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ABSTRACT 

In resources estimation, geostatistics methods have been widely used with the benefit of additional attribute 

tools to classify resources category. However, inverse distance weighting (IDW) is the only method used 

previously for estimating the uranium resources in Indonesia. The IDW method provides no additional attribute 

that could be used to classify the resources category. The objective of research is to find the best practice on 

geostatistics application in uranium resource estimation adjusted with geological information and determination of 

acceptable geostatistics estimation attribute for resources categorization. Geostatistics analysis in Rabau Hulu 

Sector was started with correlation of the orebody between boreholes. The orebodies in Rabau Hulu Sectors are 

separated individual domain which further considered has the hard domain. The orebody-15 was selected for 

further geostatistics analysis due to its wide distribution and penetrated most by borehole. Stages in geostatistics 

analysis cover downhole composites, basic statistics analysis, outliers determination, variogram analysis, and 

calculation on the anisotropy ellipsoid. Geostatistics analysis shows the availability of the application for two 

resources estimation attributes, which are kriging efficiency and kriging variance. Based on technical judgment of 

the orebody continuity versus the borehole intensity, the kriging efficiency is considered compatible with 

geological information and could be used as parameter for determination of the resources category. 
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ABSTRAK 

Pada estimasi sumber daya, metode geostatistik telah banyak digunakan dengan kelebihan adanya alat 

atribut tambahan untuk mengklasifikasikan kategori sumber daya. Namun demikian, pembobotan inverse distance 

(IDW) adalah satu-satunya metode yang sebelumnya digunakan untuk mengestimasi sumber daya uranium di 

Indonesia. Metode IDW tidak memberikan tambahan atribut yang dapat digunakan dalam mengklasifikasikan 

kategori sumber daya. Tujuan dari penelitian adalah mendapatkan praktek terbaik untuk aplikasi geostatistik 

pada estimasi sumber daya disesuaikan dengan informasi geologi dan penentuan atribut geostatistik yang dapat 

digunakan untuk kategorisasi sumber daya. Analisis geostatistik di Sektor Rabau Hulu diawali dengan korelasi 

tubuh bijih antara lubang bor. Tubuh-tubuh bijih di Sektor Rabau Hulu merupakan domain individual yang 

selanjutnya dipertimbangkan memiliki domain tegas. Tubuh bijih-15 dipilih untuk digunakan pada analisis 

geostatistik selanjutnya karena distribusinya yang luas dan paling banyak dipenetrasi bor. Tahapan dalam 

analisis geostatistik mencakup komposit downhole, analisis statistik dasar, determinasi outliers, analisis 

variogram, dan perhitungan ellipsoid anisotropi. Analisis geostatistik menghasilkan kemungkinan aplikasi dua 

atribut estimasi sumber daya, yaitu kriging efisiensi dan kriging varians. Berdasarkan penilaian teknis 

kemenerusan tubuh bijih terhadap intensitas lubang bor, kriging efisiensi dipertimbangkan sesuai dengan 

informasi geologi dan dapat digunakan sebagai parameter untuk penentuan kategori sumber daya.  

Kata kunci: geostatistik, sumber daya uranium, IDW, kriging, kategori sumber daya 

https://doi.org/10.17146/eksplorium.2018.39.2.4960


Geostatistics Application On Uranium Resources Classification:  

Case Study Of Rabau Hulu Sector, Kalan, West Kalimantan 

By: Heri Syaeful and Suharji 

 

 

  132 

INTRODUCTION 

Geostatistics provides a set of statistical 

tools for incorporating the spatial and 

temporal coordinates of observation in data 

processing [1]. The geostatistical in Earth 

science has been applied in very broad 

discipline, such as for study of predicting and 

simulation soil properties [2], rainfall 

prediction [3], radon indoor simulation [4], 

liquefaction probability [5], inferring rock 

mass rating in tunnel excavation [6], and 

others.  

