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Abstract – Due to its continuous data recording capability, excellent repeatability and accuracy, relatively low cost 
and simplicity of operation, the cone penetration test (CPT) offers enhanced liquefaction assessment over its 
predecessor the standard penetration test (SPT). However, soil ageing, which influences the cyclic resistance ratio 
(CRR), is difficult, if not impossible, to be detected by the CPT due to disturbance during the test. This situation may 
lead to excessively conservative estimation of CRR values which result in conservative assessment of liquefaction 
potential. This paper presents and discusses liquefaction assessment using the CPT and methods for accounting for 
soil ageing. A field study, conducted at Gillman, South Australia, is presented and the study site is assessed for 
liquefaction potential. This paper also explores the influence of soil ageing on the subsequent liquefaction assessment 
using a magnitude earthquake of up to 7.5. 
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Introduction 
Liquefaction causes significant damages to structures (Khoshnevisan et al., 2015; Liu et al., 2016; 

Lu, 2016; Verdugo et al., 2015). Initially, the procedure for liquefaction evaluation based on the cone 
penetration test (CPT) was derived from a correlation between the CPT and the standard penetration test 
(SPT). However, the US National Center for Earthquake Engineering Research (NCEER) has identified 
CPT as a prime candidate for reconnaissance exploration and indicated that the CPT could be used to 
develop preliminary liquefaction resistance profiles for site investigations (Martin & Lew, 1999). This is due 
to main improvements since the electric CPT was introduced, namely the ability of the equipment to 
eliminate errors caused by friction between the inner and outer rods; longer continuous testing – up to 1 
metre length with a steady rate of penetration that minimises undesirable soil movement; and more reliable 
measurements (Muhs, 1978 in Lunne et al., 1997). Conversely, Sladen (1989), Yu et al. (1997), Robertson & 
Wride (1998) and Marchetti (1999) cited by Totani et al. (2001), warned that the CPT-based liquefaction 
assessment might incorporate errors because the cone is not sensitive to the age of sand deposits. 
Furthermore, several researchers, such as Pike (2003), Leon et al. (2006) and Andrus et al. (2009), found 
that the ability of soil to resist liquefaction increases with age. A study by Leon et al. (2006) in sand 
deposits found that ignoring age effects underestimated the cyclic resistance ratio (CRR), which is a crucial 
parameter in liquefaction assessment, by as much as 60%.  

In 2008 Hayati et al. analyzed data from over 30 sites in 5 countries and proposed an aging 
correction factor, KDR, to incorporate the aging effect into the CPT-based liquefaction assessment. Since 
then there have been no further enhancements to this method. This paper examines the results of a field 
study to explore the CPT-based liquefaction assessment and how it is affected by soil age. In addition, a 
critical state approach and the seismic hazard history of the study site are used to verify the method. 

 
Testing Program and Liquefaction Assessment Using CPT 

The in-situ testing and sampling were conducted at a site in Gillman, South Australia, on soil 
deposits within the St. Kilda Formation (Figure 1a), which is very susceptible to liquefaction (Poulos et al., 
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1996; Mitchell & Moore, 2007; Mitchell, 2009). The layout of the in-situ testing is shown in Figure 1b 
which has been arranged in such a manner as to avoid the disturbance of one test to another. There is a 
cluster of in-situ tests within a radius of 2 meters which consist of 3 CPTs and 2 continuous sampling 
bores. The results of the CPTs are summarized in Figure 1c. The continuous sampling was carried out to 
obtain the soil profile of the study site including its state parameter. The simplified soil profile derived 
from this sampling is incorporated in Figure 1c. The state parameter is presented later. 

 

Figure 1. (a) Field study incorporating a general geological setting; (b) Layout of in-situ testing of the 
present study; and (c) CPT profile of the present study 

 
Simplified Procedure Liquefaction Assessment Using the CPT 

The most common procedure adopted around the world for liquefaction assessment is the 
"simplified procedure," originally developed by Seed & Idriss (1971). The simplified procedure requires the 
estimation of two primary seismic variables, namely the cyclic stress ratio (CSR) and the cyclic resistance 
ratio (CRR) (Youd et al., 1998). The former can be determined using a formula developed by Seed and 
Idriss in 1971 (Youd et al., 1998; Andrus et al., 1999; Finn, 2001) which has since been modified by Hwang 
et al. (2004) and Idriss & Boulanger (2004), as follows:  
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CSRM=7.5=0.65*(amax/g)*(σvo/σ'vo)*(rd/MSF) (1) 

 
where amax is the peak horizontal acceleration at the ground surface generated by the earthquake; g is the 

acceleration due to gravity; vo and 'vo are the total and effective vertical overburden stresses, respectively; 
rd is a stress reduction coefficient/factor at a depth of interest; and MSF is the magnitude scaling factor for 
an earthquake of magnitude M (Boulanger & Idriss, 2015). 

