 Mine and No. 10 Mine have been taken as an 

integral whole in a number of published researches [35,36]. The more raw data 

the rough sets contain, the more accuratetely the weight can be determined. In 

order to ensure the accuracy of the weight obtained by rough set theory, 

sufficient information on coal and gas outbursts is needed, so in this study the 

No. 8 Mine and the No. 10 Mine were taken as a whole object of study. 

3.2 Prediction Index System and Risk Classification Criteria of 

Coal and Gas Outburst 

Based on the ‘comprehensive hypothesis’ and the tectonophysics of coal and 

gas outburst, combined with the outburst features of the two mines, a prediction 

index system was set up in this study, which included gas pressure (C1), gas 

content (C2), mining depth (C3), geological structure (C4), Protodyakonov’s 

coefficient of coal (C5), coal seam thickness (C6) [17,18]. The prediction index 

of coal and gas outburst can be classified into two types of parameters. The first 

are quantitative and include the maximum gas pressure, the largest gas content, 

the maximum mining depth, the minimum firmness coefficient of coal, the 

average coal seam thickness, and the maximum amount of protruding coal. 

These parameters can be measured directly or indirectly by instruments. The 

second type of parameters are qualitative, e.g. the geological structure. The 

determination of such indicators is mainly based on the experience of mine 

geological engineers and in-situ research studies. According to the distribution 

of folds and faults, the fragmentation coal roof and floor, and the change of coal 

thickness in the forecasted region, the degree of geological structure complexity 

can be obtained by semi-quantifiable methods and may be classified into four 

grades: simple structure, little complex, medium complex, and very complex. 

According to the geological characteristics in the Pingdingshan No. 8 Mine and 

No. 10 Mine, referring to the researches by He and Zhang [7,8], the grading 

standard of the coal and gas outburst index was established as shown in Table 1. 

According to rough set theory, C1, …, C6 are condition attributes, and D  is a 

decision attribute. 

The risk level of coal and gas outburst is divided into four levels in this paper. 

The ‘safe’ level indicates that it is safe to carry out mining excavation. The ‘low 

risk of outburst’ level indicates that abnormal gas emission may appear 

frequently in the mining region; an outburst of throwing out less than 50 ton of 

coal may occur at this level. The ‘medium risk of outburst’ level indicates that 

an outburst throwing out 50-300 ton of coal may occur; the outburst is always 

accompanied by a large amount of methane at this level. The ‘high risk of 

outburst’ level indicates that an outburst throwing out more than 300 ton of coal 
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may occur; the outburst is always accompanied by a large amount of methane at 

this level. The four risk levels of coal and gas outburst are denoted as 1-4 

successively, as shown in Table 1.  

Table 1 Prediction indexes and grading standards of coal and gas outburst in 

pingdingshan mining area. 

Prediction indexes 
Safe 

level  

1 

Low risk of 

outburst level 

2 

Medium risk of 

outburst level  

3 

High risk of 

outburst level 

4 

gas pressure 

（C 1/MP）  
C1<0.6 0.6 ≤C1<1 1≤C1<2 C1≥2 

gas content 

(C2/m3/t ） 
C2<6 6 ≤C2<10 10≤C2<20 C2≥20 

mining depth  

(C3/m) 
C3<300 300 ≤C3<500 500 ≤C3<800 C3≥800 

geological structure 

(C4) 

Simple 

structure 
Little complex 

Medium 

complex 
Very complex 

Protodyakonov’s 

coefficient of coal 

(C5) 

C5≥0.5 0.3≤C5<0.5 0.15≤C5<0.3 C5<0.15 

Coal seam thickness 

(C6/m) 
C6<2 2≤C6<3 3≤C6<4 C6≥4 

Outburst strength 

(D/t) 
D = 0 0<D<50 50≤D<300 D≥300 

 

3.3 Determination of the Index Weight  

Twelve outburst events of the No. 8 Mines and 15 outburst events of the No. 10 

Mine were randomly selected as the original knowledge collection of the rough 

sets, respectively represented by ξ1, ξ2,…,ξ12 and ζ1, ζ2,…, ζ15 (Table 2). 

According to the original outburst data, the objective weight of each outburst 

indicator was calculated by rough set theory. The knowledge system of coal and 

gas outburst is represented in tabular form in Table 2, where the columns of the 

table indicate 23 coal and gas outburst examples in Pingdingshan No. 8 Mine 

and No. 10 Mine, which were the object of the evaluation; the line indicates the 

coal and gas outburst prediction index system, which represents the attributes. 