In resources estimation, geostatistical 

methods have been widely applied as 

powerful tools for predicting spatial attributes 

and for modeling the uncertainty of 

predictions in un-sampled locations, which 

are important in mineral resource estimation 

and ore resources evaluation in many mineral 

or non-metal commodity, such as for coal, tin, 

nickel, and iron ore [7, 8, 9, 10]. The 

resources estimation stages involve the 

definition of mineralization constraints or 

geological domains, the statistical and/or 

geostatistical analysis of the sample data, and 

the application of a suitable grade 

interpolation technique [11]. 

In resources estimation projects that have 

been conducted in several sectors within 

Kalan area, inverse distance weighting (IDW) 

has been the tools in resources estimation 

instead of applying geostatistics [12, 13, 14]. 

The objective of research is to find the best 

practice on geostatistical application in 

uranium resources estimation adjusted with 

geological information and determination of 

acceptable geostatistical estimation attribute 

for resources classification. 

 

METHODOLOGY  

One of the useful criteria for resources 

classification is the kriging variance or error 

arising from estimation. This data is seldom 

used to measure the actual grade confidence 

(unless the data is strictly normally 

distributed), the kriging variance depends on 

the arrangement and continuity of samples 

around the block, and is a good indicator of 

overall sample spacing which takes 

anisotropy and sample clustering into account 

[8]. 

Previous research classifies resources in 

practice and their impact through a sensitivity 

study using data from a Chilean porphyry 

copper deposit. Five classification criteria are 

compared and evaluated, namely: search 

neighborhoods, absolute kriging variance, 

relative kriging variances, absolute 

conditional simulation variance, and relative 

conditional simulation variances. The result 

from experience shows methods of statistics 

give various degree of resources classification 

which subject to careful consideration of the 

method [15]. 

The application of geostatistics was 

applied on the case study of Rabau Hulu 

sector in Kalan, West Kalimantan. The first 

stage of experimental method was collecting 

exploration data of sectors which covers 

borehole survey, topography, ore grade, 

geological map, and geological information 

on mineralization control. Second stage was 

input the data into software (Surpac). In the 

software platform, the interpretation and 

correlation between peak of uranium anomaly 

between section and borehole was defined to 

make a model of orebody.  

Selection of representative orebody for 

further geostatistics analysis was based on 

number of borehole data that penetrates the 

orebody. Next stage was statistical analysis of 

exploratory data analysis to find general 

information of data and correlation between 

parameters. Next, the definition and modeling 
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of variogram will help with the definition of 

the basic block size for block modeling 

techniques, and provide information for the 

aggregation of grades into larger block sizes, 

if required [16]. 

Ordinary Kriging has been used in 

resource estimation. During geostatistical 

estimation of block grades, the kriging 

process provides a measure of error, the 

kriging variance or the kriging standard 

deviation [17]. Both of those geostatistics 

estimation attributes will be used in further 

definition of resources class. 

 

RESULTS AND DISCUSSION 

Rabau Hulu is a potential sector in Kalan 

Basin Area, West Kalimantan. Geologically, 

Kalan covers of Permian-Carboniferous age 

of metamorphic rocks which is intruded in 

some parts by alkaline granitic rocks. 

Stratigraphically, Kalan is divided into 5 

units. They are lower series of volcano 

sedimentary, Rabau quartzite, Kalan Hulu 

volcanic sediment, Amir Engkala felsic 

volcanic, and Bukitbiru meta-argillite. The 

Rabau quartzite composed of quartzite rocks 

with fine to medium grains, massif dimension 

with micro-biotite. The uranium mineral is 

uraninite which is associated with pyrite, 

molybdenite, chalcopyrite, sphalerite, bornite, 

magnetite, and tourmaline [18, 19]. The 

lithology is composed by hornfels, 

metasiltstone, and feldspathic tuff (Figure 1) 

[20].  