The adopted procedure to obtain the CRR using CPT data herein is consistent with the 
recommendations of the 1996 NCEER and 1998 NCEER/NSF Workshops. The CRR can be calculated 
using the following equations: 

 
CRR7.5=0.833[(qc1N)cs/1,000]+0.05              if (qc1N)cs<50  (2) 
CRR7.5=93[(qc1N)cs/1,000]3+0.08  if 50<(qc1N)cs<160 (3) 

 
This method requires a normalized tip resistance to approximately 1 atm (100 kPa) and a fines 

content adjustment. The resulting CRR values using these approximations are shown in Figure 2 and 
indicated by the grey CRR curves without the effect of aging. 
 
Accounting for Soil Ageing in Liquefaction Assessment Using the CPT 

The age correction factor proposed by Hayati et al. (2008) was incorporated into the CRR values 
to obtain the new CPT-CRR curves including the influence of aging (bold red curves). The age of the soils 
was determined using amino-acid racemization, radiocarbon, and thermoluminescence dating by Burton 
(1984) and Daily et al. (1976).  
 

y = 2E-07x3 - 2E-05x2 + 0.0013x + 0.0915
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Figure 2. CPT cyclic resistance ratios with and without aging effect versus corrected tip resistance 
 

Discussion of the Liquefaction Assessment Results 
The results of the assessments presented in Figures 3 and 4 demonstrate that, as one would 

expect, an increase in earthquake magnitude results in an increase in the number of liquefiable soils at the 
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study site. The increase in earthquake magnitude will increase the intensity of cyclic loading. Therefore, an 
increase in the earthquake magnitude will result in further layers liquefying. 

A soil type evaluation was carried out as outlined by Setiawan (2011) and it was found that there 
are two potential layers which may liquefy during an earthquake event at the study site. These two layers 
occur at approximate depths of 1.4 to 4.4 m and 6.4 to 9.0 m. A laboratory-based critical state parameter, 
ψ, liquefaction assessment was also undertaken, as outlined by Setiawan (2011), and this suggested that 
there are three, relatively thin, liquefiable layers. These occur at depths of 2.0 to 2.4 m, 4.0 to 4.6 m and 7.8 
to 8.4 m and are contractive, as indicated in Figures 3 and 4. These analyses also suggest that it is unlikely 
that liquefaction will occur and be manifested at the ground level at the study site. 
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Figure 3. Comparison between the critical state approach and CPT liquefaction assessments without 

accounting for aging at Gillman, SA 
 

CPT-based liquefaction assessments with and without the inclusion of aging soil show very 
different results, as indicated by Figures 3 and 4. The liquefaction assessments, which were based on the 
CPT method without the application of correction for soil aging, suggest that most soils of the St. Kilda 
Formation tend to liquefy in an earthquake of magnitude as low as 5.0. In contrast, the liquefaction 
assessment using the CPT method accounting for aging shows that the chances of liquefaction are 
insignificant for the soils at the study site when the earthquake magnitude is 5.5 or below. Liquefaction at 
the study site is only triggered by an earthquake of approximately magnitude 6.0 or beyond. The 
probability of the magnitude 6.0 or beyond is presented in Setiawan (2017). 
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Figure 4. Comparison between the critical state approach and CPT liquefaction assessments 
accounting for aging at Gillman, SA 

 
Furthermore, a recent study by Setiawan et al. (2018) suggests an amplification of up to 3.4 at 

Adelaide’s regolith. These results indicate that the CPT-based liquefaction assessment accounting for soil 
aging has better agreement with the critical state liquefaction assessment approach than the CPT-based 
liquefaction assessment ignoring soil aging. In addition, the seismic hazard history of the study site also 
suggests that liquefaction accounting for aging is more appropriate. The nearest and strongest recorded 
earthquake in Adelaide occurred in 1954. The magnitude of the earthquake is estimated to be 5.5, and 
there is no liquefaction observed during the earthquake (Love, 1996). Thus, the liquefaction assessment 
demonstrates good agreement between the CPT liquefaction assessments accounting for the aging effects 
with the state parameter of the soil determined from laboratory testing and the seismic hazard history of 
the study site. 