As Table 2 shows, C1, C1, …, C6 are the condition attributes of the information 

system, D  is the decision attribute. On the basis of the discretization criterion 

in Table 1, the sample data of coal and gas outburst in Table 2 were discretized. 

The results are shown in Table 3. 
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Table 2 Data set of coal and gas outburst example. 

Data set 

no. 
C1/MPa  C2/m

3/t  C3/m C4 C5 C6/m D/t 

ξ1 1.0 11 420 Medium complex 0.12 4.3 48 

ξ2 1.2 14 515 Very complex 0.24 4.5 15 

ξ3 2 18 568 Very complex 0.19 4.5 76 

ξ4  1.6 13 730 Medium complex 0.16 4.5 28 

ξ5 0.55 8 510 Little complex 0.26 4.2 0 

ξ6 1.12 9 687 Little complex 0.15 4.6 19 

ξ7 1.5 20 735 Very complex 0.14 3.5 326 

ξ8 0.8 9 520 Little complex 0.28 3.5 0 

ξ9 2.4 20 913 Medium complex 0.11 3.5 200 

ξ10 1.3 20.5 767 Medium complex 0.13 3.5 683 

ξ11 2.4 18 896 Very complex 0.13 3.5 159 

ξ12 2.7 21 937 Very complex 0.11 3.5 2000 

ζ1 0.9 14 487 Very complex 0.13 3.95 20 

ζ2 0.8 12 529 Medium complex 0.35 4 5 

ζ3 1.2 15 537 Very complex 0.2 3.9 48 

ζ4 1.9 21 840 Medium complex 0.13 4.2 551 

ζ5 0.9 5.8 415 Medium complex 0.25 4.4 0 

ζ6 0.9 13 520 Very complex 0.25 4.3 45.5 

ζ7 1.0 16 614 Little complex 0.3 4.5 7 

ζ8 1.8 20 697 Little complex 0.35 4.2 14 

ζ9 1.2 16 622 Little complex 0.2 4.3 64 

ζ10 1.8 11 424 Medium complex 0.42 3.5 6 

ζ11 1.9 21 566 Medium complex 0.17 3.9 240 

ζ12 0.5 8.3 350 Little complex 0.46 4.2 0 

ζ13 1.9 12 485 Very complex 0.12 3.8 450 

ζ14 0.95 12 490 Very complex 0.14 4.4 478 

ζ15 2.1 20 589 Very complex 0.09 3.9 215 

According to Table 3, the following knowledge expression can be obtained: 

{ }( ) 1, 2,3, 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19, 20, 21, 22, 23, 24, 25, 26, 27Cpos D =
 

{ }
1{ }( ) 1, 4,8,9,10,11,12,14,15,16,17,19, 20, 22,23, 24, 26, 27C Cpos D- =

 
{ }

2{ }( ) 1, 2,3, 4,5,7,8,9,10,13,14,15,16,17,18,19, 20, 22, 23, 24, 25, 26, 27C Cpos D- =
 

{ }
3{ }( ) 1,2,3,4,5,6,7,8,9,10,1113,14,15,16,17,18,19,20,21 22,23,24,25,26C Cpos D- = ， ，

 
{ }

4
( ) 1,3,5,6,7,8,10,1113,14,15,16,17,18,19,20,23,24,26,27C Cpos D- = ，

 
{ }

5
( ) 1, 2,3, 4,5,6,7,8,9,11,1 13,14,15,16,17,18, 20, 22, 24, 25, 26, 27C Cpos D- = 2,

 

1

1

( ) ( ) 27-18 9
( ) = =

27 27

C C Cpos D pos D
Sig C

U

--
=  

Similarly, 
2

4
( )=

27
Sig C ,

3

2
( )

27
Sig C = ,

4

7
( )

27
Sig C = ,

5

4
( )

27
Sig C = ,

6

2
( )

27
Sig C = . 

{ }
6
( ) 1,2,3,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21 22,23,24,25,27C Cpos D- = ，
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Furthermore, the degree of importance of each conditional attribute is 

normalized according to Eq.(9). The weights of the indicators of coal and gas 

outburst respectively are calculated as follows: 

1

6

1

1

( ) / ( ) 0.3214C i

i

Sig C Sig Cω
=

= =∑  

Similarly, 
2

0.1429Cω = , 
3

0.0714Cω = ,
4

0.25Cω = ,
5

0.1429Cω = , 
6

0.0714Cω = . 