Mineralization is occurred in two styles, 

controlled by tectonic of fracture filling vein 

and breccia with strike of N250º–260ºE and 

dipping of 20–40º, and mineralization which 

is controlled by magmatic fluid that fills the 

pore space as discontinuity nodule [21]. The 

grade of uranium in orebody is resulted from 

conversion of gamma-ray log data. In the 

uranium mining industry, borehole logging is 

a basic method of exploration and delineation 

of uranium deposits. Gamma-ray logging is 

also recognized as the most effective 

technique to delineate uranium mineralization 

and estimate uranium ore content [22]. The 

conversion of gamma-ray log data to uranium 

grade is done by gamma log interpretation 

(ILG) procedure. The procedures are to 

calculate the thickness of the ore by 

correcting the apparent thickness; to read on 

the logging to the angle between the 

mineralized field and the borehole; to 

calculate the borehole correction factor; to 

calculate the corrected area; to calculate the 

apparent grade-thickness; to calculate the 

average grade-thickness; to calculate the 

corrected grade; and finally to calculate the 

grade. The ILG is done separately for each of 

the mineralized fields read in the gamma log. 

The assay databases were arranged based 

on borehole, the depth of each orebody in the 

borehole, including the identification of each 

orebody. Thickness of the orebodies were 

between 0.1 m to 5.9 m, with average of 1.10 

m. Orebody with a thickness of 5.9 m was in 

the R3 borehole (Figure 2). The average 

grade of all orebodies in total 178 pieces was 

0.089% eU3O8. The highest level of grade 

was found in the NC5 borehole of 1.218% 

eU3O8 (Figure 3).  

Geological modeling and geostatistics 

analysis were conducted using the software of 

Surpac. The first stage was composing 

database of collar, borehole survey, lithology, 

and grade. Correlation of orebody was 

conducted with an average distance between 

sections of 25–50 m. The correlation was 

completed only for mineralization which 

filled the fractured zone or parallel to 

schistose plane (Figure 4).  
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Figure 1. Geological map and boreholes location of Rabau Hulu sector. 

 

 
Figure 2. Uranium grade and its boreholes. 

 

 
Figure 3. Ore thickness and its borehole. 
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Subsequently after geological model was 

completed based on the available data and 

knowledge of the setting and genesis of the 

mineralization; the data were coded 

accordingly to its domain. A domain in this 

context is represents an area or volume 

within, which the characteristics of the 

mineralization are more similar than outside 

the domain. It is possible, in defining 

domains for resource estimation, to impose 

several types of boundary conditions. Two 

methods in domain determination are soft 

domain and hard domain. Soft domain 

boundaries allow grades from either side of 

the boundary to estimate both domains, to 

varying degrees. Hard domain boundaries do 

not permit interpolation of grades across 

domains [16].  

The domain defined in Rabau Hulu 

Sector is the hard domain type, which is 

orebody that had clear boundaries between 

one another. Based on that fact and the 

number of sample to be analyzed by 

geostatistics, the orebody-15 was selected due 

to have maximum number of orebody grade 

data (Table 1). Further the orebody-15 was 

used in geostatistics research application 

representing the Rabau Hulu sector (Figure 

5). Basic statistics of orebody-15 histogram 

shows the positive skewness, with several 

higher grade-class data that are separated. 

Using the formula of 95% confidence interval 

(CI), the top cut or outliers is defined as 0.3% 

U3O8. The histogram after top cut is shown in 

Figure 6.  

The variogram is a graph to correlate the 

degree of similarity between sample grades or 

other relevant parameters to the distance 

between them along any given orientation. 

The experimental variogram values calculated 

for a given sample separation at a given 

distance separation, are modeled 

mathematically using a mineralized spherical 

model to be measured mathematically. 

Confidence classification depends on the 

borehole spacing relative to the range of 

influence both along strike and down dip 

[16]. The experimental variogram of grade of 

orebody-15 was done by omnidirectional with 

range of sample 25 m. The variogram model 

is interpreted as nested structure with 

variance 0.0075, range 82 m and 123 m, 

nugget variance 0.0011 (Figure 7). 

Table 1. Uranium grade of Orebody-15. 