 

Conclusion 
CPT data obtained at Gillman, South Australia study site was used to examine the liquefaction 

potential of the soils by employing the method recommended by the 1996 NCEER & 1998 NCEER/NSF 
Workshops. In addition, incorporating the aging correction factor proposed by Hayati et al. (2008) into the 
CPT-CRR recommended method was carried out. The results of both assessments, with and without 
accounting for aging were verified using the critical state parameter approach and the seismic hazard 
history of the study site. The results showed that the CPT-based liquefaction assessment method including 
aging yielded better predictions appropriate to the study site than the CPT-based method ignoring aging. 
In this study, an earthquake magnitude of up to 7.5 is used in the analysis..  

 
 
 

 



Aceh Int. J. Sci. Technol., 7(3): 162-168 
December 2018 

doi: 10.13170/ aijst.7.3.11544 

 

167 

 

Acknowledgements 
 The authors wish to acknowledge several people who have contributed to this project: Dr. Peter 
Mitchell, from Aurecon; Dr. David Love, from PIRSA; Brendan Scott, Gary Bowman and Adam Ryntjes, 
from the University of Adelaide; Mr. Junaidi and Mr. Restu Sitanggang, from Syiah Kuala University; and 
KOMISI BEASISWA ACEH for their assistance and support.  
 
References 
Andrus, R. D., Hayati, H., Mohanan, N. P. 2009. Correcting Liquefaction Resistance of Aged Sands Using Measured 

to Estimate Velocity Ratio. Journal of Geotechnical and Geoenvironmental Engineering, 135 (6), 10. 
Andrus, R. D., Stokoe, K. H., Chung, R. M. 1999. Draft Guidelines for Evaluating Liquefaction Resistance Using 

Shear Wave Velocity Measurements and Simplified Procedures. U.S. Department of Commerce. 
Boulanger, R. W., Idriss, I. M. 2015. Magniture scaling factors in liquefaction procedures. Soil Dynamics and 

Earthquake Engineering, 79 (Part B), 296-303. 
Burton, T. E. 1984. The Stratigraphy and Mangrove Development of the Holocene Shoreline North of Adelaide. The 

University of Adelaide, Adelaide. 
Daily, B., Firman, J. B., Forbes, B. G., Lindsay, J. M. 1976. Geology. In C. R. Twidale, M. J. Tyler & B. P. Webb 

(Eds.), Natural History of the Adelaide Region. Adelaide: Royal Society of South Australia Inc. 
Finn, W. D. L. 2001. Earthquake engineering. In R. K. Rowe (Ed.), Geotechnical and Geoenvironmental Engineering 

Handbook (pp. 615-659). Boston, Dordrecht, London: Kluwer Academic Publishers. 
Hayati, H., Andrus, R. D., Gassman, S. L., Hasek, M., Camp, W. M., Talwani, P. 2008. Characterizing the 

Liquefaction Resistance of Aged Soils. Proc. of Geotechnical Earthquake Engineering and Soil Dynamic IV, 
Reston. 

Hwang, J. H., Yang, C. W., Juang, D. S. 2004. A Practical Reliability-Based Method for Assessing Soil Liquefaction 
Potential. Soil Dynamics and Earthquake Engineering, 24, 10. 

Idriss, I. M., Boulanger, R. W. 2004. Semi-Empirical Procedures for Evaluating Liquefaction Potential During 
Earthquakes. Proc. of Joint 11th Int. Conf. on Soil Dynamics & Earthquake Engineering (ICSDEE) and the 
3rd Int. Conf. on Earthquake Geotechnical Engineering (ICEGE). 

Khoshnevisan, S., Juang, H., Zhou, Y-G., Gong, W. 2015. Probabilistic assessment of liquefaction-induced lateral 
spreads using CPT — Focusing on the 2010–2011 Canterbury earthquake sequence. Engineering Geology, 
192, 113 – 128. 

Leon, E., Gassman, S. L., Talwani, P. 2006. Accounting for Soil Aging When Assessing Liquefaction Potential. 
Journal Geotechnical and Geoenvironmental Engineering, 132 (3), 363 – 377. 

Liu, F., Li., Z., Jiang, M., Frattini, P., Crosta, G. 2016. Quantitative liquefaction-induced lateral spread hazard 
mapping. Engineering Geology, 207, 36 – 47. 

Love, D.N. 1996. Seismic hazard and microzonation of the Adelaide metropolitan area. Sutton Earthquake Centre, 
Department of Mines and Energy, South Australia: Adelaide. 