Table 3 Discretization of coal and gas outburst data. 

 C1/MPa  C2/m
3
/t  C3/m C4 C5 C6/m  D/t 

ξ1 3 3 2 3 4 4 2 
ξ2 3 3 3 4 3 4 2 
ξ3 4 3 3 4 3 4 3 
ξ4  3 3 3 3 3 4 2 
ξ5 1 2 3 2 3 4 1 
ξ6 3 2 3 2 3 4 2 
ξ7 3 4 3 4 4 3 4 
ξ8 2 2 3 2 3 3 1 
ξ9 4 4 4 3 4 3 3 
ξ10 3 4 3 3 4 3 4 
ξ11 4 3 4 4 4 3 3 
ξ12 4 4 4 4 4 3 4 
ζ1 2 3 2 4 4 3 2 
ζ2 2 3 3 3 2 2 2 
ζ3 3 3 3 4 3 3 2 
ζ4 3 4 4 3 4 4 4 
ζ5 2 1 2 3 3 4 1 
ζ6 2 3 3 4 3 4 2 
ζ7 3 3 3 2 2 4 2 
ζ8 3 4 3 2 2 4 2 
ζ9 3 3 3 2 3 4 3 
ζ10 3 3 2 3 4 3 2 
ζ11 3 4 3 3 3 3 3 
ζ12 1 2 2 2 2 4 1 
ζ13 3 3 2 4 4 3 4 
ζ14 2 3 2 4 4 4 4 
ζ15 4 4 3 4 4 3 3 

3.4 Construction of Single Index Measure Evaluation Vector and 

Matrix  

In order to verify the accuracy of the RS-UMT prediction model, the geological 

and gas data of the 10 sampling locations were collected from the previously 

mined area in Pingdingshan No. 8 Mine and No. 10 Mine, where ξ13, ξ14, …, ξ17 

are from the No. 8 Mine and ζ16, ζ15,…, ζ20 are from the No. 10 Mine. These 

areas have detailed gas, geological and coal seam data (Table 4). Furthermore, 

these sample points do not contain the 23 sampling points that were used 
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previously to determine the weight of the index by the rough set theory. The 

measured gas and geologic data sets of these areas were inputted into the RS-

UMT prediction model. The predicted result was obtained according to the 

prediction step of the model. 

Table 4 Basis data of mining face to be evaluated. 

Mining 

face 
C1/MPa  C2/m

3
/t  C3/m C4 C5 C6/m 

ξ13 1.0 10 583 Little complex 0.35 4.3 

ξ14 0.73 14 652 Simple 

 

0.33 3.6 

ξ15 1.8 20 636 Very complex 0.11 4.2 

ξ16 1.3 16 622 Medium 

 

0.17 3.6 

ξ17 0.5 6.5 405 Simple 

 

0.5 4.2 

ζ16 1.1 11.5 535 Little complex 0.35 2.2 

ζ17 1.5 13 485 Medium 

 

0.17 4.5 

ζ18 1.2 15 481 Medium 

 

0.25 4.6 

ζ19 1.6 15 536 Very complex 0.21 4.3 

ζ20 0.67 5.8 380 Simple 

 

0.45 3.8 

In accordance with Table 1, the risk of coal and gas outburst was divided into 

four levels. The evaluation level can be expressed as D = {d1,d2, d3,d4}. d1,d2, 

d3,d4 respectively represent the safe, low outburst risk, medium outburst risk, 

and high outburst risk. The grading standards used for each indicator are shown 

in Table 1. With the maximum gas pressure (C1) as an example, the 

membership function was established based on the construction method of the 

linear unascertained measure function, as follows: 

1 1 1 2

0.6 0.6 1
              0.6

0.6 1 2
0.6

1                         0.6 2

0.6 1 1 2

0.6 1 0.6 1 12 2( )               0.6                    ( )
0.6 1 1 2 0.6 12 2

0.6
2 2 2

0.6 1
0

2

x
x

x

x x

x d x x d x

x

µ µ

- +
≤ <

+ - <


+ + - -+ +∈ = ≤ < ∈ = ≤ < + + + - -

 +

≤


1 3 1

2
          

2

0                          

0.6 1

0.6 1 1 22            
1 2 0.6 1 2 2

2 2

2 1 2
( ) 2                 (

1 2 2
2

2

0                             

others

x

x

x
x d x

others

µ µ






 +








+ - + +
≤ < + + -


 - +∈ = ≤ < + -






4

1 2
0                           

2

1 2

1 22) 2
1 2 2

2
2

1                          2   

x

x

x d x

x

+ <


+ - +∈ = ≤ < + -

 ≤

  



770 Go ng  We id o ng , e t a l. 

  

The membership function of other predictive indexes was established in the 

same way (Figures 3-7), and take sampling point ξ13 as an example, the single 

index measure vector was calculated, as shown in Table 5.  