Drillhole Thickness 

(m) 

Grade 

(% eU3O8) 

NC 1 

NC 2 

NC 3 

NC 4 

NC 5 

R 4 

R 4 

R 4 

R 4 

R 6 

RABL 6 

RABL 7 

RABL 11 

RABL 11 

RABL 11 

RABL 12 

RABL 13 

RABL 13 

RABL 17 

RABL 17 

RABL 18 

4.22 

1.30 

0.50 

1.90 

1.20 

0.30 

0.20 

0.20 

0.30 

0.10 

0.40 

0.25 

2.80 

0.60 

0.10 

4.50 

1.13 

2.62 

0.70 

1.41 

1.90 

0.057 

0.103 

0.136 

0.023 

0.011 

0.212 

0.087 

0.203 

0.079 

0.108 

0.647 

0.035 

0.017 

0.017 

0.003 

0.029 

0.010 

0.147 

0.125 

0.080 

0.355 

The resource estimation was calculated 

by ordinary kriging (OK) geostatistics 

method. Prior to estimation, the anisotropy 

ellipsoid was determined according to 

orebody geometry, which was bearing 260, 

plunge 0, dip -30, anisotropy ratios of major 

to semi-major 1, major to minor 8. Minimum 

number of sample to select was 3 and 

maximum 12. Maximum searching radius 

was 25 m or half of average borehole data 

distance while maximum search distance was 

2.11 m which was half of maximum ore 

thickness. 
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Figure 4. Three dimension model of all orebodies, with topographic and boreholes overlay. 

  

 
Figure 5. Three dimension model of all orebodies, with topographic and borehole overlay.  

 

Prior to the estimation, geostatistics 

estimation attribute of kriging efficiency and 

kriging variance is selected as the output 

during resources estimation. Further it will be 

used as a tool in classify the resources class. 

Because the kriging error incorporates so 

many features of both the deposit and data to 

be used for estimation, it may offer a 

substantial improvement on block 

classification over traditional procedures such 
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as data density. Practice indicates that the 

relative kriging standard deviation (RKSD) is 

particularly useful for block classification in 

measured, indicated, and inferred categories. 

The classification using the relative kriging 

standard deviation (RKSD) is defined as 

measured 0.3≤ indicated 0.5≤ inferred [17]. 

The other classification method is based on 

the value of the kriging variance divided by 

the block variance, where <0.5 of the block is 

classified as Measured, <1.0 classified as 

Indicated, and Inferred when >1.0 [23].  

 

  
  

Figure 6. Histogram of uranium grade in orebody-15 (left) and histogram after topcut (right). 

 

 
Figure 7. Variogram of orebody. 

 

The result of estimation showed the very 

different result of resources classification of 

the two geostatistics estimation attribute. The 

kriging efficiency is lead to higher class, 

while the kriging variance (RKSD) to lower 

class. Table 2 shows the output file from 

estimation of uranium resources in orebody-

15. The kriging efficiency had 55.4 ton (93%) 

of measured resources, 4.0 ton (7%) of 

indicated resources, and 0.0 ton (0%) of 

inferred resources. The kriging variance 

resulted the 0.0 ton (0%) of measured, 25.0 

ton (42%) of indicated resources, and 34.5 

ton (58%) of inferred resources (Table 3). 

Based on understanding on host rock, 

uranium mineralization and paragenesis, data 

density, and degree of confidence on uranium 

distribution, the result of uranium 

classification using the kriging efficiency is 

more appropriate. 

Based on the result of geostatistics 

analysis, it can be concluded that as 

additional tool besides confidence level on 

geological control, data integrity, 

mineralization continuity, and estimation 

technique, the geostatistics is reliable as a tool 

to determine the resources classification. The 

geostatistics is a routine work that has to be 

done at the time of uranium resource 

estimation.  
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Table 2. Result of orebody-15 resources estimation. 