Lu, C. W. 2016. A simplified calculation method for liquefaction-induced settlement of shallow foundation. Journal 
of Earthquake Engineering, 21 (8), 1385 – 1405.  

Lunne, T., Robertson, P. K., Powell, J. J. M. 1997. Cone Penetration Testing in Geotechnical Practice. London: Spon 
Press. 

Marchetti, S. 1999. On the Calibration of the DMT Membrane. Unpublished report. L'Aquila University. 
Martin, G. R., Lew, M. 1999. Guidelines for Analyzing and Mitigating Liquefaction Hazards in California: Southern 

California Earthquake Center. University of Southern California. 
Mitchell, P. W. 2009. Two aspects of liquefaction - Pile design and assessment difficulties. Seminar on Seismology 

and Earthquake Engineering. 
Mitchell, P. W.,  Moore, C. 2007. Difficulties in assessing liquefaction potential from conventional field testing. The 

Australian Earthquake Engineering Society Conferences. 
Monacol, P., Marchetti, S. 2007. Evaluating liquefaction potential by seismic dilatometer (SDMT) accounting for 

aging/stress history. The 4th International Conference on Earthquake Engineering, Thessaloniki, Greece. 
Muhs, H. 1978. 50 Years of Deep Sounding with Static Penetrometers. Proc. of Half Century in Geotechnics. 
Pike, R. 2003. Discussion of Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 

NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils by Youd, T. L. et al. Journal 
Geotechnical and Geoenvironmental Engineering, 129 (3), 2. 

Poulos, H., Love, D. N., Grounds, R. W. 1996. Seismic zonation of the Adelaide area. 7th Australia New Zealand 
Conference on Geomechanics. 

Robertson, P. K., Wride, C. 1998. Evaluating Cyclic Liquefaction Potential Using Cone Penetration Test. Canadian 
Geotechnical Journal, 35, 18. 

Seed, H. B., Idriss, I. M. 1971. Simplified Procedure for Evaluating Soil Liquefaction Potential. Journal of the Soil 
Mechanics and Foundations Division, ASCE, 97 (SM9), 25. 



Aceh Int. J. Sci. Technol., 7(3): 162-168 
December 2018 

doi: 10.13170/ aijst.7.3.11544 

 

168 

 

Setiawan, B., Jaksa, M., Griffith, M., Love, D. 2018. An investigation of local site effects in Adelaide, South Australia: 
learning from the past, Bolletino di Geofisica ed Applicata, 59 (1), 27 – 46. doi: 104430/bgta0218. 

Setiawan, B. 2017. Probabilistic seismic hazard analysis incorporating Monte Carlo method in the case of Adelaide 
region, Indonesian Journal on Geoscience, 4 (2), 81 – 96, doi: 10.17014/ijog.4.2.81-96. 

Setiawan, B. 2011. Assessing Liquefaction Potential of Soils Utilising In-situ Testing. Master of Engineering Science 
Thesis, School of Civil, Environmental and Mining Engineering, University of Adelaide. 

Sladen, J. A. 1989. Problems with Interpretation of Sand State from Cone Penetration Test. Geotechnique, 39 (2), 10. 
Totani, G., Marchetti, S., Monaco, P. Calabrese, M. 2001. Use of the flat dilatometer test (DMT) in geotechnical 

design. In Situ Measurement of Soil Properties Conference, Bali, Indonesia. 
Verdugo, R., Gonzalez, J. 2015. Liquefaction-induced ground damages during the 2010 Chile earthquake. Soil 

Dynamics and Earthquake Engineering, 79 (Part B), 280-295. 
Youd, T. L., Boulanger, R. W., Kayen, R. B., Noble, S., Olson, R., Wride, C. 1998. Updating Assessment Procedures 

and Developing a Screening Guide for Liquefaction. Screening Guide for Rapid Assessment of Liquefaction 
Hazard at Highway Bridge Sites, MCEER-98-0005. 

Youd, T. L., Idriss, I. M., Andrus, R. D., Arango, I., Castro, G., Christian, J. T., et al. 2001. Liquefaction Resistance of 
Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of 
Liquefaction Resistance of Soils. Journal Geotechnical and Geoenvironmental Engineering, 127 (10), 17. 

Yu, H. S., Schnaid, F., Collins, I. F. 1997. Closure to Discussion on Analysis of Cone Pressuremeter Tests in Sands. 
Journal of Geotechnical and Geoenvironmental Engineering, 123 (9), 2. 