  

Figure 3 Single index measure 

function chart of gas content. 

Figure 4 Single index measure 

function chart of gas pressure.           

  

Figure 5 Single index measure 

function chart of mining depth.          

Figure 6 Single index measure 

function chart of Protodyakonov’s 

coefficient of coal. 

 
Figure 7 Single index measure function Chart of coal-seam thickness. 
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Table 5 Single index measure evaluation vectors of the index system. 

Index system Prediction index 
Single index measure 

evaluation vector 

Influence 

factors of 

coal and gas 

outburst C 

gas pressure (C1/MPa) (0  0.7143  0.2857  0) 

gas content (C2/m3/t) (0  0.7143  0.2857  0) 

mining depth (C3/m) (0  0.268  0.732  0) 

geological structure (C4) (0  1  0  0) 

Protodyakonov’s coefficient (C5) (0  0.2857  0.7143  0) 

coal seam thickness (C6/m) (0  0  0  1) 

According to the above measure vector, the individual index measure matrix of 

 was established as follows: 

 
1 6 4

0 0.7143 0.2857 0

0 0.7143 0.2857 0

0 0.268 0.732 0
( ) =

0 1 0 0

0 0.2857 0.7143 0

0 0 0 1

jkµ ×

 
 
 
 
 
 
 
  
 

  

Similarly, the individual index measure matrixes of the 9 other sampling points 

were established. 

3.5 Construction of Multi-Index Comprehensive Measure 

Evaluation Matrix 

The weight of each index determined by the rough set theory was taken as the 

input weight of the unascertained measure. The multi-index comprehensive 

measure matrix of each evaluation object was obtained by Eq.(11), as follows: 

  

13ξ

10 4

0 0.6416 0.287 0.0714

0.3625 0.3151 0.3072 0.0152

0 0.004 0.196 0.8

0 0.0998 0.7525 0.1477

0.8215 0.1057 0.0014 0.0714
( )

0.0428 0.6686 0.2886 0

0 0.088 0.7359 0.1761

0 0.2065 0.7222 0.0714

0 0.0326 0.5532 0.4143

0.6875 0.2411 0.02

ik
µ × =

86 0.0428
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According to Eq. (12), the outburst risk levels for 10 sampling areas were 

identified. Here λ  was set to 0.6. Take 17ξ for example 
0 1k = , when,

, 

when 
0 2k = , , 

when 
0 3k = ,

71 1 72 2 73 3

1

( )= ( )+ ( )+ ( )=0+0.088+0.7359=0.8239 =0.6
k

is i

s

d d d dµ µ µ µ λ
=
∑ ＞ . 

Therefore, for 
17ζ ,

0 3k = , and 
17ζ  belongs to the medium level risk of outburst. 

Similarly, 
17 20,ζ ζ  belong to the safe level, 

13 14 16, ,ξ ξ ζ  belong to the low level risk 

of outburst, 
16 17 18, ,ξ ξ ζ  belong to the medium level risk of outburst, 

15 19,ξ ζ  

belong to the high level risk of outburst. 

Table 6 Comparative analysis of prediction results applied to the Pingdingshan 

No. 8 Mine and No. 10 Mine. 

 

3.6 Results and Discussion 

A total of 96 prominent accidents have occurred in Pingdingshan No. 8 Mine 

and No. 10 Mine, which were selected as the research object in this study. 

Several feasible methods to conduct outburst risk prediction have been explored 

in this paper. Rough set theory was used to analyze the original outburst 

accident data and the objective weight of each evaluation index was calculated, 

which was then used as the input weight of the unascertained measure model. 