Uranium Grade 
Ore 

Volume 
Ore Grade 

U 

Tonnage 
Resources Classification (Young, 2008) Resources Classification (Blackwell, 1999) 

(% eU) (m3) 
Tonnage 

(t) 
(% eU) (t) 

Kriging 

Efficiency 
% Error 

Resource 

Category 

Kriging 

Variance 
RKSD Resource Category 

0.01 - 0.02 6,788 18,804 0.02 3.03 0.59 59.00 Measured 0.004 7.86 Inferred 

0.02 - 0.03 1,680 4,653 0.03 1.35 0.68 67.50 Measured 0.003 3.78 Inferred 

0.03 - 0.04 844 2,338 0.04 0.82 0.43 42.50 Indicated 0.005 4.04 Inferred 

0.04 - 0.05 37 102 0.04 0.05 0.69 69.30 Measured 0.003 2.47 Inferred 

0.05 - 0.06 1 4,017 0.06 2.29 0.61 60.50 Measured 0.003 1.92 Inferred 

0.06 - 0.07 53 147 0.07 0.10 0.65 64.80 Measured 0.003 1.59 Inferred 

0.07 - 0.08 465 1,288 0.08 1.02 0.58 57.50 Measured 0.004 1.60 Inferred 

0.08 - 0.09 430 1,192 0.08 0.97 0.61 61.10 Measured 0.003 1.34 Inferred 

0.09 - 0.10 112 309 0.10 0.30 0.60 59.60 Measured 0.004 1.32 Inferred 

0.10 - 0.11 2,602 7,208 0.10 7.46 0.60 60.00 Measured 0.004 1.22 Inferred 

0.11 - 0.12 91 252 0.11 0.28 0.60 60.30 Measured 0.004 1.12 Inferred 

0.12 - 0.13 631 1,747 0.12 2.16 0.61 60.60 Measured 0.003 0.89 Inferred 

0.13 - 0.14 737 2,040 0.14 2.78 0.49 48.50 Indicated 0.005 1.04 Inferred 

0.14 - 0.15 1,643 4,550 0.15 6.69 0.63 63.20 Measured 0.003 0.75 Inferred 

0.15 - 0.16 94 260 0.16 0.41 0.47 47.20 Indicated 0.005 0.90 Inferred 

0.16 - 0.17 469 1,299 0.16 2.14 0.63 62.90 Measured 0.003 0.66 Inferred 

0.17 - 0.18 340 941 0.17 1.64 0.71 71.30 Measured 0.003 0.63 Inferred 

0.18 - 0.19 40 110 0.19 0.21 0.70 69.60 Measured 0.003 0.59 Inferred 

0.19 - 0.20 53 147 0.19 0.29 0.66 66.30 Measured 0.003 0.56 Inferred 

0.20 - 0.21 28 78 0.21 0.16 0.64 64.40 Measured 0.003 0.53 Inferred 

0.21 - 0.22 58 162 0.21 0.35 0.53 53.10 Measured 0.004 0.59 Inferred 

0.22 - 0.23 40 110 0.23 0.25 0.67 66.60 Measured 0.003 0.48 Indicated 

0.23 - 0.24 30 82 0.23 0.19 0.67 66.50 Measured 0.003 0.47 Indicated 

0.31 - 0.32 2,854 7,904 0.31 24.52 0.54 53.50 Measured 0.004 0.41 Indicated 

Total 21,568 59,742 0.100 59.44 0.59 58.80 Measured 0.004 1.27 Inferred 

 
Table 3. Resume of result of orebody-15 resources estimation and classification. 

Parameter Measured Indicated Infered 

Kriging Efficiency 93% 7% 0% 

RKSD 0% 42% 58% 

 

CONCLUSION 

The application of geostatistics in 

resources estimation is important to 

understand the spatial correlation between 

parameters and lead the best estimation 

techniques. However the information 

concerning geological control, mineralization 

continuity, and economic sensitivity are the 

most important thing in the assessment of 

resource estimation technique and resource 

classification. In term of uranium deposits in 

Rabau Hulu Sector, geostatistics analysis in 

Rabau Hulu Sector was started with 

correlation of the orebody between boreholes. 

The orebodies in Rabau Hulu Sectors was 

defined as separated individual domain or 

further considered has the hard domain. 

Stages in geostatistics analysis covers 

downhole composites within domain, perform 

basic statistics, outlier analysis, variogram 

analysis, and calculate the anisotropy 

ellipsoid. Afterward the resources estimation 

applied with block model size adjusted with 

ore size. The result of geostatistics, which is 

estimation attribute of kriging efficiency 

preferably used as additional information in 

determination of resources category. 
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