The unascertained measure function of each evaluation index was established 

71 1( )=0 =0.6dµ λ＜

71 1 72 2

1

( )= ( )+ ( )=0+0.088=0.088 =0.6
k

is i

s

d d dµ µ µ λ
=
∑ ＜
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according to the measured data and the confidence criterion was used to judge 

the risk degree of outburst of 10 mining faces in the No. 8 Mine and No. 10 

Mine. The geological and gas data associated with 27 basic events and 10 other 

additional parameter sets were collected from an adjacent previously mined 

zone at the two mines. To analyze the weights of different predictive indicators 

27 basic events were used and the remaining 10 additional incidents were used 

to verify the accuracy of the predicted results. The geological and gas data sets 

were then applied to RS-UMT, without knowledge of the records of the actual 

outburst events that have been recorded within this mining zone. To verify the 

accuracy of the RS-UMT prediction model, the predictive results of the model 

were compared with the actual measured results and other evaluation methods. 

A comparative analysis of the RS-UMT prediction model, the fuzzy 

comprehensive evaluation (FCE), the complex index method and the record of 

actual outburst levels are shown in Table 6. Nine out of ten of the predicted 

results by the RS-UMT model were accurately predicted, while 7 predicted 

results of the FCE model and 5 predicted results of the comprehensive index 

method were consistent with the records of the actual outburst level. The 

prediction accuracy of the RS-UMT prediction model was 90%, whereas the 

FCE model achieved 70% and the comprehensive index method achieved only 

40%. Furthermore, the predicted SAFE levels by the RS-UMT model were 

completely consistent with the risk level from the in situ records.  

It can be concluded that the RS-UMT prediction model developed in this study 

may provide a reliable way of evaluating the risk level of coal and gas outburst. 

Compared with other methods, the RS-UMT model has two main advantages in 

predicting coal and gas outburst: (1) the data for calculating the weights of the 

prediction indicators by rough set theory are all from real outburst accidents so 

the calculation results are more realistic and objective, overcoming the 

shortcomings of other methods in determining the weights, such as the impact 

of subjective factors, which requires the decision maker to have some prior 

knowledge. (2) The unascertained measure theory (UMT) can deal better with 

the coupling problem of outburst indicators. Furthermore, the unascertained 

measure evaluation method uses a more reasonable confidence criterion to 

replace the maximum membership principle. Based on the above two 

advantages, the success rate of the RS-UMT model in predicting outburst is 

much higher than that of the complex index method and the FCE model, which 

provide alternatives for coal and gas outburst prediction. Moreover, the 

accuracy of the predicted model can still be improved by determining a more 

reasonable index system and index weight, which requires a more in-depth 

understanding of the outburst mechanism and more outburst data. 
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4 Conclusions 

A new prediction model for coal and gas outburst based on rough set theory and 

unascertained measure theory was established. This paper presented an analysis 

of the results of a case study investigation that considered the application of the 

proposed Rough Set-Unascertained Measure Theory model to predict the risk of 

coal and gas outburst events at the No. 8 Mine and No. 10 Mine located within 

the Pingdingshan coal mining region. The prediction results of the model were 

compared with actual measured results and other evaluation methods. Nine out 

of ten of the prediction results by the Rough Set-Unascertained Measure Theory 

model were accurately predicted, while 7 prediction results of the fuzzy 

comprehensive evaluation model and 5 prediction results of the comprehensive 

index method were consistent with the records of actual outburst levels. It can 

be concluded that the success rate of the developed model in predicting outburst 

was much higher than that of the complex index method and the fuzzy 

comprehensive evaluation model. The higher prediction accuracy of the Rough 

Set-Unascertained Measure Theory model is mainly attributed to its two major 

advantages: (1) the determination of index weight by rough set theory 

overcomes the shortcomings of the other methods so that it can obtain more 

objective and reliable index weights without any prior knowledge of the 

decision maker, and eliminate the impact of subjective factors; (2) the Rough 

Set-Unascertained Measure Theory model can better deal with the coupling 

problem of outburst indicators, making the evaluation results more clear and 

accurate. The developed model not only provides a more effective method for 

determining the weight of outburst indicators but also provides a new and 

accurate problem-solving approach for coal and gas outburst prediction.  

The Rough Set-Unascertained Measure Theory model may be applicable to 

other coal mines with similar geological and mining conditions as the No. 8 

Mine and No. 10 Mine in Pingdingshan. Moreover, if the prediction index and 

the weights are updated according to the outburst data of other coal fields, the 

proposed model may properly be applied to the mines of these coal fields. The 

rough set theory can be combined with other methods to determine the weight 

of outburst indicators, which will be a direction for the improvement of the 

prediction model in the future. Consequently, it can be concluded that the 

developed Rough Set-Unascertained Measure Theory model is a reliable and 

very promising method for predicting the risk of coal and gas outburst.  
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